
www.elsevier.com/locate/infsof

Information and Software Technology 49 (2007) 445–454
Evaluation of object-oriented design patterns in game development

Apostolos Ampatzoglou, Alexander Chatzigeorgiou *

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

Received 19 January 2006; received in revised form 30 May 2006; accepted 5 July 2006
Available online 22 August 2006
Abstract

The use of object-oriented design patterns in game development is being evaluated in this paper. Games’ quick evolution, demands
great flexibility, code reusability and low maintenance costs. Games usually differentiate between versions, in respect of changes of the
same type (additional animation, terrains etc). Consequently, the application of design patterns in them can be beneficial regarding main-
tainability. In order to investigate the benefits of using design patterns, a qualitative and a quantitative evaluation of open source projects
is being performed. For the quantitative evaluation, the projects are being analyzed by reverse engineering techniques and software met-
rics are calculated.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Game development; Design patterns; Software evaluation; Software metrics
1. Introduction

Recently, games have become one of the most profitable
factors in the software industry. More specifically, during
the last few years the game industry has been considered
to produce revenue greater than the movie industry and
its development rate has been one of the most fast growing
in the United States economy [19,24]. Furthermore, game
design and the methods used for easier and more efficient
development constitute a very interesting open research
field [4]. It goes without saying that computer games play
a very important role in modern lifestyle. Therefore, it is
no longer necessary to explain what a computer game is.
On the other hand, it is not so obvious why game research
is an extremely interesting field and simultaneously why
game development is a very complicated task to
accomplish.

The answer to the first question has many levels. As
mentioned above, even though game development is a very
strong industry, the research on this field is in its infancy.
This fact leads game programming professionals to
0950-5849/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2006.07.003

* Corresponding author. Tel.: +30 2310 891886; fax: +30 2310 891875.
E-mail addresses: ampatzoglou@doai.uom.gr (A. Ampatzoglou),

achat@uom.gr (A. Chatzigeorgiou).
demand better developing methodologies and software
engineering techniques [11]. Furthermore, games are the
first and sometimes the only market for advanced graphics
techniques to demonstrate the quality of graphics they pro-
duce [16,22]. It has been acknowledged [21] that game
industry draws on research from academia, corporate
R&D labs and in-house work by game developers. Several
papers pointing out the need for transfer from research to
industry appear at SIGGRAPH [25] conferences.

In order to prove what a complex task game develop-
ment is, we will present the minimum personnel that a typ-
ical such company needs. The discrete roles of personnel do
not prove the complexity of the task itself, because this is a
common tactic for software development teams. The dis-
tinction between games and other forms of software is that,
in games, the development groups consist of people with
different fields of expertise. First of all, a script writer is
required; this person will write the game script and fill in
a document usually called ‘‘concept paper’’ [15]. The lead
game designer will convert information from the concept
paper into another called ‘‘design document’’ which will
be the guide throughout the development process. Apart
from that, the company employs a group of programmers
with several skills and expertise, such as engine and graph-
ics programmers, artificial intelligence programmers, sound

mailto:ampatzoglou@doai.uom.gr
mailto:achat@uom.gr


Fig. 1. Generic game architecture [3].

446 A. Ampatzoglou, A. Chatzigeorgiou / Information and Software Technology 49 (2007) 445–454
programmers and tool programmers. In collaboration with
the sound programmers, the game development company
will hire a musician and a sound effects group. In addition,
the art of the game will be created by graphic artists, such
as the character artists, the 3D modelers and the texture
artist. Finally, the company must hire testers who would
play the game in order to find bugs and make suggestions
for changes in gameplay, graphics and the story [10,19,27].

Game programming is a main course in many Universi-
ties, at one or two semesters, and there are quite a few Mas-
ter of Science programmes related to that field, but not
many PhD theses on this subject. This fact reveals the
industry need for game development methodologies but
also the lack of relevant scientific research. A speculation
about the absence of scientific research is that games are
widely considered a ‘‘soft skill’’ topic. During the last few
years this situation has slightly changed with a few publica-
tions about game design patterns and the use of game
engines in creating virtual worlds and GIS applications.
The ways and the extend of teaching game programming
in graduate and postgraduate studies has also been exam-
ined in a few papers [18,19,24].

In the next sections, the way object-oriented design pat-
terns could be used in computer games and an extended
evaluation of their benefits and drawbacks are being exam-
ined. More specifically, in chapter 2 a short introduction to
general game architecture is being presented. In chapter 3,
there is a brief literature review of object-oriented design
patters and game mechanics design patterns. In addition,
four examples of how object-oriented design patterns could
be used are discussed. In chapter 4, two real open-source
games are being evaluated. Finally, future research plans
and conclusions are being presented.

2. Game architecture

One of the most interesting aspects of game research is
the architecture that the developer will use. In recent
papers, there are a few references to the modules that the
programs are being decomposed to, however, without
extensive discussion of maintainability and code reusability
issues. Such issues have been examined in detail in classical
object-oriented programming, but those ideas are extreme-
ly immature in game programming.

Designing and programming large-scale software is a
very complicated job that requires many human work
hours. Consequently, software is usually divided, logically,
into subprograms that are autonomously designed, pro-
grammed and tested by separate programmers’ groups.
These subprograms are called modules. Decomposing soft-
ware into modules is an important decision that plays a
main role in the architecture and further design of the pro-
gram. In this section, the modules proposed for games are
examined and briefly discussed.

In [3], Bishop et al., described a general game’s archi-
tecture as shown in Fig. 1. This schema presents an inter-
active game’s vital modules. The items with solid outlines
are essential to every game while the dashed outlines refer
to modules that are found in more complicated and
demanding games. The game logic is the part that holds
the game’s story. The audio and graphics are the modules
that help the writers narrate the story to the player. The
event-handler and the input modules, supply the game
logic with the player’s next action. The level data module
is a storage module for details about static behaviour and
the dynamics module configures dynamic behaviour of
game’s characters.

3. Design patterns

With the term design patterns one refers to identified
solutions to common design problems. The notion of
patterns was first introduced by Christopher Alexander,
who identified and proposed solutions to common archi-
tectural problems. In his work he dealt with the question
whether quality in architecture can be objective. By
examining several architectural artifacts he discovered
that ‘‘good’’ quality designs shared some common char-
acteristics, or shared ‘‘common solutions to common
problems’’ [1]. Patterns can also be used in software
architecture and, if applied properly, they increase the
flexibility and reusability of the underlying system.
Object-oriented design patterns specify the relationships
between the participating classes and determine their col-
laboration. Such solutions are especially geared to
improve adaptability, by modifying the initial design in
order to ease future changes [12]. Each pattern allows
some aspect of the system structure to change indepen-
dently of other aspects. In [20,29] the authors investigat-
ed the effect of design patterns on comprehensibility and
maintainability. Their experiment analyzed the consumed
time and the correctness of the outcome for the imple-
mentation of a given set of requirements employing sys-
tems with and without design patterns. The results have
indicated that some patterns are much easier to under-
stand and use than others and that design patterns are
not universally good or bad. However, it is implied, that
if patterns are used properly and in appropriate cases,
they prove extremely beneficial regarding maintainability
and comprehensibility.



A. Ampatzoglou, A. Chatzigeorgiou / Information and Software Technology 49 (2007) 445–454 447
In contrast to the former opinion, Bieman et al. [2],
claimed that classes participating in design patterns are
more change-prone than the other classes of the system.
Their evaluation was based on analyzing existing systems
and one of its results suggested that ‘‘classes that play roles

in design patterns are changed more often than other classes.
The case study data does not show that design patterns sup-

port adaptability’’. According to the authors, the pattern
participant classes provide key functionality to the system,
which may explain why these classes tend to be modified
relatively often.

Design pattern usage in game development is an open
research field. In literature, it is not easy to find catalogues
with patterns that could be used as ‘‘common solutions for
common problems’’ in games. Such catalogues would make
the communication between developers easier and the doc-
umentation of this kind of programs more understandable.
Design patterns for games can be approached from two dif-
ferent perspectives; firstly as patterns used for describing
the game mechanics (gameplay and game rules) and sec-
ondly as the use of object-oriented design patterns in pro-
gramming games.

Concerning game mechanics, Bjork et al. [4] introduced
a set of design patterns which essentially are descriptions
(employing a unified vocabulary) of reoccurring interac-
tion schemes relevant to game’s story and gameplay. As
such, these patterns are not related to the software archi-
tecture or code. The proposed patterns are collected from
interviewing professional game programmers, from ana-
lyzing existing games and from transforming game
mechanics. As mentioned, ‘‘The way to recognize patterns

is playing games, thinking games, dreaming games, design-

ing games and reading about games’’ [5]. An example of
such a pattern is the Paper – Rock – Scissors pattern that
is well known in game design community (also as triangu-

larity). This pattern is used when there are three discrete
states (or options for a player) and option A defeats
option B, option B defeats option C and option C defeats
option A.

Concerning game programming, in the next sections,
examples of object-oriented design patterns in two
game modules will be presented. The design patterns
Fig. 2. Strategy patter
examined will be the Strategy and the Observer Pat-
tern concerning the game logic module (Fig. 1) as well
as the State and the Bridge pattern concerning 3D
aspects in the graphics module (Fig. 1). It goes with-
out saying that object-oriented design patterns can be
applied in designing and coding of any game module.
The selection of game logic and graphics module does
not imply that patterns are more applicable to those
fields.

3.1. Object-oriented design patterns in game logic

Although until now there is not much work found on
object-oriented design patterns’ use in games, we believe
that such a use can be proven very useful in this domain.
This fact can be examined by investigating the source code
of games for the existence of design patterns. As a first
approach, we will provide examples of how object-oriented
design patterns [12,23] could be used in simple games. In
addition to that, in Section 4 we will present real games
that could use these object-oriented design patterns and
improve their design.

The strategy pattern, defines a family of algorithms,
encapsulates each one, and makes them interchangeable

[12]. Strategy seems a very efficient way to design the way
a chess game could simulate different artificial intelligence
players’ behaviors. Let’s assume that a game presents a
chess tournament. Every player uses a different heuristic
algorithm to calculate the min–max value in order to
decide the next computer move.

In the UML diagram of Fig. 2, the class Computer-
Player represents the context. It maintains a reference
to a strategy object; it is configured with a concrete strategy
object and may define an interface that lets strategy access
data. The SelectMoveStrategy class declares an inter-
face common to all supported algorithms. It is used by con-
text (ComputerPlayer), to call the algorithm defined by
a concrete strategy. Finally, the concrete strategy (Heu-
ristics1MinMax, Heuristics2MinMax, Heuris-

tics3MinMax classes) implements the algorithms
according to the strategy (SelectMoveStrategy) inter-
face [12].
n – chess example.



448 A. Ampatzoglou, A. Chatzigeorgiou / Information and Software Technology 49 (2007) 445–454
Employing this pattern, an alternative to conditional
statements is offered for selecting behavior. Additionally,
this design is more understandable, more easily maintained
and more extendable because of the discrete subclasses [12].
This pattern could have also been used in games such as
backgammon, card games and anywhere artificial intelli-
gence algorithms can be applied (e.g. A* algorithms for
computer controlled players in RPG – Role Playing
Games, adventure and strategy games). However, Strategy
pattern is one of the most commonly used patterns and can
prove useful in many cases.

Additionally, the observer pattern defines a one-to-many

dependency between objects that when one object changes

state, all it’s dependants are notified and updated automat-
ically [12]. This pattern’s example is a bit more complicat-
ed and is used in more demanding games. Suppose that in
a football manager game a team hires trainers that
upgrade players’ attributes. This does not happen only
once and not exactly when the trainer is hired. The
upgrade is applied when a special variable reaches a cer-
tain value, and its value is increasing according to the
coach’s skills and the teams training schedule. The team
players’ attributes must be upgraded automatically when
the training level variable reaches the aforementioned
value.

In Fig. 3, the class Team is the subject that knows its
observers and provides an interface for attaching and
detaching them. The observer (the class Players) defines
an updating interface for objects that should be notified of
changes in the subject. The class Training stores the
information about the subjects’ current state. The concrete
observers (Attacker, Midfielder and Defender clas-
ses) implement the observer’s updating interface to keep
their state consistent with the subject’s [12].

This pattern lets the developers vary subjects and
observers independently. This way they can reuse subjects
without reusing their observers, and vice versa. Additional-
Fig. 3. Observer pattern – fo
ly, there is an abstract coupling between subject and
observers. Moreover, the update notification is broadcast-
ed and as a result the subject is not interested in which
observers care about the change, since it is their responsi-
bility to react to it [12].

3.2. Object-oriented design patterns in game graphics

The state pattern allows an object to alter its behavior

when its internal state changes [12]. This pattern can be used
in games where an object changes the level of detail (LOD)
of its appearance with respect to its distance from the cam-
era. For example, in any first person shooter game, all
objects of a scene should look more elegant as the main
character reaches them. Consequently, the image that rep-
resents the texture of the object will be of greater resolu-
tion, while the object approaches the main character’s
position.

In the diagram of Fig. 4, the context (Object class)
maintains a concrete state at any given time. The state
(LOD class) defines an interface for encapsulating the
behavior associated with a particular state of context.
The concrete state subclasses (HighLOD, MediumLOD

and LowLOD classes) implement the behaviors associated
with the states of the context [12].

With the use of this pattern, every behavior associated
with a particular state is attached to one object. So, new
states and transitions can be added easily by defining
new subclasses. In addition to that, the state objects
can be shared if they have no instance variables. Finally,
state objects protect the context from inconsistent inter-
nal states, because state transitions are atomic (the tran-
sition between states happen by changing only one
variable’s value, not several) [12]. This pattern could be
applied in the pacman game where states represent the
behavior and the velocity of the enemies, in an arkanoid
game where the bar’s size and attributes are attached to
otball manager example.



Fig. 4. State pattern – first person shooter example.

A. Ampatzoglou, A. Chatzigeorgiou / Information and Software Technology 49 (2007) 445–454 449
concrete state subclasses and also in simple ‘‘shoot them
up’’ games such as space invaders and brain wave. In
them the player shoots several targets and earns points.
During the game he can also change weapons, put
armor, shields etc. All these changes can be represented
as different states.

The bridge pattern decouples an abstraction from its

implementation so that the two can vary independently [12].
This pattern can be used in any game with 3D objects that
can be painted in multiple ways (texture, material etc). At
the same time the 3D object might also vary since it can
be a primitive (sphere, cube, etc) or an export from a 3D
package (.3ds file, .m2 model, etc).

The abstraction (the Object class) defines an abstrac-
tion’s interface that maintains a reference to an object of
type implementor (the Style class). The Implementor
defines the interface for implementation classes. This inter-
face does not have to correspond exactly to abstraction’s
interface. Typically the Implementor interface provides
only primitive operations, and abstraction high-level oper-
ations based on these primitives. The refined abstractions
(model_3ds class, primitive class and model_m2
Fig. 5. Bridge pattern –
class) extend the interface defined by abstraction. Finally,
the concrete implementor (Texture class and Material

class) implements the implementor interface and defines its
specific implementation [12].

By applying this pattern an implementation is not
bound permanently to an interface. The implementation
of an abstraction can be configured at run-time and it is
even possible for an object to change its implementations
at run-time. This way the pattern is decoupling interface
and implementation and eliminates compile-time depen-
dencies on the implementation. Additionally, a system with
a bridge pattern is more extensible. At any time you can
extend the abstraction and the implementor hierarchies
independently [12]. In the example mentioned in Fig. 5,
the Object and the Style abstractions can vary independent-
ly. So, if later on, a new 3D package appears and a loader
that handles its models is available it can be added in the
program without major difficulty. Similarly, if there is a
new requirement for materials of a color type different than
RGB (Red–Green–Blue), for example indexed colors (used
in openGL) the client can use the structure of Fig. 5 with
minor changes.
3D game example.



450 A. Ampatzoglou, A. Chatzigeorgiou / Information and Software Technology 49 (2007) 445–454
4. Evaluation

To evaluate the benefits of object-oriented design pat-
terns in game development, we have studied two existing
games (Cannon Smash and Ice Hockey Manager)
released as open-source in the web [26]. These games
have been selected because their code is publicly avail-
able and multiple versions of them are released. This fact
in combination with the existence of, at least one, design
pattern in, at least one, version made the evaluation pos-
sible. The evaluation has been performed on two ver-
sions of the programs, the first one with the design
pattern under study implemented and the other one with-
out it. The two programs evaluated have been developed
using different programming languages (C++ and Java).
The design patterns in the C++ program have been
detected by manual inspection and employing reverse
engineering tools. In the Java program a design pattern
detection tool has also been used [28]. The evaluation
criteria will not only be qualitative but also quantitative,
employing well-known metrics. In the first section of this
chapter an overview of how this metrics are calculated
and why those metrics have been selected will be
presented.

4.1. Software quality metrics

The software metrics that have been calculated can be
divided into four main categories: size, complexity, cou-
pling and cohesion metrics. These categories have been
selected in accordance to [9], where the authors using met-
rics from the same categories performed an exploratory
analysis of empirical data concerning productivity. The
effect of design patterns on coupling metric scores has also
been investigated in [14]. In [13], size, cohesion and cou-
pling metrics have been used for identifying pattern
instances, implying that the presence of a pattern affects
their values. Coupling measures is the most obvious choice
since according to [12], the use of abstractions in design
pattern primarily aims at reducing the dependencies
between classes. Patterns also conform to the Single
Responsibility Principle [17] and as a result it is reasonable
to expect that cohesion increases when patterns are proper-
ly used. Moreover, the application of patterns certainly
involves the introduction of new classes/interfaces, moving
of methods and in most cases requires additional code.
Consequently, size metrics are expected to indicate an
increase in code size. Finally, the polymorphism involved
in many patterns is expected to eliminate complex pieces
of code (such as cascaded if statement or switch statements)
and thus to reduce the complexity of the corresponding
classes.

The size metrics calculated are the Lines Of Code (LOC)
and the Number Of Classes (NOC). The LOC metric is the
traditional measure of size. It counts the number of code
lines. The NOC metric counts the number of classes in
the system [6,8].
The complexity metrics calculated are three, the Attri-

bute Complexity (AC), the Weighted Methods per Class 1

(WMPC1) and the Weighted Methods per Class 2

(WMPC2). The AC metric is defined as the sum of each
attribute’s value in the class (each type and array type
has a predefined complexity value), so that the complexity
is increasing while the value is increasing. The WMPC1
metric is the sum of complexity of all methods of a class,
where each method is weighted by its Cyclomatic Complex-

ity (CC). CC represents the number of possible paths
through an algorithm by counting the number of distinct
regions on a flow graph, meaning the number of if, for
and while statements in the operation’s body. Therefore,
the complexity increases if the value of the metric increases.
The WMPC2 metric is intended to measure the complexity
of a class, assuming that a class with more methods than
another is more complex, and that a method with more
parameters than another is also likely to be more complex
[6,8].

The coupling is being evaluated by using one metric, the
Coupling Factor (CF). More specifically, the CF metric is
calculated as a fraction, where the numerator represents
the number of non-inheritance couplings and the denomi-
nator is the maximum possible number of couplings in a
system [6–8].

Finally, the cohesion is being evaluated by the Lack Of

Cohesion Of Methods (LCOM) metric. This measure exam-
ines for each pair of methods in the class whether they
access a common attribute [6,8]. In that case, the two meth-
ods are considered to be coherent.

Measurements have been performed for the classes
involved in the patterns, the complete program and for
Java-based software also for the package that the pat-
tern-participating classes belong to. The aggregate metrics
are calculated as the average of their members’ metric
values.

4.2. Evaluation example 1 – Cannon smash

The game is currently in version 0.6.6 and supports mul-
tiplayer gaming. This feature was added in version 0.4.5
where the programmers used an ExternalData class in
order to handle messages coming from the network, such
as instructions from remote players (this operation belongs
to the input module of the game shown in Fig. 1). The
Event class, which is used as an event-handler, using
openGL input functions, had an association through refer-
ence to an ExternalData structure (Fig. 6).

The drawback in the presented approach is that the
incoming data could be received in three different types
and according to the current type a different reading strat-
egy should be used. In this version the programmers used a
switch statement to implement this mechanism as shown in
Fig. 7.

From Fig. 7, it is obvious that the sample code suffers
from ‘‘needless repetition’’ [17]. Therefore, if later a demand
for more ‘‘reading strategies’’ appeared, the switch state-



Fig. 6. Cannon smash 0.4.5 approach for multiplayer.

A. Ampatzoglou, A. Chatzigeorgiou / Information and Software Technology 49 (2007) 445–454 451
ment should be modified. This proves that the sample code
is not reusable, because the program is not flexible enough
to easily adapt the extra strategies. Such demands appeared
in the next generations of the program. So, in the current
version there are five reading strategies in contrast to the
three strategies appeared in version 0.4.5.
Fig. 7. Cannon smash 0.4.5 approac

0..1

Event

m_External:ExternalData *

IdleFunc:void
KeyboardFunc:void
ButtonFunc:void

ExternalPVData Extern

Fig. 8. Cannon smash 0.4.6
The above description yields for polymorphism and in
particular for using the strategy pattern as described in
Fig. 2 (chapter 3.1). This way the complexity of the model
will be decreased whereas the flexibility will increase. The
developers applied the pattern to the next version of the
program (version 0.4.6) allowing them to easily attach
more strategies for reading data from network. The
UML diagram representing the design of classes handling
the multiplayer data in version 0.4.6 is shown in Fig. 8.

The two design approaches have been analyzed using a
CASE tool with reverse engineering capabilities in order
to calculate the metrics mentioned in Section 4.1. The
results are presented in Table 1.

From Table 1, it is clear that the complexity of the
Event class is decreasing. The most significant value prov-
ing this fact is the WMPC1 metric, which is decreasing by
23.6% with the use of the design pattern. The decrease of
h for multiplayer – source code.

0..1

ExternalData

side:long
dataType:long
sec:long
next:ExternalData *

+ExternalData
+readData:ExternalData

alBVData ExternalPSData ExternalNullData

multiplayer approach.



Table 1
Metrics cannon smash project

Version LOC NOC AC WMPC1 WMPC2 CF LCOM

Event class 0.4.5 743 – 36 55 44 – 213
0.4.6 472 – 43 42 43 – 211

Csmash project 0.4.5 8711 43 17 26 19 6 36
0.4.6 9711 54 14 23 19 5 37

452 A. Ampatzoglou, A. Chatzigeorgiou / Information and Software Technology 49 (2007) 445–454
complexity is also reflected by the metrics at the project
level, however, at a lower degree, due to the involvement
of other classes. The only complexity metric that increases
is the Attribute Complexity. However, this is completely
irrelevant to the use of the pattern because this increment
is caused by the addition of a variable which is not involved
in the pattern.

The LCOM metric value’s decrease for the Event class
(even it is minor, 0.9%) suggests that the cohesion between
methods is increased and the pattern is correctly used as
mentioned in [17]. Moreover, the coupling for the complete
program has decreased as it is suggested by the CF metric’s
value. The corresponding improvement is calculated as
16.6%.

Although the size (lines of code) of the Event class is
decreasing, the use of the design pattern has increased the
LOC and NOC of the complete program. The pattern is
responsible for the 4 out of 9 (meaning 44.4%) classes add-
ed in the improved version and about 3% of the lines add-
ed. Even though this increment cannot be neglected, the
used pattern contributes to the reusability, the flexibility
and the decrease of complexity of the code.

The results are in agreement with previous studies
[20,29] which claimed that in general the application of
design patterns leads to more comprehensible and main-
tainable code. The results of Table 1 imply that a game
employing patterns has reduced complexity, reduced cou-
pling and slightly increased cohesion and in that sense is
easier to understand, test and maintain. Moreover in [20]
it has been observed that code size increases when patterns
are used, something which is also verified by the results in
Table 1.

4.3. Evaluation example 2 – ice hockey manager

Ice Hockey Manager (IHM) is a simulation of coaching
a hockey team. The game’s current version is 0.2 and there
Table 2
Metrics for ice hockey manager project

Version LOC NOC

Player attributes class 0.1.1 535 –
0.1.2 169 –

Player package 0.1.1 1107 6
0.1.2 1173 13

IHM project 0.1.1 8680 86
0.1.2 10522 132
are two more versions released open-source in [26]. In ver-
sion 0.1.1 the developers used eight (8) instances of design
patterns. More specifically, one (1) factory pattern, three
(3) observer patterns, two (2) strategy patterns and two
(2) template patterns. Pattern recognition was possible
through the use of an appropriate tool [28]. Even though
that version’s 0.1.1 design was extremely well-structured,
some packages and some classes suffered from increased
WMPC1, as shown in Table 2.

This problem was alleviated with the use of more design
patterns despite the fact that additional functionality was
applied. In version 0.1.2 twenty-six (26) instances of design
patterns have been identified. More specifically, two (2)
factory patterns, one (1) prototype pattern, three (3) adapt-
er patterns, one (1) composite pattern, two (2) decorator
patterns, six (6) observer patterns, eight (8) state patterns
and three (3) template patterns. Although it is beyond
the scope of this paper to describe the use of all 26 patterns,
two patterns will be discussed (a bridge and a state),
because of their former description in chapter 3.2. Despite
that, in Table 2 there are cumulative results that show the
aggregative effects of the eighteen (18) additional patterns.

The state pattern represents the fact that a hockey player
can either be a goalkeeper or a field player (game logic
module, shown at Fig. 1). This means that all players
rrespectively of their position, have some common charac-
teristics and they vary in several others. Therefore, a super-
class Player is created, that encapsulates all the common
characteristics and the common behaviour of hockey play-
ers. This class is inherited by two sub-classes, the Goalie
and the FieldPlayer, that represent the variant behav-
iour and characteristics of each category. This way, any cli-
ent of the program can create or handle a player without
having to know in prior whether he is a goalkeeper or a
field player. For example, a Team class, which holds a
reference to an array of players, does not have to handle
them separately but through a common interface.
AC WMPC1 WMPC2 CF LCOM

91 78 110 – 2237
81 41 35 – 218

36 26 34 – 404
26 15 18 – 91

37 14 14 9 50
33 14 17 5 28



A. Ampatzoglou, A. Chatzigeorgiou / Information and Software Technology 49 (2007) 445–454 453
The bridge pattern is used in order to provide a link
between the Player and the Player_Attributes
interfaces so that the implementation of class Player can
be configured at run-time. Hence, the sub-class
Field_Player can be linked to the sub-class
Field_player_Attributes through a common inter-
face for both goalkeepers and field players. This fact can
be proven extremely useful for any routines that want to
access the player’s attributes without knowing the position
of the player in the squad (Fig. 9).

The combination of these patterns affects many classes
of the project. One of the most characteristic is the Play-
erAttributes class. In version 0.1.2, the design patterns
eliminated two conditional statements decreasing the
WMPC1 of the package (one of these conditionals is shown
in Fig. 10).

The results of the quantitative evaluation of the project
are shown in Table 2. The metrics used are identical to
those described in chapter 4.1. The project has been evalu-
ated in three layers. First, metrics for the PlayerAttributes

class have been calculated, then metrics for the player
package and finally metrics for the complete IHM project.

From Table 2, it becomes obvious that design pat-
terns have decreased the complexity of the pattern par-
Fig. 9. Ice hockey manager – vers

Fig. 10. Ice hockey manager v
ticipating class. This is proven by the WMPC1 and
WMPC2 metrics, which reduced their values by 47.4%
and 68.2%, respectively, regarding the PlayerAttrib-

utes class. The ihm.game.player.* is the most com-
monly used package in the added design patterns (in 6
out of 26 patterns, 23.1%), so it shows the most signif-
icant reduction of complexity (43.6%, and 57.3%). On
the other hand, the complexity of the system remains
stable or slightly increases, possibly due to added
functionality.

Similarly to the example in 4.2, the cohesion has
improved according to the LCOM metric which decreased
by 44%, 77.4% and 90.2% regarding the project, the pack-
age and the class, respectively. These results seem quite
extreme but they reflect the consequences of eighteen (18)
additional patterns and not only the bridge that is dis-
cussed above. Furthermore, the coupling in the system
has decreased by 44.4% as it is implied by the CF metric
value.

In contrast to this, the design pattern usage has
increased the size of the project regarding the number of
classes and the lines of code. In package level, these metrics
increased by 116.6% and 5.9%, respectively, and in project
level by 25.6% and 21.2%.
ion 0.1.2 bridge-state pattern.

ersion 0.1.1 – source code.



454 A. Ampatzoglou, A. Chatzigeorgiou / Information and Software Technology 49 (2007) 445–454
5. Future research

To draw safe conclusions about the use of patterns in
game development, the applicability of other object-orient-
ed design patterns should be examined. Additionally, it
should be investigated whether classes participating in pat-
terns are more change prone. In order to achieve this task
several games’ and game engines’ source code is currently
being examined and reverse engineering techniques are
applied to them. Although sessions 4.2 and 4.3 examined
the game logic part of the corresponding programs for
the existence of design patterns, there is a belief that mod-
ules related to 3D rendering are an excellent domain for
design pattern detection. Finally, a complete game engine,
or a game, that uses all conclusions from the above
research, is planned to be implemented.

6. Conclusions

This paper aimed at evaluating the use of object-orient-
ed design patterns in game development. In order to
achieve this goal we examined two open-source games.
The results extracted by the two games were almost identi-
cal and indicate that patterns can be beneficial with respect
to maintainability. The game version that includes the pat-
tern under study has reduced complexity and coupling
compared to a prior version without the pattern. Addition-
ally, the application of patterns tends to increase the cohe-
sion of the software. In contrast to that, the size of the
projects has increased in the pattern version. Consequently,
due to the evolving nature of games we believe that the
appropriate employment of design patterns should be
encouraged in game programming.

References

[1] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language – Town,
Buildings, Construction, Oxford University Press, New York, 1977.

[2] J.M. Bieman, D. Jain, H.J. Yang, OO design patterns, design
structure, and program changes: an industrial case study, in:
International Conference on Software Maintenance (ICSM 2001),
Florence, Italy, November 2001, pp. 580–590.

[3] L. Bishop, D. Eberly, T. Whitted, M. Finch, M. Shantz, Designing a
PC game engine, IEEE Computer Graphics and Application (1998)
46–53.

[4] S. Bjork, S. Lundgren, J. Holopainen, Game design patterns, in:
Lecture Note of the Game Design track of Game Developers
Conference 2003, March 4–8, San Jose, CA, USA, 2003.

[5] S. Bjork, S. Lundgren, J. Holopainen, Game design patterns, in:
Proceedings of Digital Games Research Conference 2003, Nov. 4–6,
Utrecht, The Netherlands, 2003.

[6] Borland Together Control Center 6.1 product documentation, http://
info.borland.com/techpubs/together/tcc61/, 2005.

[7] F. Brito e Abreu, The MOOD Metrics Set, in: Proceedings of the
Ninth European Conference Object-Oriented Programming (ECOOP
’95) Workshop Metrics, Aug. 1995.
[8] S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented
design, IEEE Transactions on Software Engineering 20 (6) (1994)
476–493.

[9] S.R. Chidamber, D.P. Darcy, C.F. Kemerer, Managerial use of
metrics for object oriented software: an exploratory analysis, IEEE
Transactions on Software Engineering 24 (1998) 629–639.

[10] C.E. Crooks II, Awesome 3D Game Development, Charles River
Media, Hingham, Massachusetts, 2004.

[11] M. Doherty, A software architecture for games, University of the
Pacific Department of Computer Science Research and Project
Journal (RAPJ) 1 (1) (2003).

[12] Gamma, Helms, Johnson, Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional,
Reading, MA, 1995.

[13] Y.G. Gueheneuc, H. Sahraoui, F. Zaidi, Fingerprinting design
patterns, 11th Working Conference on Reverse Engineering
(WCRE’04), pp. 172–181.

[14] B. Huston, The effects of design pattern application on metric
scores, The Journal of Systems and Software 58 (2001) 261–
269.

[15] J. Laird, Game production time line, University of Michigan http://
ai.eecs.umich.edu/soar/Classes/494/talks/Game-timeline.pdf.

[16] M. Lewis, J. Jacobson, Game engines in scientific research, Commu-
nications of the ACM 45 (1) (2002) 27–31.

[17] R.C. Martin, Agile software development: principles,patterns and
practices, Prentice Hall, Upper Saddle River, NJ, 2003.

[18] M. Masuch, M. Rueger, Challenges in collaboration game design
developing learning environments for creating games, Proceedings of
the 3rd International Conference on Creating, Connecting and
Collaborating through Computing (C5’05), Jan. 2005, Kyoto, Japan,
pp. 67–74.

[19] G. Pleva, Game programming and the myth in a child’s play,
Journal of Computing Sciences in Colleges 20 (2) (2004) 125–
136.

[20] L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, L.G. Votta, A
controlled experiment in maintenance comparing design patterns to
simpler solutions, IEEE Transactions on Software Engineering 27
(12) (2001) 1134–1144.

[21] C. Raynolds, Game research: the science of interactive environment,
SIGGRAPH Conference, July 2000, New Orleans, USA. http://
www.siggraph.org/s2000/conference/courses/crs39.html.

[22] T.M. Rhyne, P. Doenges, B. Hibbard, H. Pfister, N. Robins, The
impact of computer games on scientific and information visualization:
if you can’t beat them, join them (panel), IEEE Visualization,
Proceedings of the conference on visualization ’00, Salt Lake City,
Utah, USA, 2000, pp. 519–521.

[23] Shalloway, J. Trott, Design Patterns Explained. A New Perspective
on Object Oriented Design, Addison-Wesley Professional, Boston,
MA, 2001.

[24] G.A. Shultz, The story engine concept in CS education, Journal of
Computing Sciences in Colleges 20 (1) (2004) 241–247.

[25] SIGGRAPH Conference, http://www.siggraph.org.
[26] Sourceforge.net, http://www.sourceforge.net.
[27] P. Stacey, J. Nandhakumar, Managing projects in a games factory:

temporality and practices, Proceedings of the 38th Hawaii Interna-
tional Conference on System Sciences, 2005, pp. 1–10.

[28] N. Tsantalis, Design Pattern detection’’,http://java.uom.gr/~nikos/
pattern-detection.html, 2005.

[29] M. Vokác, W. Tichy, D.I.K. Sjøberg, E. Arisholm, M. Aldrin, A
controlled experiment comparing the maintainability of programs
designed with and without design patterns – a replication in a real
programming environment, Empirical Software Engineering 9 (2004)
149–195.

http://info.borland.com/techpubs/together/tcc61/
http://info.borland.com/techpubs/together/tcc61/
http://ai.eecs.umich.edu/soar/Classes/494/talks/Game-timeline.pdf
http://ai.eecs.umich.edu/soar/Classes/494/talks/Game-timeline.pdf
http://www.siggraph.org/s2000/conference/courses/crs39.html
http://www.siggraph.org/s2000/conference/courses/crs39.html
http://www.siggraph.org
http://www.sourceforge.net
http://java.uom.gr/~nikos/pattern-detection.html
http://java.uom.gr/~nikos/pattern-detection.html

	Evaluation of object-oriented design patterns in game development
	Introduction
	Game architecture
	Design patterns
	Object-oriented design patterns in game logic
	Object-oriented design patterns in game graphics

	Evaluation
	Software quality metrics
	Evaluation example 1 - Cannon smash
	Evaluation example 2 - ice hockey manager

	Future research
	Conclusions
	References


