Requirements Engineering and the
Creative Process in the Video Game Industry

David Callele, Eric Neufeld, Kevin Schneider
Department of Computer Science
University of Saskatchewan
Saskatoon, Saskatchewan, Canada S7N 5C9
{callele,neufeld kas} @cs.usask.ca

Abstract

The software engineering process in video game devel-
opment is not clearly understood, hindering the develop-
ment of reliable practices and processes for this field. An
investigation of factors leading to success or failure in
video game development suggests that many failures can be
traced to problems with the transition from preproduction to
production. Three examples, drawn from real video games,
illustrate specific problems: 1) how to transform documen-
tation from its preproduction form to a form that can be used
as a basis for production, 2) how to identify implied infor-
mation in preproduction documents, and 3) how to apply
domain knowledge without hindering the creative process.
We identify 3 levels of implication and show that there is
a strong correlation between experience and the ability to
identify issues at each level.

The accumulated evidence clearly identifies the need to
extend traditional requirements engineering techniques to
support the creative process in video game development.

Keywords: Non-functional requirements, elicitation,
video game development, game design document, prepro-
duction, production, domain-specific terminology.

1 Introduction

Video games are a special type of multimedia application
— an entertainment product that requires active participation
by the user. Developed by a multi-disciplinary team, non-
functional requirements such as entertaining the user cre-
ate special demands on the requirements engineering pro-
cess. Requirements like fun and absorbing are not well un-
derstood from the perspective of requirements engineering,
compounding communication issues between game design-
ers and software engineers. Game designers may not under-
stand, for example, the limitations of artificial intelligence

when designing non-player characters while software engi-
neers may not understand the creative vision or they may be
too willing to compromise that vision in the rush to ship the
product.

It may be that nothing can qualitatively change this.
However, it should be possible to decrease the cost of de-
lays caused by communication errors in such a heteroge-
neous group. As a first step toward the development of a
formal process, we have attempted to locate the causes of
the most costly errors. By way of background, we first re-
view the requirements engineering literature applied to mul-
timedia development and introduce the video game industry
and the video game development process, with attention to
the roles of preproduction and the game design document
(as a deliverable artifact of the preproduction process). We
analyze the observational reports from the Postmortem col-
umn in Game Developer magazine, categorize the informa-
tion therein, and present the results. Three examples, drawn
from real video games, illustrate particular issues that must
be addressed in a formal process. We follow with our con-
clusions, an analysis of the role of requirements engineering
in video game development, and directions for future work.

2 Background

Requirements engineering within a community of com-
mon interest is difficult — the ability to precisely communi-
cate and capture stakeholder wants and needs is rare. Tra-
ditional requirements engineering techniques [15, 26] as-
sume these communications issues can be overcome in a
few iterations. However, we are unaware of any work that
directly addresses the validity of this assumption in a multi-
disciplinary development effort. While goal [1, 10] and sce-
nario [16] based techniques can be used to alleviate com-
munications issues, their efficacy when development efforts
include a strong artistic or inventive element [25] (such as
in video game design, multimedia web sites, or the movie

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

industry) remains unproven.

Members of video game development teams include
practitioners from such diverse backgrounds as art, mu-
sic, graphics, human factors, psychology, computer science,
and engineering. Individuals who, in other circumstances,
would be unlikely to interact with each other on a profes-
sional basis unite in their economic goal of creating a com-
mercially successful product. Requirements engineering in
the face of such diversity requires the creation of a common
(domain) language (and implied world model) specific to
the task at hand. Once all stakeholders fully commit to the
domain language, then a set of requirements that captures
the stakeholders wants and needs can be generated.

Given the dearth of directly related work, we performed
a more extensive literature review, focussing on: (1) re-
quirements engineering and emotional factors (including
fun in games), (2) issues of language and the creation of
a common language or domain ontology, and (3) require-
ments elicitation and the effects of feedback on emergent
requirements, particularly in multimedia development.

2.1 Emotional Factors

While emotion in human-computer interaction is coming
under ever increasing scrutiny [20], few researchers have
investigated emotional factors in requirements engineering.
Draper [11] looked at fun as a candidate software require-
ment, attempting to identify what it is that makes play fun.
He concluded that “fun is not a property of software, but a
relationship between the software and the users goals at that
moment” and that “providing enjoyment is now a defining
requirement of an important class of software, and this has
not been sufficiently recognized in our analyses and design
methods”. These conclusions are consistent with our expe-
rience.

Hassenzahl et al. [17] introduced hedonic qualities
(those that are unrelated to the current task but present for
emotional reasons) and associated repertory grid techniques
for measuring them. Bentley et al. [4] investigated emo-
tional (affective) factors in computer games, noting that
“software requirements for these and other affective factors
are never truly captured in an official manner”. In partic-
ular, usability, immersion, and motivation were considered
via a user survey mechanism. They note that there are no
established techniques for eliciting emotional requirements.
Even Chung, in his detailed analysis of non-functional re-
quirements [8], does not substantively address emotional is-
sues.

At their best, video games stimulate a state of flow in the
player, engendering concentration so intense that their per-
ception of time and sense of self become distorted or forgot-
ten [9]. In the field of game design, Salen and Zimmerman
[28], Laramee [19], and Saltzzman [29] address issues of

emotions and emotional response in game players. While
these works do not directly address requirements engineer-
ing practices, the techniques that they describe for game de-
sign and eliciting feedback from players may increase the
range of elicitation techniques available to practitioners. In
a more general sense, Norman [23] describes numerous hu-
man factors practices that could be readily incorporated into
requirements engineering for video games.

2.2 Language and Ontology

Zave [31] classifies the problems addressed by re-
quirements engineering, defining the domain, in part, as
“...translation from informal observations of the real world
to mathematical specification languages.” In game develop-
ment, this is only partially true. In many cases, the game
designer, an individual who may have little or no interest in
a mathematical representation, is also tasked with generat-
ing the requirements. Unable to generate the requirements
in isolation, the game designer works with the production
team to translate the vision to requirements — usually stated
in natural language complete with domain specific termi-
nology. Once captured, the requirements may be formalized
in place or, more likely, formalized as they are translated
into specifications.

A common language [14, 30], ontology [18, 30, 7], or
vision [18] is often mentioned as the solution to commu-
nications issues between disparate stakeholders. Natt och
Dag et al. [24] have demonstrated the application of sta-
tistical natural language processing techniques to managing
and understanding requirements generated by a multitude
of sources. Their results may be applicable to the documen-
tation transition issues studied further in Section 6.1.

2.3 Elicitation, Feedback and Emergence

Goguen [14] emphasizes that “feedback and feedforward
go on all the time, at least in successful large projects” and
that “requirements are emergent”. Emergent requirements
discovered during the transition from preproduction to pro-
duction are a significant aspect of the creative design pro-
cess.

Zave [31] presents a classification scheme that assumes
that “...as software engineers, we can seek to understand
social factors but we can only hope to influence technical
practices.” We posit that requirements engineering can be
more proactive in video game development by providing
feedback from production to preproduction in response to a
feedforward of early versions of preproduction documenta-
tion. The resultant influence on the creative process escapes
Zaves technical practices restriction. Specific feedforward
and feedback examples appear in Section 6.3.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

3 Video Game Development

Video games are a significant element of the entertain-
ment industry. The Consumer Electronics Association [2]
reports that entertainment software sales rose from $5.1 bil-
lion in 1999 to $7.7 billion in 2003 and that hardware sales
increased from $2.3 billion in 1999 to $3.2 billion in 2003.
Combined hardware and software sales in the video game
industry exceed the 2003 $9.42 billion gate receipts of the-
atrical release movies in North America [13].

However, for every advertisement for a newly released
game, the trade press reports a disproportionately large
number of projects that fail to reach the market. The
present work begins an investigation into the causes of these
failures. The multidisciplinary nature of the video game
development process — with art, sound, gameplay, con-
trol systems, human factors (and many others) interacting
with traditional software development creates complexities
that may recommend a specialized software engineering
methodology for this domain.

3.1 Development Process

Figure 1 models the game development process as two
consecutive efforts. The left hand side of the diagram de-
picts the preproduction phase, resulting in a Game Design
Document (GDD). Preproduction loosely corresponds to a
customers internal efforts to define their wants and needs
before meeting with the development team.

F Implementation

F Process

Production =——

= Preproduction ==
+ Control Flow

+ Dataflow

e Graphical
@mc Desigr
I

document)— Textual Level
M '
of
Abstraction
Implementation

Concept Gameplay Specifications Design

Story Requirements Architecture

Figure 1. Video game development

The right hand side of the diagram, derived from Medvi-
dovich and Rosenblum [21], depicts the production phase.
Requirements engineering, with the assistance of the game
designer(s), transforms the GDD to a specification (see Sec-
tion 3.2). Once the specification is complete, a traditional
software development process begins (often using an itera-
tive development effort of some form), resulting in the game
artifact.

Moving from preproduction to production is particularly
difficult in video game development. A wide range of fac-
tors (e.g. artistic, emotive, and immersive factors) must be
addressed by the requirements engineering effort. These
factors are captured in the game design document.

3.2 The Game Design Document

The game design document is a creative work written
by the game designer (or game design team). The GDD
must be thorough, but not necessarily formal (in the sense
of structure or from a mathematical perspective). In fact,
one could argue that imposing too much structure on the
creative process may be highly detrimental — constraining
expression, reducing creativity, and impairing the intangi-
bles that create an enjoyable experience for the customer.
In a sense, the GDD is the requirements document as de-
fined by the preproduction team.

The form of the game design document varies widely
across genres and studios. Typically, a GDD (drawing
loosely from Bethke [5]) includes a concept statement and
tagline, the genre of the game, the story behind the game,
the characters within the game, and the character dialogue.
It will also include descriptions of how the game is played,
the look, feel, and sound of the game, the levels or mis-
sions, the cutscenes (short animated movie clips), puzzles,
animations, special effects, and other elements as required.

A game design document is a preproduction artifact de-
signed to capture a creative vision. It is not designed to meet
the needs of a production effort. If a GDD is being used as a
source document in the production phase, there are two pos-
sible explanations. The game design document may contain
the information required for the production phase. In this
case, the game design document is malformed and should
be restructured and maintained as independent preproduc-
tion and production documents. Or, it may be that, even
though the game design document does not contain produc-
tion information, the production team is performing require-
ments engineering, specification, and possibly even design,
on an ad hoc basis. The greatest danger associated with
such ad hoc activities is the dependence on human memory
for capturing decisions and their justifications.

There are issues associated with managing the game de-
sign document to requirements document transition. Two
sets of documentation must be created and maintained. The
writing styles associated with the two sets of documenta-
tion are very different — is it reasonable to expect that a
single individual can perform both tasks in an efficient and
acceptable manner, particularly in the absence of generally
accepted practices for performing this translation? In gen-
eral, we found little evidence of structured application of
generally accepted requirements engineering principles in
our review of observational reports on industrial practices

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

(Section 5).

4 The Transition from Preproduction
to Production

Requirements errors are some of the most costly to fix;
Boehm and Basili [6] estimate that errors of this type can
cost up to 100 times more to fix after delivery than if caught
at the start of the project. Despite the available evidence
and accumulated experience, many projects still suffer from
failures due to inadequate requirements engineering.

Game designer and producer Eric Bethke [5] states

...too many projects violate their preproduc-
tion phases and move straight to production. ... In
my opinion, preproduction is the most important
stage of the project. I would like to see the day
when a project spends a full 25 to 40% of its
overall prerelease time in preproduction. During
production there should to be relatively few sur-
prises.

He promotes the use of UML based tools as a way to man-
age the transition but a formal (or semi-formal) transition
process is not presented. Many of the requisite elements for
production management (such as requirements capture, re-
quirement analysis, task analysis, time estimation, project
plans and technical design) are discussed in an informal
manner.

Other producers and consultants, such as Rollings [27]
and Michael [22], also identify many of the requisite ele-
ments for production management but do not provide for-
mal or semi-formal guidelines for managing the transition.

When discussing game design documents, Bethke [5]
comments “...I have never seen a completed design docu-
ment, and one of the reasons is that game design documents
need to be maintained through the course of production.”
With time-to-market pressures so prevalent, it is easy to see
how documentation maintenance is given low priority.

Despite the recognized need, we have discovered no ev-
idence that a process for managing the transition from pre-
production to production has been proposed (recognizing
that such a process may exist within an organization but re-
main unreported in the literature).

5 Review of Postmortem Columns

The video game industry is competitive and management
processes are significant corporate assets and generally in-
accessible to the researcher. Therefore, we use the Post-
mortems columns in Game Developer magazine [3], some
of which are extracted in POSTMORTEMS from Game De-
veloper [12], as a source of observational reports on this
issue.

From the authors guide provided by the publisher:

...Explain what 5 goals, features or aspects
of the project went off without a hitch or better
than planned. ... Explain what 5 goals, features or
aspects of the project were problematic or failed
completely. ...Important: try to come up with
things that went right/wrong during project that
are likely unique to your project. Stay away from
common and well understood problems and so-
lutions (e.g., “communication between the team
members wasnt good — thats been true of most
games), and focus on what made your project dif-
ferent from others.

The reports presented in the Postmortem column poten-
tially capture what makes video game development unique.
They are typically attributed to members of the project man-
agement team or middle to upper management within the
development organization. As such, one can reasonably as-
sume that the reports reflect issues of particular import to
the authors. While there may be an observer effect, par-
ticularly with respect to those items that went wrong, we
assume the information presented has a strong basis in fact.

Fifty postmortem reports [3], published between May
1999 and June 2004, were analyzed in an attempt to identify
factors that lead to success or failure in video game devel-
opment. Each report contained 5 entries in the “what went
right” and “what went wrong” sections. These entries were
reviewed and classified according to the following scheme!.

The classifications scheme has five categories: (1) pre-
production, issues outside of the traditional software devel-
opment process such as inadequate game design or inade-
quate storyboarding, (2) internal, issues related to project
management and personnel, (3) external, issues outside of
the control of the development team such as changes in the
marketplace and financial conditions, (4) technology, issues
related to the creation or adoption of new technologies, and
(5) schedule, issues related to time estimates and overruns.
Schedule issues are a subset of internal issues, but were
uniquely identified in an effort to determine if scheduling
was a significant issue. Any pair of the five categories was
also possible (e.g., “internal and technology”) if the entry
was that precise.

Figure 2 is a normalized representation of the results of
the categorization process; of the 15 possible categories,
only those categories that represent 10% or more of the fi-
nal result are shown. Internal factors dominate any other
category by a factor of approximately 300%.

Closer inspection of points classified as internal or
schedule factors reveals that many, if not most, of the entries

'In an attempt to reduce possible bias, entries were reviewed with min-
imal identifying information and categorization of the “what went right”
entries was performed independently of the “what went wrong” entries.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

Linear Response Weighting
ORight ®Wrong |

o o o
Y o o =s

Relative Weight

o
¥

s ul Bl mn

o

Pre- Pre- Internal Technology External
production production
and Internal

Categories (with relative weight >= .10)

Figure 2. Observational Report Analysis

are related to classic project management issues. For exam-
ple, PM4W52 notes “inadequate planning, PM20W3 claims
a lack of success due to “underestimating the scope of tasks
PMOW3 calls their schedule “too aggressive, PM18W2
states that “clear goals are great when they are realistic
and PM21W1 states that “an unrealistic schedule can’t be
saved without pain. It appears that these issues could be ad-
dressed by a RE process that better manages the transition
from preproduction to production.

Of interest is the balance in the categorization results.
Across all categories, across all projects, the maximum de-
viation from the mean is only 7.7% — a category was per-
ceived as likely to contribute to the success of a project as it
was to the failure of the project. The high degree of corre-
lation between the “what went right and “what went wrong
entries could be a result of the granularity of the categoriza-
tion scheme — approximately 60% of all entries are catego-
rized within the (major) internal category or related minor
categories.

In general, the management of different aspects of the
production process was often listed both as an element that
went right and an element that went wrong within a given
project. For example, in the internal category, PM3 consid-
ered their ability to focus on the task at hand as a success,
while stating that “inadequate planning caused significant
issues. PM21 felt that experienced personnel and internal
communication contributed to success, yet stated that their
“Conventions should have been better documented, com-
municated, and adhered to. PM27 had “strong quality as-
surance yet asserted that they were weak when document-
ing their internal standards and processes, claiming that
the “Design document (was) not implemented effectively.
These apparent contradictions (such as strong QA but weak
internal standards) are a common theme in the observational
reports.

2Project coding: PM[Project number 1..50][Right | Wrong][Entry 1..5]

Correlation Distribution

45%

40%
35%
30%
25% -

40%
20% 2%

20%:] 16%
15%
10% -+
5% 2%
0% - || - = .

] 1 2 3 4

Number of Common Categories

Portion of Total

Figure 3. Correlation Within a Project

The degree of correlation between the “what went right
and “what went wrong entries within a given project is also
significant. We assumed that the order in which the entries
were presented was irrelevant and then cross-checked the
results of the categorization process to see if the same cate-
gories were being reported as success and as failures. It ap-
pears (Figure 3) that individual categories are just as likely
to be viewed, within a given project, as a contributor to suc-
cess as to failure.

In an effort to determine whether these strong correla-
tions are related to the categorization process or are inherent
within the data, we are currently performing a more detailed
analysis of these reports. The current analysis has identified
particular challenges for requirements engineering in this
domain, presented for discussion in Section 8.

For the interested reader, the postmortem columns pro-
vide further details. Domain specific successes included:
PM11R1 “maintained ...style of gameplay, PM27R2 has
“ gameplay driven design, PM28R1 “created deep charac-
ters, PM40R1 focused on “great art. Examples of issues
in preproduction included: PM2W1 “(there was a) lack of
up-front design, PMO6W2 “(the) game was too hard, and
PM28W3 “(too much) gee-whiz factor.

6 Examples From Real Games

The initial results from our analysis of the Postmortem
columns led us to conclude that weak management of the
transition from preproduction to production was a source of
many issues in video game development. We now look at
some examples from real games that have either been pub-
lished or are currently in development® to establish further
support for this conclusion. We look at 3 issues in par-
ticular: documentation transformation, implication creating

3In the first example, minor changes have been made to the material to
obfuscate the source.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

emergent requirements, and the effects of a priori knowl-
edge, to situate them within the domain and within the
larger realm of requirements engineering.

6.1 Documentation Transformation

A microcosm of the documentation transformation issue
is shown in Table 1. The game designer begins (1) with a
story written in a narrative style. That story is then trans-
lated (elsewhere in the game design document) to a more
formal form (2) that describes the action as a task and a
justification for that task. The requirements engineer ana-
lyzes this information, in context (3), to determine a set of
requirements: identifying in-game assets such as the player
avatar, Anna (a Non-Player Character (NPC)) and an inven-
tory item. A state that controls the players progress through
the game is also identified and captured. Depending on the
in-house process used, the detailed description (4) of these
in-game assets may be part of the requirements document
or part of a specification document. Independent of where
the detailed descriptions are located, they could easily reach
50 pages once issues like artistic style, animation, and game
state are included.

Performing and managing this transformation is com-
plex. Each of these documents requires a different writing
style and a single individual may not have the requisite writ-
ing skills to author materials for all purposes. In addition,
creating the requirements document or specification docu-
ment often requires considerable a priori knowledge of the
available technology so that the requirements can be pre-
sented in context. There is also a multiplicative effect: each
successive document is larger than the prior document as
the author(s) attempt to precisely capture the required in-
formation. The authors must manage multiple stakeholder
viewpoints, synthesizing a common domain language, nu-
merous nonfunctional requirements, and inconsistencies as
the project evolves.

The list of required skills is long (e.g. game design,
requirements engineering, and technical communications)
and implies a team effort. The associated costs are signifi-
cant, leading to a strong management bias toward minimiz-
ing the documentation effort.

6.2 Implication

By its nature as a creative work, a game design document
is replete with implied information. Identifying these im-
plications requires careful analysis, understanding the ram-
ifications of the implications requires significant domain
knowledge.

To expand on the importance of domain knowledge, we
revisit Table 1. This table captures what we call first-level

implications: those implications that can be derived di-
rectly from the materials presented. Almost all development
teams, independent of their experience levels, capture these
implications. Missing implications at this level is usually an
oversight on the part of the team.

The second level of implication requires general knowl-
edge of the domain — in this case, the adventure game genre.
These implications are generally captured by teams with
members who have experience with non-trivial software de-
velopment projects in the domain. In this case, the descrip-
tion contains significant implications regarding the game
world: the characters must be situated within the appro-
priate environment(s). Therefore, there is an environment
surrounding the player when they receive the information,
there is Annas office, perhaps an office building with other
office interiors, background sounds, and possibly even other
NPCs in the office areas. And, if there are other NPCs, do
the NPCs interact with the Player?

These second level implications could easily amount to
many person-months of development effort by modelers,
artists, animators, and other members of the production
team.

The third level of implication requires knowledge of im-
plementation details such as the target architecture. These
implications are captured by experienced teams, particu-
larly when the present project is a sequel of some form.
The requirement for the player to visit Anna raises ques-
tions about the connectivity between the elements (locales)
of the virtual world — is there more than one way the Player
can get to Anna the Lawyer? How does the player experi-
ence the journey — via a scene change? Or, must they guide
their avatar through the virtual world (implying the creation
of all the media assets to represent the world)?

Perhaps more importantly, does the connectivity change
over time? Dynamic connectivity has significant implica-
tions for representing game state (the current state of the
world simulation). Designing, verifying, and maintaining a
stateful world is more complex than a stateless world.

A question is raised by identifying these three levels of
implication: Is it more appropriate to follow a traditional
iterative process and allow these issues to surface later, or
should this feedback be applied as early as possible in the
process? Intuitively, early feedback is better. However,
early feedback could have a negative effect on the creative
process: if the game design team feels that the production
team is going to reject their proposals then they may be-
come conditioned to be less creative. The effects of early
production feedback on the preproduction process merits
further investigation.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

Table 1. Documentation Transformation

1 Story After her father, Bernard, died, Crystal did not know which way to turn — paralyzed by her
loss until the fateful day when his Will was read.
2 Gameplay The Player must visit Anna the Lawyer to receive a copy of Bernard’s Last Will and Testament,

thereby obtaining the information necessary to progress to the next goal.

3 Requirements

The Player must be represented by an avatar.

Female Non Player Character required: Anna the Lawyer

Inventory Item: Last Will and Testament (LWT)

Player can not progress beyond Game State XYZ until LWT added to Inventory

4 Specifications Could easily reach 50 pages

6.3 A Priori Knowledge

Building on the analysis of the prior section, we now
look more closely at the effect of a priori knowledge on the
requirements engineering process.

Aleludoor Velease Frale

T
[i- ~fi thovie {
| ke s

| |
/ |
| 3
AZEEY

e B W

; dion g?vlz.fe- ﬂo»’q}: e 3 peices
T}ﬁa;;// oy"'/")/” ?t/) Lhe soludieerr i 2 Y3
—Vgon (jom//c/iaﬂ Fs M f‘/“}’ﬁ.
A 1 bact Jo node 0p0 -

— Lhang ¢ NG Lote Erom a toq Kooty
‘}97' lo- Aode ©002 _ 002

|

s el dontd vale p‘uu,f(HS in m e

Figure 4. Akeladoor Puzzle Description, used
with permission

Domain specific terms, particularly abbreviations and
acronyms, are common in working papers. Figure 4 is the
game designers description of the Akeladoor Release Puz-
zle from the game Apocalypse Spell, currently under de-
velopment by Far Vista Studios. Upon inspection, we see
PV Movie: Partial Video, a less than full screen video clip,

puzzle HS: a puzzle Hot Spot, an interaction point for the
player, FSM: Finite State Machine, MG: Master Guidelines
(the game uses a model driven architecture whose reposi-
tory is called the Master Guidelines by the team).

If one attempts to formalize this document, they must un-
derstand large portions of both the preproduction and pro-
duction realms. In a typical studio, this implies senior per-
sonnel from the preproduction or production staff but they
are usually “too busy to perform the task. Documentation
is often assigned to a junior staff member with the rational-
ization that this task will “bring them up to speed.

Another alternative is to add professional technical writ-
ing resources to the projects. However, there is often a per-
ception that it takes more time to explain it to the technical
writer than it does to just write it oneself. Once this excuse
is in place, no writer is hired, and soon, little or no docu-
mentation is maintained.

Significant elements of the game design documentation
are informal, often with substantial visual content. Visual
content is particularly difficult to represent in a formal man-
ner: iterations are often sketched as shown in the Pyramid
Puzzle description of Figure 5. Careful examination of Fig-
ure 5 reveals evidence of prior iterations that were simply
erased. Maintaining an iteration history of sketches, such
as this working paper, is challenging. An electronic form
of the working paper may have captured the revisions, but
probably would not have captured the justifications for mak-
ing the changes — often an important piece of information
later in the development cycle. These justifications could
lead to evolutionary changes in the game engine, perhaps
even to a product family architecture.

A detailed explanation of the puzzle is beyond the scope
of this paper — suffice it to say that it is a combinational puz-
zle that requires the player to generate the correct sequence
of symbols on the screens below the pyramid, one sequence
for each corner of the base of the pyramid. However, appli-
cation of domain knowledge during the requirements cap-
ture phase led to significant changes in the design of the
puzzle.

The first issue was puzzle complexity. Solution hints

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

07 rawrid Fviele

Tav Pla 1' Iolvuns Fo ccdivete ?MZJ(
JUI’JM ﬂ"‘”% :-leﬁ 5@#5 ﬂc% pire
@‘SVH Iav Qickvp 2 Pyr2 mid

- f-':."i’.‘. B A lecbrd

‘ = ‘a:?w{.‘,hﬂ ¢ elopopns
] 1 4l
| e ull sl o

T 6 “een el glowt #
4 5

1% -fa:k m, ':.mrmm!

vohi

clitk sm" for

gerte n3

fod light |

§ureens

vpon) lotement 0¥
50 M:a {Wﬁf

ar
tonplybmolyrite !
uv,e {mu & solbe

E 3 olf nﬁj’

(.om I. Lion o’ﬁnl’v;
Inv !o:t ﬂr

1
L A et {,.*u M!aa!

L]
B B ieins o/}? idm{nq/ ; ma?es ”4‘:7—3-%'*; eatles

Prrrle @< a Y, 712,10
! (ﬂﬂ‘/z—f’f Mc{l/ﬁh?/“d§5m}£ﬁ:ﬂn 31:1‘1l¢
1 @‘dﬁ (";gr’vﬁw’? 613,9,2
4! Gfgcﬂ ﬂull-jf

Figure 5. Pyramid Puzzle Description, used
with permission

were provided in the form of inventory items that looked
like papyrus scrolls but there was no way for the player to
show the scroll and the puzzle at the same time — the game
engine simply did not support simultaneous operation of in-
ventory inspection and puzzle modes.

The game designer was informed of this restriction and
it was suggested that a place be made on the puzzle for the
player to “hang the scrolls so that they could see them while
playing the puzzle. The result of this feedback was the lay-
out of Figure 5 where the scrolls for each corner had a spe-
cific location (shown as Inv Placement Blocks).

This new layout raised an issue of screen resolution. The
puzzle design called for an upper region for special effects,
a middle region for puzzle input, and a lower region for
puzzle solution hints. Unfortunately, this layout was beyond
the resolution of the target platform so an alternative layout
was required.

The final layout, shown in Figure 6, is a compromise be-
tween the game designers vision, the technical capabilities
of the game engine, and the technology constraints of the
target platform. Only one hints scroll is visible at a time,
requiring the player to shift between inventory and puzzle
modes for each corner of the pyramid — not an ideal solution
from a human factors perspective, but the best that could be
achieved within the constraints.

Figure 6. Pyramid puzzle prototype, used with
permission

In this example, success was achieved through dialog be-
tween team members. Unfortunately, the revised require-
ments and specifications for the final product were never
formally captured. Given that this is one of approximately
100 puzzles in the game, the cost of formal capture for all
puzzles is significant.

The single sheet description of the puzzle resulted in the
creation of the following assets: four new inventory items,
12 secondary screen elements for user interaction, three an-
imation sequences of four seconds duration, and sound ef-
fects for user interaction and animation support. On the
software side, four state machines for validating user input
and three state machines for the individual corner puzzles
were required. Interactions with the game world state, the
current player state, inventory management, and the save
game subsystem also had to be managed. None of these as-
sets were explicitly identified by the designer; rather, they
were implied in the description of the puzzle. It can be ar-
gued that identifying these implied assets if a function of the
design process. However, accurately predicting the magni-
tude of the production effort requires their identification at
the earliest possible stage in the process.

Given that this was just was one of approximately 100
puzzles in the game, it is highly desirable that the process
for identifying the implied assets and side-effects be effi-
cient. However, we are unaware of any work in this area.

6.4 Evaluation

The challenges associated with the Pyramid Puzzle are
typical of the issues reported in the Postmortem columns.
Using the same categories as Section 5, the terse puzzle
description (assuming significant domain knowledge) is a

TEEE .2

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

preproduction issue. The puzzle description called for fea-
tures that the underlying technology could not deliver. The
technology constraints of the target platform (as defined by
external market forces) caused a number of game design
iterations. Internal issues, such as design complexity, de-
sign iteration, and emergent requirements interfering with
test plan development, made it difficult to predict a sched-
ule for this task with reasonable accuracy. The interactions
are non-trivial and, when coupled with the complexities of
media production, bring a unique flavor to requirements en-
gineering in this domain.

7 Summary and Conclusions

We have analyzed the video game development process
from the perspective of requirements engineering, presented
a model for video game development that integrates pre-
production with production, and situated the game design
document as an artifact of the preproduction process. Our
analysis of 50 observational reports from the Postmortem
column in Game Developer magazine showed that project
management issues are the greatest contributors to success
or failure in video game development. In the case of fail-
ure, many of these issues can be traced back to inadequate
requirements engineering during the transition from prepro-
duction to production.

Three examples from real video games provide further
evidence of the importance of properly managing the tran-
sition from preproduction to production. These examples
illustrate the challenges associated with transforming pre-
production documents to production documents, the impor-
tance of detecting implied information as early as possible,
and the effects of applying a priori knowledge from the pro-
duction domain to the transition from preproduction to pro-
duction.

The Pyramid Puzzle example showed that, if early ver-
sions of preproduction documentation are fed forward to
the production team then the production team can provide
important feedback to the preproduction team. This com-
munication cycle enables earlier identification of emergent
requirements and production constraints and may improve
the reliability of the transition from preproduction to pro-
duction. However, the introduction of production personnel
into the preproduction process may have a negative effect
on the creativity of the preproduction team.

We show that requirements engineering practitioners can
identify at least three levels of implication: (1) those im-
plications that can be derived directly from the materials
presented, (2) those implications that can only be derived
with the introduction of general knowledge of the domain,
and (3) those implications that can only be derived with the
introduction of implementation details such as the target ar-
chitecture. There is a strong relationship between experi-

ence and the ability to identify issues at each level of impli-
cation — indicating that a formal process for identifying im-
plied information would not necessarily enable individuals
with lesser experience to handle higher levels of implication
without further guidance.

We postulate that the exploratory nature of attempts to
capture the game design vision and the consequent number
of production iterations is due to a lack of formal process
for managing the preproduction to production transition. As
project complexity increases, we predict that studios will
shift to more formal processes to increase the probability of
success in their development efforts despite internal resis-
tance to this formalization.

We conclude that creating documentation to support the
transition from game design document through formal re-
quirements and specifications is difficult, requiring signif-
icant preproduction and production domain knowledge to
perform successfully. A formal process to support this tran-
sition would likely increase the reliability of the process.

8 Challenges for Requirements Engineering

Is requirements engineering for video games unique?
Analysis of the postmortem documents and game exam-
ples reveals that the video game industry could learn a great
deal from current research and practice in requirements en-
gineering and project management. Issues particularly no-
table due to their significance to game development success,
and their relevance to requirements engineering, include:
(1) communication between stakeholders of disparate back-
ground, (2) remaining focused on the goal and resisting fea-
ture creep, (3) influence of prior work (e.g., building a new
game on top of an existing game), (4) media and technol-
ogy interaction and integration, (5) the importance of non-
functional requirements, and (6) gameplay requirements.

Communication, focus, and prior work issues are rel-
atively common in requirements engineering. Media and
technology interaction, and the dominance of NFRs are also
experienced (to a lesser extent) in other multimedia devel-
opment efforts. Gameplay requirements are unique to video
games.

8.1 Maedia and Technology

Creating a video game requires the creation of numer-
ous software artifacts. Not only must the game engine be
developed but a media production pipeline is also required.
The pipeline must be designed and the tools associated with
the pipeline must be built while keeping in mind that these
are tools for artists and animators as well as for technical
personnel.

Technology requirements often emerge as media assets
are integrated into the game engine. The actual player ex-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

perience delivered by the game engine may not meet the re-
quirements of the game designer and publishers. Minimum
platform targets may change due to technological advances
and marketplace pressures it is not uncommon to have to
rework media assets developed early in a project to make
them appear less dated by the end of the project.
Requirements engineering for media production in video
game development is particularly challenging due to the in-
teractions between the requirements of the video game arti-
fact, the requirements of the tools needed to create the video
game artifact, and the strongly differentiated user groups.

8.2 The Importance of NFRs

Video games are designed to entertain. Therefore, non-
functional requirements such as fun, storyline, continuity,
aesthetics, and flow must dominate their requirements spec-
ification. However, there are no established practices for
capturing and specifying such NFRs — requirements engi-
neering can make a significant contribution in this area.

Validation of gaming NFRs is very complex. Generally,
an abstract NFR like fun is highly dependent on the target
market something that is fun for a young child may be an-
noying to an adult. The link between NFRs and target mar-
kets or user demographics has not yet been explored by RE
in this domain.

Verification of gaming NFRs, and functional require-
ments related to media assets, is also complex. Require-
ment verification via test is particularly difficult when the
requirement is to engender emotions in the user.

8.3 Gameplay

It is usually through gameplay that NFRs like fun and
flow are achieved. One can argue that it is the NFRs and
gameplay that make each video game unique. For example,
the dominant video game genre is the first person shooter,
made famous by the Doom and Quake series from id Soft-
ware. All first person shooter video games share a common
set of core technologies required by that genre: protago-
nist avatar(s), antagonist(s), the ability to move the protago-
nist avatar within the virtual world in an acceptably realistic
manner, and the ability for the protagonist avatar to choose
and use a weapon to wreak mayhem upon the antagonists.
It is the presentation of these core technologies to the user
(via gameplay, storyline, and aesthetic elements such as art
and sound) that makes each game unique.

Storyboards in video game development are more
closely related to storyboards in animated movie produc-
tion (evaluating aesthetics and storyline) than the typical
user-interaction scenario development in productivity appli-
cation software development. Storyboards are also used by

some developers as a first step in prototyping gameplay — a
means for assessing the player experience.

Prototyping gameplay is particularly challenging. It is
difficult to assess the player experience early in the de-
velopment cycle for significant progress must be made on
building the underlying game engine infrastructure before
gameplay testing can begin. This is a particularly high-risk
scenario due to the likelihood that new requirements will
emerge as gameplay testing continues, new requirements
that must be tracked, and for which test plans must be de-
veloped. The emerging requirements may even force signif-
icant changes to the fundamental architecture of the system
that, in extreme cases, may cause project failure.

9 Future Work

We are currently performing a more detailed analysis of
observational reports from Game Developer magazine and
other sources. We expect this information to further guide
the development of a process for managing the transition
between preproduction and production. Mechanisms for
capturing and stating non-functional requirements, such as
fun, in a manner that can be validated, measured, and veri-
fied are also required.

Involving production personnel in the preproduction pro-
cess may lead to more efficient development or it may lead
to reduced creativity. Further investigation is needed to
quantify the tradeoffs.

10 Acknowledgements

We wish to thank Game Developer magazine for con-
tinuing the Postmortem column over the years. The first
author thanks Electronic Arts for the opportunity to present
an early version of this (and related) work at their British
Columbia studios and for the valuable feedback he received.
We also thank Richard Buckley of Far Vista Studios for ac-
cess to internal game design documentation prior to release
of their game.

References

[1] A. I Anton. Goal-based requirements analysis. In ICRE
'96: Proceedings of the 2nd International Conference on
Requirements Engineering (ICRE "96), page 136, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[2] C.E. Association. Digital America. Published electronically
at http://www.ce.org, 2003.

[3] V. Authors. Postmortem column. Game Developer, 6(5)
through 11(6), May 1999 - June 2004.

[4] T. Bentley, L. Johnston, and K. von Baggo. Putting some
emotion into requirements engineering. In Proceedings of
the 7th Australian Workshop on Requirements Engineering,
2002.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

(5]
(6]
(7]

[8

—

(9]

(10]

(11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]
[20]

(21]

(22]

(23]

[24]

[25]

E. Bethke. Game Development and Production. Wordware
Publishing, Inc., 2003.

B. Boehm and V. Basili. Software defect reduction top 10
list. IEEE Computer, 34(1):135-137, Jan. 2001.

K. Breitman and J. C. S. do Prado Leite. Ontology as a
requirements engineering product. In Requirements Engi-
neering, pages 309-319, 2003.

L. Chung. Non-Functional Requirements in Software Engi-
neering. Kluwer Academic Publishers, 2000.

M. Csikszenthmihalyi. Flow: The Psychology of Optimal
Experience. Harper Perennial, 1990.

A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition. In 6/WSSD: Selected Pa-
pers of the Sixth International Workshop on Software Spec-
ification and Design, pages 3—50, Amsterdam, The Nether-
lands, The Netherlands, 1993. Elsevier Science Publishers
B. V.

S. W. Draper. Analysing fun as a candidate software require-
ment. Personal Technology, 3(1):1-6, 1999.

A. G. Editor. POSTMORTEMS from Game Developer. CMP
Books, 2003.

B. Fuson. 2003 Top Boxoffice. Published electronically at
http://www.hollywoodreporter.com, 2003.

J. A. Goguen. The dry and the wet. In ISCO, pages 1-17,
1992.

J. A. Goguen and C. Linde. Techniques for requirements eli-
cination. In Proceedings of the International Symposium on
Requirements Engineering, pages 152—-164, Los Alamitos,
California, 1993. IEEE CS Press.

I. H. Holbrook. A scenario-based methodology for conduct-
ing requirements elicitation. SIGSOFT Softw. Eng. Notes,
15(1):95-104, 1990.

M. Hassenzahl, A. Beu, and M. Burmester. Engineering joy.
IEEE Software, 18(1):70-76, 2001.

M. Jarke, K. Pohl, R. Doemges, S. Jacobs, and H. Nissen.
Requirements information management: The NATURE ap-
proach. Ingenerie des Systemes d’Informations, 2(6):609—
637, 1994.

E. D. Laramee, editor. Game Design Perspectives. Charles
River Media, Inc., 2002.

A. Marcus. The emotion commotion.
10(6):28-34, 2003.

N. Medvidovic and D. S. Rosenblum. Domains of concern
in software architectures and architecture description lan-
guages. In Proceedings of the 1997 USENIX Conference
on Domain-Specific Languages, 1997.

D. Michael. The Indie Game Development Survival Guide.
Charles River Media, Inc., 2003.

D. A. Norman. The Design of Everyday Things. Doubleday
Books by permission of Basic Books, 1988.

J. N. och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell.
Speeding up requirements management in a product soft-
ware company: Linking customer wishes to product require-
ments through linguistic engineering. In RE, pages 283-294,
2004.

J. Robertson. Point/counterpoint: Requirements analysts
must also be inventors. IEEE Software, 22(1):48-51, Jan.
2005.

interactions,

[26]

(27]
(28]
[29]

(30]

(31]

S. Robertson. Requirements Trawling: techniques
for discovering requirements. Published electronically at
http://www.systemsguild.com/GuildSite/Robs/trawling.html,
2004.

A. Rollings and D. Morris. Game Architecture and Design,

A New Edition. New Riders Publishing, 2004.

K. Salen and E. Zimmerman. Rules of Play: Game Design
Fundamentals. MIT Press, 2004.

M. Saltzzman, editor. Game Design Secrets of the Sages.

Macmillan Publishing USA, 2000.

A. van Lamsweerde. Requirements engineering in the year
00: a research perspective. In International Conference on
Software Engineering, pages 5-19, 2000.

P. Zave. Classification of research efforts in requirements en-
gineering. ACM Computing Surveys, 29(4):315-321, 1997.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

