
This is the author’s version of a work that was submitted/accepted for pub-

lication in the following source:

Sweetser, Penelope & Wiles, Janet (2005) Scripting versus emergence

: issues for game developers and players in game environment design.

International Journal of Intelligent Games and Simulations, 4(1), pp. 1-9.

This file was downloaded from:

c� Copyright 2005 University of Wolverhampton

Notice: Changes introduced as a result of publishing processes such as

copy-editing and formatting may not be reflected in this document. For a

definitive version of this work, please refer to the published source:

http://eprints.qut.edu.au/view/person/Sweetser,_Penelope.html
http://eprints.qut.edu.au/46349/

© IJIGS/University of Wolverhampton/EUROSIS

Scripting Versus Emergence: Issues for Game Developers and Players in Game
Environment Design

Penelope Sweetser and Janet Wiles

School of Information Technology and Electrical Engineering
The University of Queensland

St Lucia, Queensland,
Australia

E-mail: penny@itee.uq.edu.au

KEYWORDS
Emergence, Scripting, Game Environments, User-
Centered, Game Design.

ABSTRACT

This paper defines and discusses two contrasting
approaches to designing game environments. The
first, referred to as scripting, requires developers to
anticipate, hand-craft and script specific game
objects, events and player interactions. The
second, known as emergence, involves defining
general, global rules that interact to give rise to
emergent gameplay. Each of these approaches is
defined, discussed and analyzed with respect to the
considerations and affects for game developers and
game players. Subsequently, various techniques
for implementing these design approaches are
identified and discussed. It is concluded that
scripting and emergence are two extremes of the
same continuum, neither of which are ideal for
game development. Rather, there needs to be a
compromise in which the boundaries of action
(such as story and game objectives) can be hard-
coded and non-scripted behaviors (such as
interactions and strategies) are able to emerge
within these boundaries.

INTRODUCTION

The approach that is used to develop game worlds
holds considerations for game developers and
players. The current approach to developing game
worlds is a scripted approach. Scripting involves a
specific, low-level, entities-based approach to
developing game worlds. The considerations of the
scripted approach for game players include
inconsistencies in the game world, unintuitive
interactions, a slow learning curve, limited
freedom for the player and no possibility of

emergent gameplay. For game developers,
developing scripted game worlds involves
substantial effort in planning, implementing and
testing, difficulties in extending and modifying,
and issues with quality assurance due to
inconsistencies. However, the current scripted
approach does afford developers full creative
control, no uncertainty in how the game system
will behave and ease of giving feedback and
direction to players. The current proliferation of
the scripted approach is partly due to these reasons
and partly due to the widespread use of scripted
and static software techniques, such as scripting
and finite state machines.

One possible alternative to the current scripted
approach is an emergent approach to developing
game worlds. Emergence involves a top-down,
systems-based approach to developing game
worlds. Emergence has been integrated to a limited
degree in previous games to allow emergent
gameplay or emergent narrative. Considerations of
an emergent approach for game developers include
significant planning and tuning in development, a
loss of creative control, difficulties in giving
feedback and direction to players and uncertainty
in how the game will respond to the player.
However, emergent systems are easier to modify
and extend and the uncertainty gives the possibility
for emergent gameplay. Emergent systems can
potentially improve player experience as they are
inherently consistent, interactions can be more
intuitive, the players’ learning curve can be
reduced, and emergent systems allow far more
freedom for players and the possibility of emergent
gameplay. Techniques that can potentially be used
to facilitate emergence in games include flocking,
neural networks, cellular automata and
evolutionary algorithms.

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

© IJIGS/University of Wolverhampton/EUROSIS

This paper presents the issues associated with
these different design approaches for game
developers and players. It then discusses the
methods that are currently used for hand-crafting
game worlds and identifies and explores the
techniques that have the potential to facilitate
emergence in games.

SCRIPTING AND EMERGENCE

The majority of current games are developed with
a scripted approach, which involves the game
developer predefining specific paths and
interactions that the player will take throughout the
game. Scripted game design is the creation of
gameplay out of the ideas of a particular designer,
as needed for a specific, localised occurrence in
the game. Scripted design involves limited
awareness of global game patterns and relies on a
given designer’s ideas of what is consistent and
fun (Smith, 2002). The environments, objects and
agents in these games are limited to the narrow and
static behaviour that the developer has predefined.
As a result, the players’ possible interactions with
these game elements and resulting gameplay is
confined, inflexible and lifeless. These scripted
systems have also been referred to as “emulations”
(Church, 2002) and “specific” systems (Smith,
2002).

A possible alternative to the current scripted
approach to game design is to design general, rule-
based systems that allow the creation of gameplay
out of combinations of existing game elements
with globally defined, consistent characteristics
and behaviour. This emergent approach to game
design is also referred to as “simulation” (Church,
2002) and “systemic” system design (Smith, 2002)
in the game development literature. An emergent
approach to game design requires a globally
designed game system that provides rules and
boundaries for player interactions, rather than
prescripted paths.

CONSIDERATIONS FOR GAME
DEVELOPERS

Different approaches need to be taken to develop
games that are emergent versus scripted. They also
offer different advantages and disadvantages for
the development team. In developing scripted

games, the development team needs to design
specific game elements, and implement and test
them individually, which can be costly in time and
effort. However, the designers are empowered to
create a specific narrative and flow for the game
and there are no nasty surprises. For emergence,
the development team needs to design types of
objects and has the convenience of dropping a type
of object into a certain level. This approach gives
rise to greater efficiency in implementation and
testing. However, there are potential problems
with uncertainty and loss of control for the
designers.

There are five central issues in the game
development literature that are important to
consider when designing game systems. These
issues are (1) effort in designing, implementing
and testing, (2) effort in modifying and extending,
(3) level of creative control for game developers,
(4) uncertainty and quality assurance, and (5) ease
of feedback and direction to players. Each of these
issues is described in this section and discussed
with respect to scripted and emergent games.

Developer Considerations for Scripted Systems

Effort in Designing, Implementing and Testing
In developing scripted games, specific interactions
need to be planned by the game designers (Church,
2002) and the possible courses of action that the
players can take need to be manually setup by the
developers (Smith, 2001). Scripting requires a
“look and feel” approach to the placement of units,
weapons, tools, resources, and specific puzzles or
scripted sequences. Scripted games require a
considerable time and effort by the designers, as
well as vigilant manual effort to ensure
consistency in the game world (Smith, 2002).

Effort in Modifying and Extending
Scripted systems scale poorly and do not lend
themselves to extensibility (Church, 2002). The
properties and parameters of objects in scripted
systems are different for each instance. Also,
objects must have explicit relationships with other
game elements for interactions to occur. For
example, for a bullet from a gun to break a
window, there needs to be a direct relationship
between the gun entity and the window entity
(Smith, 2001). The gun class would need to

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

© IJIGS/University of Wolverhampton/EUROSIS

contain code listing all the things it could affect.
Consequently, any changes that need to be made to
the system require revision of any aspect of the
game that is affected by the change (Church,
2002). Also, fixing bugs in the system requires
each instance of a game element to be visited and
reconfigured manually (Smith, 2002).

Level of Creative Control
As game developers manually plan and set up
specific situations, interactions and events in
scripted games, the game designers have full
creative control over the game. The designers are
empowered to create a specific narrative flow for
the game, by defining the order and nature of the
players’ actions and encounters in the game.

Uncertainty and Quality Assurance
Similarly, nothing occurs in the game that was not
intended or planned by the game developer.
Consequently, there is no uncertainty or
unexpected events in the game. The player plays
the game in the exact way that the developer had
intended. However, due to the inconsistencies that
can exist in scripted games, quality assurance
requires extensive testing of each game element,
interaction and event. The scripted approach is
effective for developing simple systems or specific
complex behaviour, but can be difficult to manage
on a larger scale.

Ease of Feedback and Direction
As with creative control, giving feedback and
direction to players is simple in scripted systems as
the developer knows when and how the player will
interact with various game elements. As the
desired outcome is known, it is straightforward to
give players feedback on their success at
performing actions or fulfilling goals.

Developer Considerations for Emergent
Systems

Effort in Designing, Implementing and Testing
Creating emergent games involves designing types
of objects and interactions, rather than specific
ones (Church, 2002), which can give rise to greater
efficiency in development and testing. The
properties and parameters reside at a higher level
(Smith, 2002). Rather than having a specific gun
able to break a specific window, there is an

additional layer of abstraction that allows a gun to
break anything made of glass. For example, the
gun would project a bullet entity that has certain
properties (e.g. ballistic damage, heat or
electricity) and the glass is a stimulus-receiving
entity (Smith, 2001). The system would have a set
of rules about the relationship between the entities’
general-case properties and when the bullet meets
the glass, the game’s object-property system looks
up the effect of the bullet’s properties on the glass
entity. Therefore, the gun will work on any
window (or any other stimulus-receiving object),
rather than only the specified windows.

Emergent systems often require considerable
initial effort in planning and building, as the rules
and properties need to be defined in advance.
Additionally, the system can require a lot of tuning
to get the rules and properties to function correctly.
However, development can be more efficient as
programmers can build tools that allow designers
to “drop” objects into levels, with the properties
and behaviour of the object already defined.
Designers can also create new objects and attribute
properties to the objects using the tools (Smith,
2002).

Effort in Modifying and Extending
Once an emergent system is built successfully, the
design scales well (i.e. increases in size easily,
maintaining robustness and manageability) and is
easily extended (Church, 2002). Making changes
to the system (e.g. fixing bugs) has the potential to
be more efficient as changes can be made to object
types, rather than each particular instance of an
object than needs to be changed (Smith, 2002).

Level of Creative Control
The use of emergence in games could result in a
possible loss of creative control for the game
designer. Using emergence involves defining types
of interactions and behaviours, which makes it is
more difficult to set up specific narrative and
sequences. Consequently, controlling the flow of
game and telling a specific story is not as
straightforward in an emergent system.

Uncertainty and Quality Assurance
Emergence also introduce uncertainty, which
means that the game can behave in ways that the
developers had not anticipated. Although this

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

© IJIGS/University of Wolverhampton/EUROSIS

uncertainty can give rise to desirable, emergent
gameplay, it can also be undesirable if the system
allows behaviour that is detrimental to the game
(Church, 2002). Extensive testing is required to
ensure that the game does not allow detrimental
behaviour. However, the emergent events can be
too numerous or subtle for the development team
to predict or detect during testing (Smith, 2002).

Ease of Feedback and Direction
Players have a greater need for feedback on the
outcome and success of their actions in emergent
systems, as the openness of the game world gives
rise to more possibilities for action (Smith, 2001).
Consequently, the players need more feedback to
know that they are on the right track and that their
actions are successful.

CONSIDERATIONS FOR GAME PLAYERS

As well as having significantly different
development approaches, scripting and emergence
also give rise to different methods of playing the
game. Some issues that need to be considered
include the ability of the game to uphold the
player’s suspension of disbelief, consistency in the
game world, the intuitiveness of the environment,
player expectation and learning, and how well the
game facilitates player expression and emergent
gameplay. This section discusses the impact that
scripting and emergence have on each of these
issues.

Consistency and Immersion

Game worlds that behave consistently and in ways
that the player understands enable the player to
become immersed in the environment and suspend
disbelief (Smith, 2001). Conversely,
inconsistencies in games remind that player that it
is just a game, breaking their suspension of
disbelief. For example, if the player becomes stuck
in a wall when adventuring in a dungeon (Hecker,
2000) or a monster attacks them through the wall
then inconsistencies occur with the fantasy that the
game has created. Similarly, if a boom microphone
appears in an emotional scene in a movie, the
immersion the viewer feels – their suspension of
disbelief – is instantly broken (Hecker, 2000). The
viewer of the movie or the player of the game is
transported back to the real world, reminded and

disappointed that their experience was fake.
Scripted game systems inherently break the
player’s immersion, as their specific interactions
and situations give rise to many inconsistencies.

Emergent systems have the potential to be used to
create more consistent game worlds (Smith, 2001).
The game worlds in emergent systems are
inherently consistent as the rules and properties are
defined globally, for types of objects, rather than
locally for each specific object. For example, the
player knows that bullets affect everything that is
damageable, such as windows, vases and chairs,
rather than some windows and no vases.
Furthermore, the player can deduce that if they can
move objects and put objects on top of one another
then they can stack crates. Games that obey a
consistent set of physical laws allow the player to
stay immersed in the game, sparing them from
unpleasant surprises (Hecker, 2000).

Intuitiveness and Learning

Another important aspect of player interaction
with the game environment is intuitiveness and
player expectation. Casual game player or non-
game players can be baffled by the physics in
game worlds (Smith, 2001). In some game worlds,
only “explosive” barrels burn, some pieces of light
furniture cannot be moved, the player’s character
might not be able to climb onto a desk and
sometimes glass does not break. In order to be able
to play computer games, it is necessary to relearn
the physics of the world like a child (Smith, 2001).
These types of problems arise in scripted games
because the possible interactions that the player
can have with the game environment are not
intuitive and they do not meet player expectation.

The intuitiveness of interactions in game worlds
can be partly attributed to how the interactions
correspond to interactions with the same objects in
the real world. Game worlds are populated with
objects that are visually similar to objects that we
use every day, but that are functionally different.
Not only can these interactions be counter-intuitive
for the player, but they can often confuse and
frustrate the player (Hecker, 2000). It is natural for
a player to expect that they will be able to pick up
a phone, kick a chair and break a window, as they
have learned these actions are possible throughout

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

© IJIGS/University of Wolverhampton/EUROSIS

their whole life. However, in scripted games, these
actions are only possible if the developer has
specifically coded them for each game object.
Consequently, it is likely that many intuitive and
seemingly logical actions will not be possible.

Game worlds that work in a way that reflect
players’ lifelong experiences (in the real world) are
more intuitive and easier to understand for the
average person, even in fantasy realms and alien
dimensions (Smith, 2001). Emergent games are
more likely to be intuitive to the average person as
it is easier to create objects that behave and
interact in more natural ways, with a wider variety
of interactions. The objects in emergent games are
not limited to specific interactions that have been
hard-coded. Instead, they interact in ways that are
conducive to their properties and rules for
interaction.

An important benefit of making game worlds more
intuitive is that they become easier to learn. The
player is more likely to develop an intuitive
understanding of the game elements if they are
consistent with real world elements (Smith, 2002).
For example, if fire in the game behaves like fire
in the real world then the player will have an
inherent understanding of how the fire works,
without needing to be retaught the rules of fire
within the game (Smith, 2001). With the use of
intuitive game elements, the player is more likely
to understand the elements, even when
encountering them for the first time. As a result,
the learning curve of the player is substantially
decreased, which means that the player spends less
time learning and more time playing the game
(Smith, 2002).

Emergent Gameplay and Player Expression

The final issue identified in the game development
literature is the degree of freedom of player
expression and the possibility of emergent
gameplay that is supported by the game system. In
scripting, the designers manually define a number
of outcomes or interactions and allow the player to
pick one. The result is a handful of canned
solutions to each particular problem (Smith, 2001),
which makes the game linear (i.e. only one path
through the game). The player is given a choice of
a small number of static courses of action to take,

which have been predefined by the game
designers. The game is played in the exact way it
was specified, which might not accommodate
player creativity (Church, 2002).

In contrast to scripted systems, emergent systems
define global possibilities for actions the player
can perform, which can be applied in more open
ways in specific situations. Players have more
freedom to express their creativity and gameplay
can occur that wasn’t anticipated by the designers.
Emergent gameplay allows players to solve game
problems by using strategies that were not
envisaged by the designers (Smith, 2001; Garneau,
2002). Emergent gameplay occurs when a player’s
actions result in a second order of consequence
that the development team did not predict and the
game behaves in a rational but unplanned way
(McLean, 2002; Smith, 2002). For example, in the
game Deus Ex, players used proximity mines to
create ladders up walls to climb off the map, a
possibility that was not foreseen by the developers.

Emergent games empower the player by putting
them centre stage (Church, 2002), giving them
freedom to experiment, greater control, a sense of
agency, and less of a feeling of uncovering a path
set for them by the designers (Smith, 2002).
Consequently, the game can be more satisfying
and interesting for the player. Game worlds that
are not full of prescripted one-to-one interactions
are empowering to the player as the gameplay
becomes largely about exploring the possibility
space and the game experiences become richer
(McLean, 2002). Emergent games also have high
replayability as each time the player plays the
game they make different decisions, which change
the game as a whole and result in different
possibilities for action (Garneau, 2002).

The major difference between scripting and
emergence is that emergence focuses on what the
player wants to do, whereas scripting focuses on
what the designer wants the player to do (Smith,
2001). However, it is important to realise that
emergence alone isn’t a game (Church, 2002).
Emergence in games needs to be used to improve
gameplay, not simply for its own sake.

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

© IJIGS/University of Wolverhampton/EUROSIS

TECHNIQUES FOR SCRIPTING AND
EMERGENCE IN GAMES

The techniques that are used to implement the
game environments, objects and agents define
whether the system will be static and scripted or
dynamic and emergent. Techniques that require
everything to be built into the system in
development, with no room for adaptation or
unexpected behavior, can only facilitate a system
that behaves as it is told to behave. On the other
hand, techniques that are given the boundaries for
behavior (rather than the script) or are able to grow
and change have the potential to give rise to
behavior that may not have been foreseen (or
expected) by the developers. This section describes
several techniques that have the potential to be
used in games for implementing scripted or
emergent games, or aspects of games, with the
considerations for using each technique.

Techniques for Scripting Game Worlds

Scripted systems are custom coded for specific
reactions to complex inputs for various localized
situations in a game. The majority of current
games are designed with this approach and there
are two main techniques that are used for
implementation, scripting and finite state
machines. Almost every commercial computer
game uses scripting or state machines for some, if
not all, of the game system.

Finite State Machines
A finite state machine (FSM) is a device that
consists of a set of states, a set of input events, a
set of output events and a state transition function,
which takes the current state and an input event
and returns the new set of output events and the
next state. The purpose of an FSM is to divide a
game object’s behaviour into logical states so that
the object has one state for each different type of
behaviour it exhibits (Rabin, 2000).

FSMs are by far the most popular technique in
modern games, as they are simple to program, easy
to understand and debug, and general enough to be
used for any problem (Rabin, 2002). FSMs are
amongst the simplest computational devices and
provide a large amount of power relative to their
complexity. Consequently, FSMs are ideal for the

conditions of game development, which involves
limited computational resources, as well as limited
development and testing time. Some problems
with using FSMs are that they tend to be poorly
structured with poor scaling, so that they increase
in size uncontrollably as the development cycle
progresses. As a result, FSM maintenance can be
very difficult and game FSMs that are not well
planned and structured can grow out-of-hand
quickly.

Scripting Languages
Scripting languages are designed to simplify some
set of tasks for a game and hide many complicated
aspects (Berger, 2002), thus allowing non-
programmers, such as designers and artists, to
write script for the game. Scripting languages for
games, such as Quake’s QuakeC or Unreal’s
UnrealScript, allow game code to be programmed
in a high-level, English-like language (LaMothe,
1999), which is used to control the game engine
from the outside. The scope of a scripting language
can vary significantly depending on the problems
it is designed to solve, ranging from a simple
configuration script to a full-blown runtime
interpreted language (Poiker, 2002).

Scripting languages are ideal for games as they are
suitable for non-programmers, such as designers,
artists and end users. During development, the
designers use scripting to implement stories
(Poiker, 2002), while artists use scripting to
automate repetitious tasks, do things that the
computer can do better than humans and add new
functionality (Stripinis, 2001). After the game is
shipped, “mod” groups and hobbyists write scripts
if the scripting system has been exposed to the
public (Poiker, 2002). Also, scripting languages
are generally separate from the game’s data
structures and codebase and thus provide a safe
environment for non-programmers and end users
to make changes to the game, so that bugs in the
script will not cause the game to crash. However,
as with FSMs, scripting languages are
deterministic and they require the game developer
to hard-code character behaviour and game
scenarios. Therefore, the developer must anticipate
and hard-code each of the player’s possible
situations, making the game predictable and linear.

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

© IJIGS/University of Wolverhampton/EUROSIS

Techniques for Emergence in Game Worlds

Emergent behavior occurs when simple,
independent rules interact to give rise to behavior
that wasn’t specifically programmed into the
system (Rabin 2004). Techniques that can be used
to facilitate emergence come from complex
systems, machine learning and artificial life. Some
examples of these techniques that can and have
been used in games are flocking, cellular automata,
neural networks and evolutionary algorithms.

Flocking
Flocking is a technique for simulating natural
behaviours for a group of entities, such as a herd of
sheep or a school of fish (Grub, 2003). Flocking
was devised as an alternative to scripting the paths
of each entity individually, which was tedious,
error-prone and hard to edit, especially for a large
number of objects. Flocking assumes that a flock
is simply the result of the interaction between the
behaviours of individual birds. In flocking, the
generic simulated flocking creatures are called
boids. The basic flocking model consists of three
simple steering behaviours, separation, alignment
and cohesion, which describe how an individual
boid manoeuvres based on the positions and
velocities of its nearby flockmates. Separation
enables the boid to steer to avoid crowding local
flockmates, alignment allows the boid to steer
towards the average heading of local flockmates
and cohesion makes the boid steer to move toward
the average position of local flockmates
(Reynolds, 2003). Each member in the flock
revaluates its environment at every update cycle,
which reduces the memory requirements and
allows the flock to be purely reactive, responding
to the changing environment in real time.

Flocking has been successfully used in various
commercial games, including Half-life, Unreal,
Theme Hospital and Enemy Nations, as it provides
a powerful tool for unit movement (Johnson &
Wiles, 2001) and for creating realistic
environments the player can explore (Woodcock,
2003). It is a relatively simple algorithm and only
composes a small component of a game engine.
However, flocking makes a significant
contribution to games by making an attack by a
group of monsters or marines realistic and
coordinated. It therefore adds to the suspension of

disbelief of the game and is ideal for real-time
strategy or first-person shooter games that include
flocks, swarms or herds.

Cellular Automata
Cellular automata (CA) are widely-used
techniques in the field of complex systems, which
studies agents and their interactions. A traditional
CA is a spatial, discrete time model in which space
is represented as a uniform grid (Bar-Yam, 1997).
Each cell in the grid has a state, typically chosen
from a finite set. In a CA, time advances in
discrete steps. At each time step, each cell changes
its state according to a set of rules that represent
the allowable physics of the model. The new state
of a cell is a function of the previous state of the
cell and the states of its neighbouring cells. A CA
can be represented in one, two or more
dimensions. A one-dimensional CA consists of a
single line of cells, where the new state of each
cell depends on its own state and the state of the
cells to its left and right. In a two-dimensional CA,
each cell can have four or eight neighbours,
depending on whether cells diagonally adjacent to
a cell are considered neighbours. CA have been
proposed as a solution to the static environments
that are prevalent in current computer games
(Forsyth, 2002). The use of CA could lead to more
dynamic and realistic behaviour of many game
elements that are currently scripted, such as fire,
water, explosions, smoke and heat.

A variation of CA, influence mapping, is a method
for representing the distribution of power within a
game world in a two-dimensional grid (Rabin,
2004). Influence maps are commonly used for
strategic assessment and decision-making in games
(Sweetser, 2004a), but were also used in the game
SimCity to model the influence of various social
entities, such as police and fire stations around the
city (Rabin, 2004).

Neural Networks
Neural networks are machine learning techniques
inspired by the human brain. Neural networks are
comprised of artificial neurons, called units, and
artificial synapses, called weights. In a neural
network, knowledge is acquired from the
environment through a learning process and stored
in the network’s connection weights (Haykin,
1994). The network learns from a training set of

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

Alf Inge Wang

© IJIGS/University of Wolverhampton/EUROSIS

data by iteratively adjusting its weights until each
weight correctly reflects the relative influence that
each unit has on the output. After training is
complete, the network is ready to be used for
prediction, classification or decision-making.

Considerations when developing neural networks
for games include which variables from the game
world will be used as input, the design of the
structure of the network, what type of learning will
be used, and whether learning will be conducted
in-game or during development (Sweetser, 2004b).
If the neural network is allowed to learn during the
game then it will be able to dynamically build up a
set of experiences and adapt to new situations and
the human player as the game progresses.
Alternatively, training the neural network during
development will produce a network that will
behave within expectations and require minimal
resources. Overall, advantages of neural networks
include their flexibility for different applications,
their ability to adapt when trained in-game and the
efficiency of their evaluation once trained.
However, neural networks can also consume a lot
of resources when training, can require substantial
tuning to produce optimal results and can learn
unpredictable or inaccurate information if trained
incorrectly.

Evolutionary Algorithms
An evolutionary algorithm (EA) is a technique for
optimization and search, which evolves a solution
to a problem in a similar way to natural selection
and evolution. An EA’s similarities to nature
include the use of a population of possible
solutions to a problem, referred to as
chromosomes, as well as processes that evaluate
each chromosome’s fitness and select which
chromosomes will become parents. Additionally,
the chromosomes that are selected to be parents
take part in a process similar to reproduction in
which they generate new offspring by exchanging
genes. The new offspring also have a chance that
they will mutate, similar to natural mutation. As
the cycle continues over time, more effective
solutions to the problem are evolved.

Considerations that need to be made when
designing an EA for a game include the many
parameters that need to be tuned, such as choice of
a suitable representation, population size, number

of generations, choice of a fitness function and
selection function, and mutation and crossover
parameters (Sweetser, 2004c). There are many
advantages to using an EA, as they are a robust
search method for large, complex or poorly-
understood search spaces and non-linear problems.
An EA is useful and efficient when domain
knowledge is limited or expert knowledge is
difficult to encode as they require little information
to search effectively. Also, they are useful when
traditional mathematical and search methods fail.
On the down side, an EA is computationally
expensive and requires a lot of tuning to work
effectively. In general, the more resources they can
access the better, with larger populations and
generations giving better solutions. However, an
EA can be used offline, either during development
or between games on the user’s computer, rather
than consuming valuable in-game resources.

CONCLUSIONS

The two extreme approaches to game design
discussed in this paper ranged from hand-crafted,
hard-coded, scripted environments to rule-based,
general, emergent environments. An emergent
approach to game design is significantly different
from the current scripted approach to game design,
in terms of modelling techniques, as well as the
implications for developers and players. However,
the two approaches are not mutually exclusive.
Rather, scripting and emergence can be seen as
two extremes of a continuum (Church, 2002;
Smith, 2002).

Both extremes hold benefits and drawbacks for
game developers, as well as consequences for the
game players. At the specific, scripted end of the
continuum, the developers must hand-craft,
implement and test every aspect of the game
individually but are able to keep full creative
control and rest assured that the game won’t break
after release. With the scripted extreme, the
players are often locked into playing the game in a
predefined way, unable to express their own
creativity and may encounter inconsistencies in the
game world. At the other end of the continuum are
emergent game worlds that simply contain general
rules for how the environment, objects and agents
will interact, and the specific behaviours and
events emerge from the interactions of the general

Alf Inge Wang

© IJIGS/University of Wolverhampton/EUROSIS

rules. However, emergence can be a disconcerting
prospect for developers, who cannot be sure how
the game will actually behave after it is released,
and is a sandbox type environment even a game?
The emergent extreme does, however, hold the
potential for players to express their own creativity
and for intuitive and consistent interactions to take
place in the game world.

It seems that it is somewhere between these two
extremes that the future of game development lies;
that there needs to be the right combination of
scripted, narrated gameplay and freedom to
interact within the world. There needs to be some
way to define the boundaries of action, moving the
story forwards, but still letting the player do their
own thing along the way. We suggest that a game
world that facilitates emergent interactions, based
on a technique such as cellular automata, can be
used in conjunction with other more conventional
techniques for gameplay, such as scripting, to
allow the player sandbox-style interaction within
the boundaries of a predefined story and game
objectives. The ongoing research that we are
conducting is aimed at developing such a game
environment (Sweetser, 2005).

REFERENCES

Bar-Yam, Y. 1997. Dynamics of Complex Systems. Addison
Wesley, Reading, MA.
Berger, L. 2002. “Scripting: Overview and Code-
Generation.” In AI Game Programming Wisdom, S. Rabin,
ed. Charles River Media, Inc, Hingham, MA.
Church, D. 2002. “Simulation, Emulation, and the Game
Design/Development Process.” Presented at Australian Game
Developers Conference, Melbourne, Australia, 6-8
December.
Forsyth, T. 2002. “Cellular Automata for Physical
Modelling.” In Game Programming Gems 3, D. Treglia, ed.
Charles River Media, Inc, Hingham, MA
Garneau, P. 2002. Emergence: Making Games Deeper.
Available online at http://www.pagtech.com/
Articles/Emergence.html.
Grub, T. 2003. Flocking. Available online at
http://www.riversoftavg.com/flocking.htm.
Haykin, S. 1994. Neural Networks: A Comprehensive
Foundation. Maxwell Macmillan International.
Hecker, C. 2000. “Physics in Computer Games”. In
Communications of the ACM 43, no. 7: 34-37.
Johnson, D. and Wiles, J. 2001. “Computer Games with
Intelligence.” In Proceedings of the 10th IEEE International
Conference on Fuzzy Systems.
LaMothe, A. 1999. Tricks of the Windows Game
Programming Gurus. SAMS.

McLean, J. 2002. Conversations from GDC Europe: Bill
Fulton, Zeno Colaco, Harvey Smith. Available online at
http://www.gamasutra.com/features/20020911/
mclean_01.htm.
Poiker, F. 2002. “Creating Scripting Languages for
Nonprogrammers.” In AI Game Programming Wisdom, S.
Rabin, ed. Charles River Media, Inc, Hingham, MA.
Rabin, S. 2000. “Designing a General Robust AI Engine.” In
Game Programming Gems, M. DeLoura, ed. Charles River
Media, Inc, Hingham, MA.
Rabin, S. 2002. “Implementing a State Machine Language.”
In AI Game Programming Wisdom, S. Rabin, ed. Charles
River Media, Inc, Hingham, MA.
Rabin, S. 2004 “Common Game AI Techniques.” In AI Game
Programming Wisdom 2, S. Rabin, ed. Charles River Media,
Inc, Hingham, MA.
Reynolds, C. 2003. Boids. Available online at
http://www.red3d.com/cwr.
Smith, H. 2001. The Future of Game Design: Moving Beyond
Deus Ex and Other Dated Paradigms. Available online at
http://www.planetdeusex.com/witchboy/articles/
thefuture.shtml.
Smith, H. 2002. “Systemic Level Design.” Presented at Game
Developers Conference, San Jose, CA, March 21-23.
Stripinis, D. 2001. “The (Not So) Dark Art of Scripting for
Artists.” In Game Developer Magazine: 40-45.
Sweetser, P. 2005. PhD Thesis: “An Emergent Approach to Game
Design – Development and Play”. Available online, 15 May, at
http://www.itee.uq.edu.au/~penny/publications.htm

Sweetser, P. 2004a. “Strategic Decision-Making with Neural
Networks and Influence Maps.” In AI Game Programming

Wisdom 2, S. Rabin, ed. Charles River Media, Inc, Hingham,
MA.
Sweetser, P. 2004b. “How to Build Neural Networks for
Games.” In AI Game Programming Wisdom 2, S. Rabin, ed.
Charles River Media, Inc, Hingham, MA.
Sweetser, P. 2004c. “How to Build Evolutionary Algorithms
for Games.” In AI Game Programming Wisdom 2, S. Rabin
ed.. Charles River Media, Inc, Hingham, MA.
Woodcock, S. 2003. Games Making Interesting Use of
Artificial Intelligence Techniques. Available online at
http://www.gameai.com.

BIOGRAPHY

Penelope Sweetser is a game designer at The
Creative Assembly, Brisbane, Australia. She is
also completing her PhD in emergence in games
and lecturing game design at The University of
Queensland, Australia. Her research interests
include artificial intelligence, emergence and user-
centred design in games.

Janet Wiles is Associate Professor in the Division
of Complex and Intelligent Systems Research in
ITEE at the University of Queensland. She studies
complex systems with particular applications in
biology, neuroscience and cognition. Insights from

© IJIGS/University of Wolverhampton/EUROSIS

such systems contribute to game design by
showing how local interactions in such systems
can give rise to system-wide properties.

