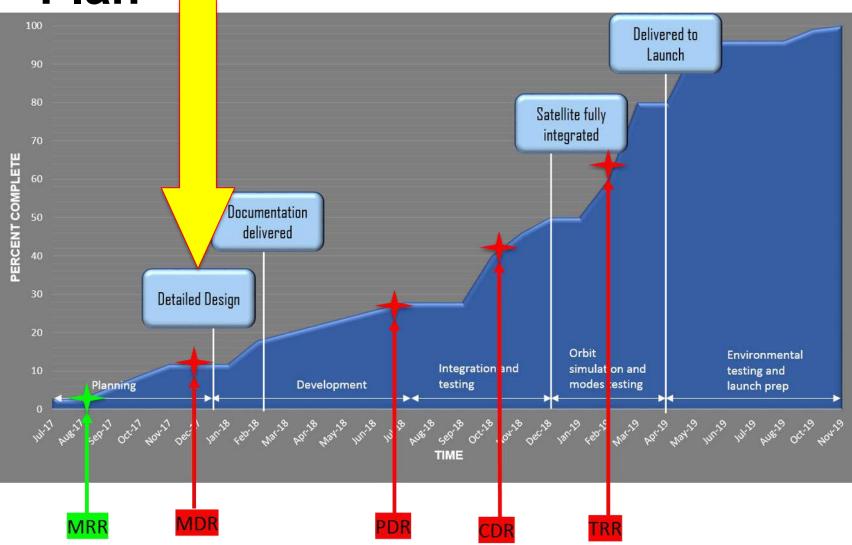


Mission Design Review –

NTNU SmallSat: a Hyperspectral imaging mission



GRACE (2)

Center for Autonomous Marine Operations and Systems (AMOS), Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Trondhelm, Norway

Plan

Overview

Science Objectives

- Biology (species)
- Locations
- Sampling/Imaging Campaigns
- Technology Objectives
 - Hyperspectral Imager
 - SVALBIRD
- Mission Requirements
 - Success Criteria
 - Functional Requirements
 - Operational Requirements
 - Constraints
- Concept of Operations
 - South-North pass (1)
 - North-South pass (2)
 - Pros/Cons
- Mission Architectures
 - Send raw/send signature
 - Processing onboard vs. on ground
 - Direct comms. with UAVs (UHF)
 - Autonomous coordination
 - SDR

- Orbit Analysis
 - Orbits
 - Space Environment
 - Mission Operations Segments
 - Concepts Revisited
 - Observable Targets/Chance of detection
 - Launchers
- Remote Sensing
 - Camera Performance
 - Modeling
- Mapping requirements CHECK
 - Slewing
 - Error budget
- Data Processing
 - Methods
 - Data Budget
 - Timeliness
 - Products (operational & science)
- Communications Architecture
 - Ground Stations
 - Link Budget
- Payload
 - Manufacturing pipeline
 - Test pipeline
 - Calibration
- Systems Design
 - Energy Budget
 - Estimated Costs
 - 3U vs 6U
- Conclusions
- Summary of proposals

NTNU

Science Objectives

Background

- Ocean Color
 - Algae; HABs
 - Phytoplankton
 - Cyanobacteria/toxins
 - River plumes/oil spill
- Norwegian fish farms
- Global climate change
- Marine habitats
- Microplastic (<5mm)

Algal bloom north of Finnmark; credit: ESA

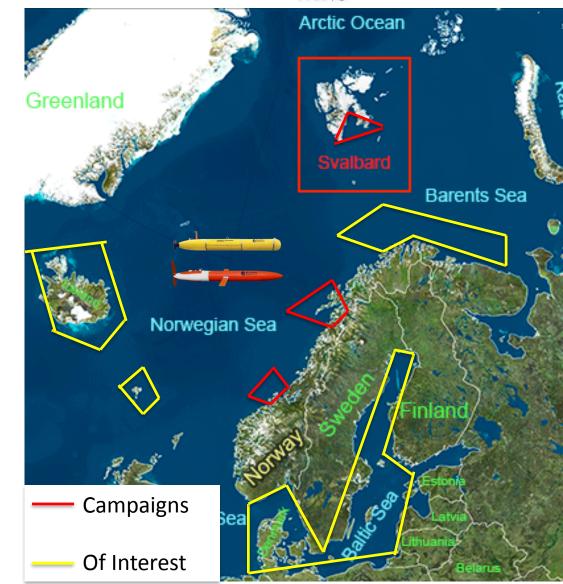
Salmon (est. 900 tonnes) death; credit: IFinnmark

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no

Biology Available & Locations

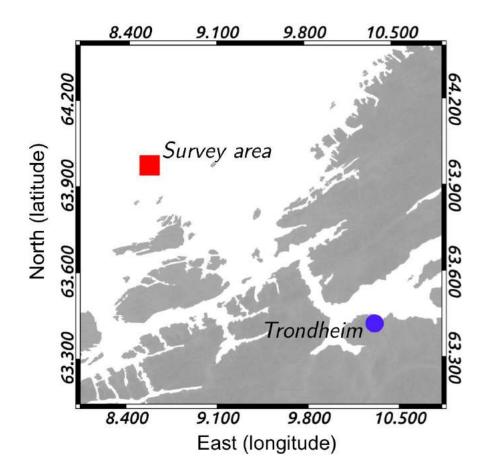
Classes	Color	Location	Time of the year
Diatoms (mild)	Green-yellow	S to Mid-West Norway	March-June
Prymnesiophytes	Golden-Brown	All Norway	April-July
Raphidophytes/Dictyochophytes	Golden-Brown	South-West Norway	April-May
Cyanophytes (aka Cyanobacteria)	Reddish	Baltic/Skagerrak/South Norway	July-Sept
Species (Brown = TOXIC)	Color	Probable Location	Time of the year
Skeletonema Costatum	Golden-brown	Skagerrak	May-June
Chaetoceros convolutus	Golden-brown	Rogaland-Helgeland (S to N Norway)	March-April
Prymnesium Parvum	Golden	Hylsfjord in Ryfylke (S Norway)	July-August
Chrysochromulina polylepis	Brown	Skagerrak, W and Mid-Norway, Oster/Sørfjord	April-July
P. papilliferum	Golden	Hylsfjord in Ryfylke (South Norway)	July-August
Heterosigma akashiwo (raphidophyte)	Reddish	Osterfjord/Sørgjord (Bergen area)	April-May
Karenia mikimotoi (dinoflagellate)	Golden-brown	Skagerrak/Baltic	April-August
Karlodinium veneficum (dinoflagellate)	Golden-brown	Skagerrak/Baltic	April-August
Emiliania Huyxlei (very detectable)	Milky or brown	Along all Norwegian Coast	April-Sept
Pseudochatonella	Golden-brown	Baltic	April-August

Credit: Geir Johnsen et al. (1994)


Science Requirements

Biology	Shall detect with algal bloom and phytoplankton in Case 1 waters and 100x100 m ² patches to determine chlorophyll-a, -b, -c3, -c4 concentrations
Biology	Detect algal blooms and phytoplankton in Case 2 waters and 100x100 m ² patches to determine chlorophyll-a, -b, -c3, -c4 concentrations
Biology	Enable detection of HABs e.g. <i>Platymonas spp.</i> , <i>Nitzschia closterium</i> and <i>Chlorella spp.</i> species at about 680-900 nm spectral range
Ocean Color	Detect other discolorations of oceans such as oil spills and river plumes
Ocean Color	If distinguishable, to detect fronts in fjords due to water and ocean currents (sun glint helps)
Ocean color	Enable flexibility of observing common phytoplankton concentrations skewing with spectra from 400-600 nm range to 600-700 nm range
Biology	Detect signatures below at least 2 m water depth
Biology	Able to detect bio-luminescent matter at night from space
Remote Sensing	Satellite shall cover main AUV campaigns in either Svalbard, Trondheim and at Frøya
Remote Sensing	In-situ validation of remote sensing data (sampling or fine-resolution) is necessary (with UAVs, USVs, AUVs, manual sampling)
Remote Sensing	Enable corrections for atmosphere, aerosols, air bubbles, sunglint, turbidity, diffracted second order light, water vapour, landscape distortions

AUV Campaigns


- NTNU AUV Campaigns:
 - Frøya
 - Svalbard
 - Trondheimsfjord
 - Lofoten
- Interesting:
 - Barents Sea
 - Baltic
 - Faroe Islands
 - Iceland

NTNU

AUV Campaigns

ENTICE campaign. The project set out to map and understand the productive Frøyan archipelago.

Fronts & Internal Waves

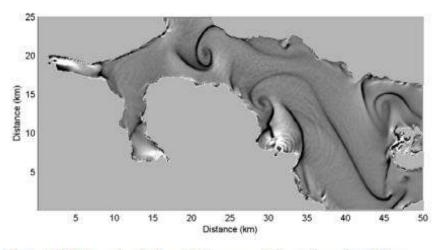


Figure 5.13 The surface horizontal divergence in the surface after 13 days.

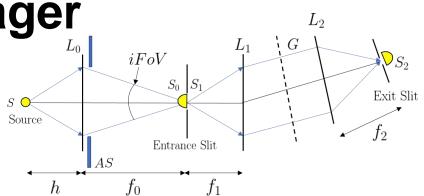
Internal waves observed in the Cross Fjord, near the inlet of Gaulosen. The photo is

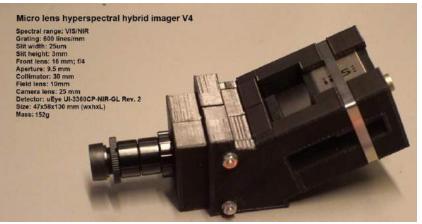
Credit: Ingrid Ellingsen (PhD Thesis, 2004)

Tech Demonstrator Objectives

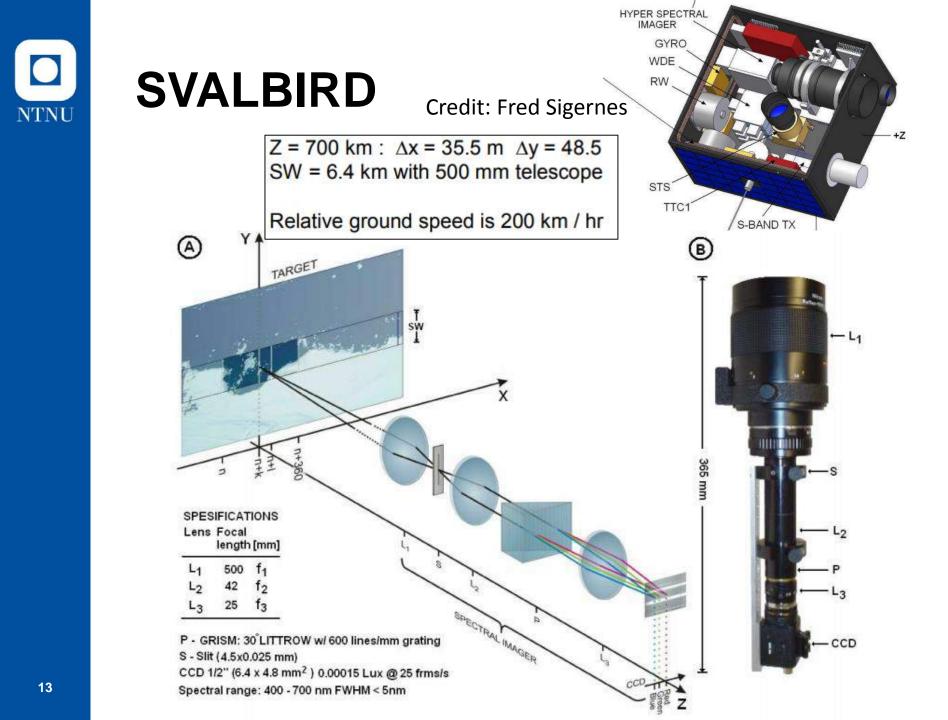
Hyperspectral Imager

HSI VERSION 4-1 SPECIFICATIONS


Spectral range	400-900 nm
Bandpass $\delta \lambda$	5 nm
Mass m	152 g
Size $w \times h \times L$	$47 \times 58 \times 130$ mm
iFoV	0.031°
Sampling	0.342 nm/pixel
Pixel size	5.5 μ pixel
Binning	2×2
Grating	600 lines/mm
Usable bands	100
Sensor resolution	2048×1088 pixels
Number of effective pixels N	578 pixels
Dark current	$125 e^{-}/s$
Read-out noise (25 C°)	13 e-


- Detector: uEye UI-3360CP-NIR-GL
- Slit: 25µmx 3 mm
- L0 front lens: f₀=16 mm; f/4 (flexible)

Requirements:


- 1. Have to show *considerable* increase in spatial and spectral resolution for a small target area compared to existing space systems. GSD<50 m, Dx<300 m, DLambda=<5 nm
- 2. Onboard Processing (operational data) downlinked quickly
- 3. Autonomous coordination of systems for observation (comms.)

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no

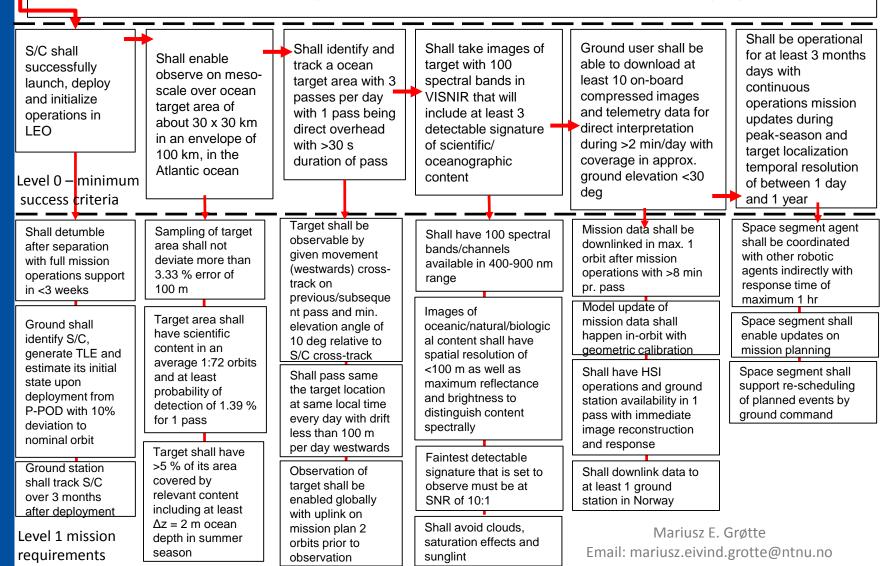
HSI ver. 4, credit: Fred Sigernes http://fred.unis.no

Mission Requirements

NTNU

Mission Objectives

- Primary:
 - To provide real-time coastal ocean color mapping through Hyper-Spectral Imager (HSI) payload and on-demand autonomous coordination in a concert of robotic agents in vicinity of the Norwegian coast.
- Secondary:
 - Demonstrate competitive efficiency of HSI
 - Deliver scientific products to remote sensing, oceanography and biology communities
 - Monitor and predict dynamics of Harmful Algal Blooms (HABs) and prevent damage to fish farms
 - Monitor & track ground stations & vehicles and downlink data to ground autonomously
 - Demonstrate novel theory-to-practice optimal energy management and pointing control during slew maneuver in orbit
 - Build strong competence on and strengthen prospect of nano- and micro-satellite systems as supporting intelligent agents in integrated autonomous robotic systems for dedicated marine and maritime applications.
 - Describe the scientific methodology that will be adopted for the research, and coordinate the project plans with other ongoing research activities and NTNU and with engineering and scientific collaborators.



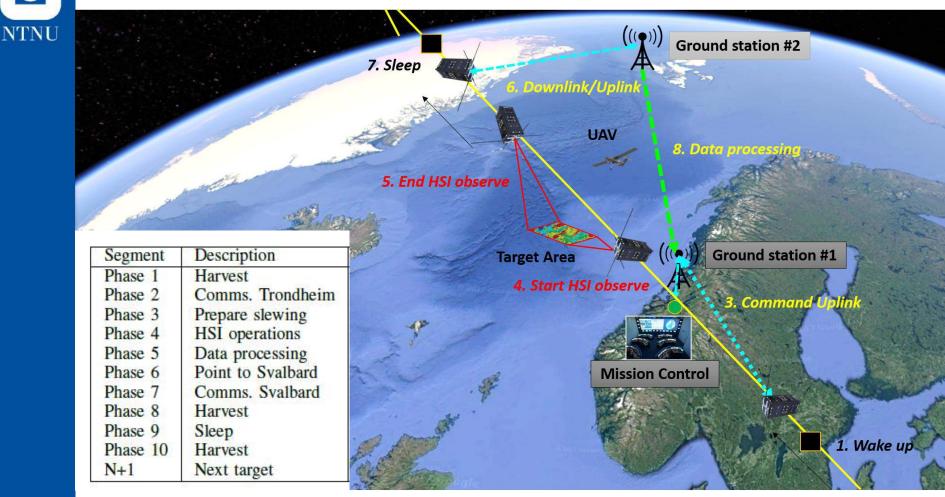
16

Mission Requirements

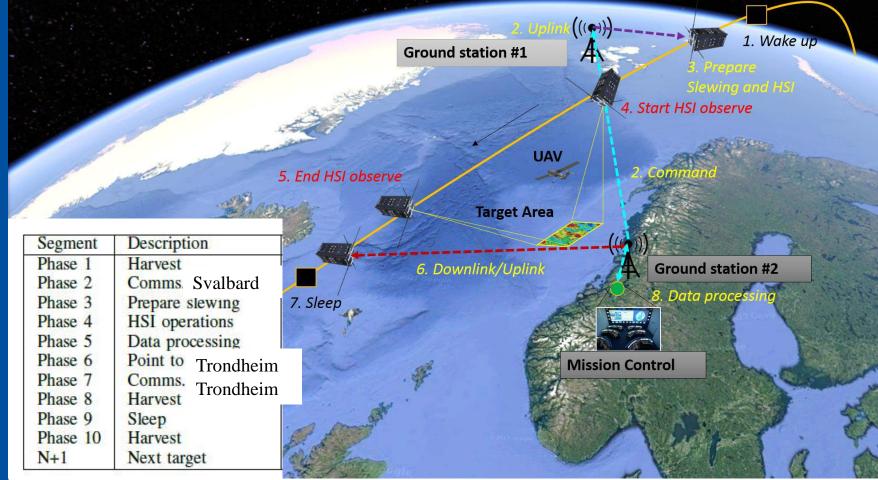
Level 0 mission statement

NTNU SmallSat mission will demonstrate proof-of-concept ocean color observations through dedicated and targeted narrow field-of-view hyperspectral imaging

Operational Requirements & Constraints


Level 2 mission requirements

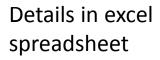
mission plan update to start space segment operations and detumble with active control of magnetic field and gravity Shall enable sleep on/ off during on/ off HSI demands autonomously and on command Target be magnetic public field and 250-2 Target be magnetic public field and active control of Target be magnetic scarr	shall be in synchronous at h<550 km ude, inclination 98 deg shall have ascension of ending node 0-110 deg or 290 deg et shall be erved at ox. 60 deg N 10 deg E et area shall happed by 1-broom uning along- a and cross-	S/C shall enable <0.01 degrees relative pointing precision (2 sigma) Slew maneuver shall be prepared for and enabled 2 min prior to observing operations with slew rate of about 0.8 deg/s Shall point +20 deg to -20 deg from Nadir along- track with <1 deg/s pitch rate Avoidance of cloud cover and shadowing shall be enabled with	Must enable Ground Sampling Distance of GSD < 100 m to achieve at least effective spatial resolution of Δx<100 m through post- processing algorithms Shall utilize GPS for tracking, antenna pointing, slewing maneuver and image calibration Corrections for atmospheric distortions, turbidity, clouds shall be enabled for observations of target area with 750-1000 nm (NIR) bands	Shall enable downlinking data of <60 Mb spatially & spectrally compressed data and in 3 orbits Space segment shall support off/on payload operations during off- demand on command or observing hinderance autonomously Shall downlink data at least 1 Mb/s	S/C must enable sleep during pass in South Atlantic Anomaly for 10 min Space segment shall support re-scheduling of planned events by ground command at e.g. target area coordinates, elevation, slant angle, slew rate Mission and orbit shall adhere to launch windows in spring or summer season and not deviate from observing primary objective with less than 3 weeks
 <u>Constraints (see</u> Money Manpower Time Launch window Payload develo Space policy 	N	flexible attitude control	Shall have $\Delta x < 300$ m and swath width of 30 km		


Concept of Operations

CONOPS 1 (DayTime Launch)

South-North Pass. Satellite is in retrograde **near-polar orbit** and is operational for imaging at about **1 min** during one direct overhead pass per day. Constellation is designed with baseline **2 revisits** per day. Norway has a large coastline and substantial responsibility for important ecosystem observations and maritime surveillance.

CONOPS 2 (NightTime Launch)


North-South pass. Satellite is in retrograde **near-polar orbit** and is operational for imaging at about **1 min** during one direct overhead pass per day. Constellation is designed with baseline **2 revisits** per day. Norway has a large coastline and substantial responsibility for important ecosystem observations and maritime surveillance.

NTNU

Example: Adaptive and Data-Driven AUV – Satellite networked operations NTNU SAT: Front detected, wait for AUV comms. Sat \rightarrow AUV: No front Sat → AUV: Front detection at detected. lat: 64.41, lon: 10.08 Actual location Estimated AUV: Replan to lat, lon location of front

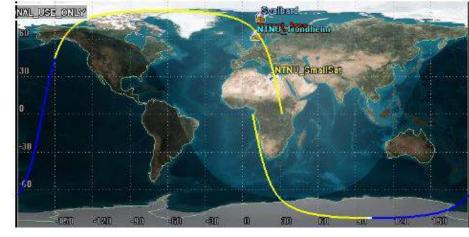
Mission Architectures

Mission Elements

MISSION ELEMENT OPTIONS

Orange means changes to nominal

Element	Option	11	Store & dump data; TM/TC-transceiver; ≥ 2 ground stations;			
A1	HSI mapping of the ocean; autonomous onboard processing of	10	UHF-band uplink, X-band downlink			
	mission data, then transmitted after pass; ground commands	12	Store & dump data; TM/TC-transceiver; ≥2 ground stations;			
	on mission plan.	12	UHF-band uplink, S-band downlink			
A2	HSI mapping of the ocean; autonomous onboard processing of	13	Store & dump data; TM/TC-transceiver; ≥ 2 ground stations;			
	mission data, then transmitted after pass; ground commands	I 4	S-band uplink, X-band downlink Store & dump data; TM/TC-transceiver; ≥2 ground stations;			
4.2	on mission plan; updates to other robotic agents.	14	S-band uplink, S-band downlink			
A3	HSI mapping of the ocean; semi-raw downlinked mission data, then post-processed; ground commands on mission plan.	15	Store & dump data; TM/TC-transceiver; >2 ground stations;			
A4	HSI mapping of the ocean; semi-raw downlinked mission	110 C	UHF-band uplink, X-band downlink; multi-agent cross-links			
AT	data, then post-processed; ground commands on mission		in VHF/UHF			
	plan; if satellite sees interesting signature \rightarrow send out other	I6	Store & dump data; TM/TC-transceiver; >2 ground stations;			
	air/surface agents directly		UHF-band uplink, S-band downlink; multi-agent cross-links			
A5	HSI mapping of the ocean; autonomous onboard processing of		in VHF/UHF			
C (1.1)	mission data, then transmitted after pass; ground commanding	17	Store & dump data; TM/TC-transceiver; ≥2 ground stations;			
	on mission plan; autonomous coordinated robotic multi-agent		S-band uplink, X-band downlink; multi-agent cross-links in			
	observations		VHF/UHF			
B1	No agents tracked from space	18	Store & dump data; TM/TC-transceiver; ≥ 2 ground stations;			
B2	Multi-agent targets tracked: USVs, UAVs, Ships, Buoys		S-band uplink, S-band downlink; multi-agent cross-links in			
C1	Oceanography through Hyperspectral imaging	11	VHF/UHF			
D1	Small aperture HSI	J1	Fully automated ground stations; part-time operations on			
D2	SDR	J2	demand; Indirect updates on mission to/from other agents Fully automated ground stations; part-time operations on			
E1	2-6U size; 3-axis stabilization; spacecraft pointing; body-	32	demand; Direct updates on mission to/from other agents			
	mounted solar panels; onboard GPS; onboard orbit control;	1	demand, Direct updates on mission torroin other agents			
F1	policibly micro propulsion SSQ: 1-satellite	4	Rank Mission Architecture			
F1 F2	(P)LO: 1-satellite	-	1 A3-B1-C1-D1-E1-F1-G1-H1-I2-J1			
F2 G1	PSLV or Soyuz 9 (highly tradeable)	+	2 A1-B1-C1-D1-E1-F2-G1-H1-I2-J1			
HI	Dedicated: NTNU; Commercial (e.g. KSAT)	+	3 A3-B1-C1-D1-E1-F2-G1-H1-I1-J1			
	Dedicard, 11110, Commerciar (e.g. KoA1)		4 A3-B1-C1-D1-E1-F1-G1-H1-I2-J1			
23			5 A2-B2-C1-D1-E1-F1-G1-H1-I6-J2			
	Compatible only with 6U					


			Missi	on Elements		System Driver 1	System I	Driver 2	System Driver 3	System Driv	ver 4 System	n Driver 5	System Driver 6
A		How	A. Mis	sion Concept		Concept Complexity	Oceanog	raphy	Lifetime	Comms. Po	wer <mark>Cost</mark>		Mission Reliability
P	ITNU	chosen?	B. Con	trollable Sub	jects	Concept Complexity	Oceano	graphy	Lifetime	Comms. Po	wer Cost		Mission Reliability
				sive Subject		Concept Complexity	Oceanog	graphy	Lifetime	Comms. Po	wer Cost		Mission Reliability
			D. Pay	load		Concept Complexity	Oceanog	graphy	Lifetime	Comms. Po	wer <mark>Cost</mark>		Mission Reliability
			E. Spa	cecraft Bus		Concept Complexity	Oceano	graphy	Lifetime	Comms. Po	wer Cost		Mission Reliability
			F. Orb	it		Concept Complexity	Oceanog	graphy	Lifetime	Comms. Po	wer <mark>Cost</mark>		Mission Reliability
			G. Lau	inch System		Concept Complexity	Oceano	graphy	Lifetime	Comms. Po	ower <mark>Cost</mark>		Mission Reliability
			H. Gro	ound System		Concept Complexity	Oceano	graphy	Lifetime	Comms. Po	wer Cost		Mission Reliability
				munications ecture		Concept Complexity	Oceano	graphy	Lifetime	Comms. Po	wer Cost		Mission Reliability
			J. Mis	sion Operatio	ns	Concept Complexity	Oceanog	raphy	Lifetime	Comms. Po	wer Cost		Mission Reliability
	Ratings here an have an impact	e 1-10, where 10 is the best. Note E1 and G1 do not yet	Complexity	Oceanography	Lifetim	e Comms. Power	Cost	Missio Reliabili		Design Sensitivity	Redundancy	Data Rate	Data Availability
A1		the ocean with autonomous on-board processing , then transmitted after pass. Ground commands).	8	6			6	8			5		9
A2	of mission data	the ocean with autonomous on-board processing , then transmitted after pass. Ground commands 1. Updates to other robotic agents through mission	6	7			5	8			8		9
A3		the ocean with semi-raw downlinked mission processed. Ground commands on mission plan.	10	6			6	9			5		8
A4	data, then post-	the ocean with semi-raw downlinked mission processed. Ground commands on mission plan. If ignature -> send out other agents directly	5	8			6	10			9		8
A5	of mission data on mission pla	the ocean with autonomous on-board processing , then transmitted after pass. Ground commanding n. Fully autonomous coordinated robotic multi- on with model update on-board S/C	5	9			3	10			10		10
B1	No agents exce	ot for space segment						5			5		
B2	Multi-agent tar	ets: USVs, UAVs, Ships, Buoys						10			10		
C1	Oceanography t	hrough Hyperspectral light		10				8	3				
D1	Small aperture	HSI		10			7	5	3	2		5	
		stabilization; spacecraft pointing; body-mounted nboard GPS; onboard orbit control; possibly micro-			0	0	0	0		0	0		
	propulsion												

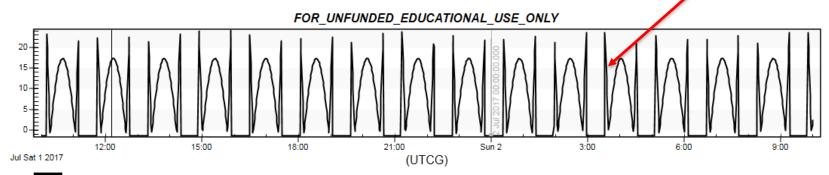
Orbit Analysis

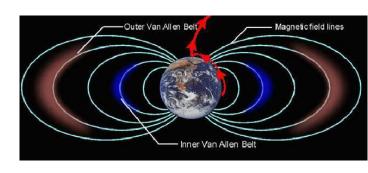
Orbit Characteristics

Parameter	Definition
Туре	Sun-Synchronous
Altitude	500 km (450-550 km)
Semi-major axis	6878 km
Revisits to 1 Target	3
Inclination	97.31 deg
RAAN	83.3 or 228.3 deg (80-110 deg or 250-280 deg)
Repeat Cycle	6.91 days (107 cycles/day)
Orbital Period	95 min 39 s
Drift (Drag, SRP, gravity)	±100 m/day
Penumbra & Umbra	30 % of orbit

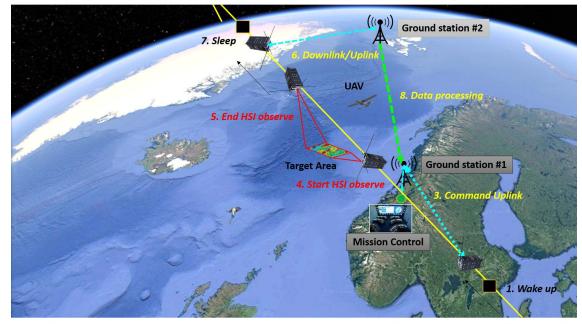
NTNU

•


Space Environment

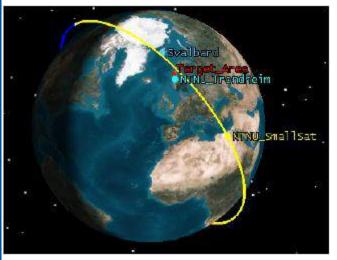

- S/C must survive for up to 3 years
- Thermal effects
 - All elements must sustain thermal gradients.
 - Data from other missions suggests that we can expect +20 C during sun illumination and -20 C during eclipse. The needed orbit will have around 30 min eclipse for every pass.
 - Terminators are of interest with gradients of 30 deg/s
- Radiation effects (TBD)
 - Total dose: 10kRad(=100Gy) or higher.
 Dose rate: 0.01 Gy/s or lower (ISO19683:2017(E))
- Impacts:

Temperature (degC)


- Bit flips
- Optics & sensor performance degradation
 - Shot noise
 - Dark pixels
 - Optical efficieny (lamination)
 - Loss of focus (tolerances off)

Requirement: Determine tolerances and material that meets the thermal gradient loads at Sun terminator

Mission Phases (Concept 1)



Segment	Description	Start (UTC)	Duration (s)
Phase 1	Harvest	09:37:10	5
Phase 2	Comms. Trondheim	09:37:15	125
Phase 3	Prepare slewing	09:39:20	115
Phase 4	HSI operations	09:41:15	54
Phase 5	Data processing	09:42:09	74
Phase 6	Point to Svalbard	09:43:25	20
Phase 7	Comms. Svalbard	09:43:45	270
Phase 8	Harvest	09:48:15	605
Phase 9	Sleep	09:59:20	2207
Phase 10	Harvest	10:36:07	2255
N+1	Next target	11:13:42	373

NTNU

Concepts Revisited

Concept 1: RAAN=83.3 deg

REVISITS PER DAY (22 JUN 2020 07 AM - 23 JUN 2020 07 AM). Observer: NTNU Trondheim with $\epsilon = 10^{\circ}$, Tot. # of passes: 6

Start-time (UTC)	Duration (min)
08:06:09	5.042
09:37:55	7.196
11:12:36	5.320
22:26:03	5.692
23:59:00	7.156
01:33:01	4.695
Max Duration	7.196
Min Duration	4.695

Revisits per day (22 Jun 2020 07 AM - 23 Jun 2020 07 AM). Observer: Longyearbyen, with $\epsilon=10^\circ,$ Tot. # of passes: 10

Start-time (UTC)	Duration (min)
08:07:47	7.253
09:41:38	6.876
11:16:32	5.386
20:48:47	3.490
22:21:54	6.164
23:55:22	7.127
01:28:49	7.218
03:02:06	6.954
04:35:09	6.810
06:08:03	6.986
Max Duration	7.253
Min Duration	3.490

Concept 2: RAAN = 228.3 deg

Revisits per day (28 Apr 2020 07 AM - 29 Apr 2020 07 AM). Observer: NTNU Trondheim with $\epsilon = 10^{\circ}$, Tot. # of passes: 6

Start-time (UTC)	Duration (min)
07:51:41	4.9
09:24:21	7.2
10:58:12	5.35
17:06:41	2.31
18:36:59	6.69
20:10:16	6.8
Max Duration	7.21
Min Duration	2.31

REVISITS PER DAY (28 APR 2020 07 AM - 29 APR 2020 07 AM).
OBSERVER: LONGYEARBYEN, WITH $\epsilon = 10^{\circ}$, Tot. # of passes: 10

Start-time (UTC)	Duration (min)		
07:47:17	5.90		
09:20:44	7.05		
10:54:11	7.24		
12:27:30	7.00		
14:00:35	6.81		
15:33:30	6.94		
17:06:30	7.21		
18:40:01	7.14		
20:14:24	6.23		
21:50:07	3.66		
Max Duration	7.24		
Min Duration	3.66		

NTNU

Concepts Revisited: Observable Targets

Concept 1

SOUTH-NORTH PASS OBSERVATIONS ON 22 JUNE

#	Time (UTC)	Options	Ground Stations
1	08:09:00	Svalbard; Barents Sea; Trondheim (1st)	Svalbard (DOWN); Trondheim (UP)
2	09:39:10	Trondheim (2nd); Froya: Lofoten: Baltics; Svalbard	Svalbard (DOWN); Trondheim (UP); Porto (DOWN/UP)
3	10:51:20	Iceland; Faroe Islands; South Africa; Trondheim (3rd); Ireland; UK	Svalbard (DOWN); Trondheim (UP); Porto (UP)
4	12:40:00	West Africa; Iceland; Greenland	None
5	15:57:00	Lake Hudson	None
6	17:21:19	Mexico Gulf	None
7	18:59:00	Monterey Bay, CA	NASA Ames

Concept 2

NORTH-SOUTH PASS OBSERVATIONS ON 28 APRIL 2020

#	Time (UTC)	Options	Ground Stations
1	07:51:30	Barents Sea; South Africa	Svalbard (UP); Trondheim (DOWN)
2	09:25:55	Svalbard: All Norway: Denmark	Svalbard (UP); Trondheim (DOWN)
3	11:02:30	Iceland; Faroe Islands; Azores (PT) Ireland; UK	Svalbard (UP); Porto (DOWN)
4	15:46:10	Lake Hudson	None
5	17:26:00	Monterey Bay	NASA Ames

Probability of Detection (Frøya)

Date (10:00 AM)*	Weather Conditions	Detection chance			
1. April	Rainy, some sunshine	Low (<5 %)			
2. April	Rainy	No chance (<1 %)			
3. April	Cloudy	No chance (<1 %)			
4. April	Rainy	No chance (<1 %)			
5. April	Cloudy, some sunshine	Low (<5 %)			
6. April	Rainy	No chance (<1 %)			
7. April	Cloudy, some sunshine	Low (<5 %)			
22. April	Cloudy, some sunshine	Low (<5 %)			
23. April	Snow, some sunshine	Low (<5 %)			
24. April	Sunny, some clouds	Medium (<10 %)			
25. April	Sunny, some clouds	Medium (<10 %)			
26. April	RainyNo chance (<1 %)				
27. April	Sunshine, some clouds Medium (<10 %)				
28. April	Sunshine, a few clouds	Medium (<15 %)			

*Summer: higher chance of sunshine, but lower chance of detecting blooms Data obtained from <u>https://www.yr.no/</u>

Orbit 1 vs. Orbit 2

Elements	Pros/Cons							
	Orbit 1	Orbit 2						
Operations Risk	+ (more uplink control at NTNU)	+ (more downlink control at NTNU)						
Launch	+ (Available)	- (Not very available)						
Coverage	+ (More available to Trondheim)	+ (In average a bit better)						
Revisits to one Target	+ (3)	- (2)						
# Targets	+ (More targets)	- (Dedicated to Norway)						
Observing Norway	 - (Passes Norway 3 times with good coverage) 	+ (Fully available in one pass, Passes Norway 3 times, where 1 is great)						
Constellation	+ (Easier for constellation of SmallSats)	- (Hard due to Launch)						
Probability of detection	- (More dedicated)	+ (Higher probability in spring/summer)						
SUM	3	2						
Yellow: Critical (factor 2x)								

Launchers

DETAIL	CONT	AINERIZE	D	SATELL	TE CLASS						
PAYLOAD TYPE	3U	6U	12U	50kg	100kg	150kg	200kg	300kg	450kg	750kg	1000kg
LENGTH (CM)	34.05	34.05	34.05	80	100	100	100	125	200	300	350
HEIGHT/DIA (CM)	10	10	22.63	40	50	60	80	100	150	200	200
WIDTH (CM)	10	22.63	22,63	40	50	60	80	100			
MASS (KG)	5	10	20	50	100	150	200	300	450	750	1000
PRICE-LEO	\$295	\$545	\$995	\$1,750	\$3,950	\$4,950	\$5,950	\$7,950	\$17,500	\$22,000	\$28,000
PRICE-GTO	\$915	\$1,400	\$2,750	\$4,600	\$8,400	\$9,800	\$11,200	\$14,000	CALL	CALL	CALL

Pricing in thousands (USD)

LAUNCH DETAIL

SATELLITE SIZE & AVAILABILITY

INQUIRE

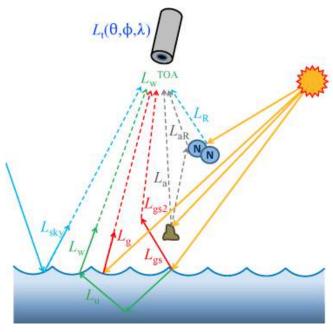
Date >	Orbit >	Туре	Cubesats	50kg	100kg	150	200kg	300kg	300kg+	Inquire
Q2 2018	450-500km 52.6°	USA	٠	Θ	Θ	Θ	Θ	Θ	Θ	INQUIRE
Q2 2018	550km SSO	Foreign		•	•	•	•	٠	٠	INQUIRE
Q2 2018	630km SSO	Foreign	٠	•	•	•	•	٠	•	INQUIRE
Q2 2018	220-420km 52.6°	USA	٠	Θ	Θ	Θ	Θ	Θ	Θ	
Q2 2018	450km SSO	Foreign	۲				•	•	•	
Q2 2018	460km 45°	Foreign	•	•			•	٠	٠	
Q3 2018	550km SSO	Foreign	-							INOLIIRE

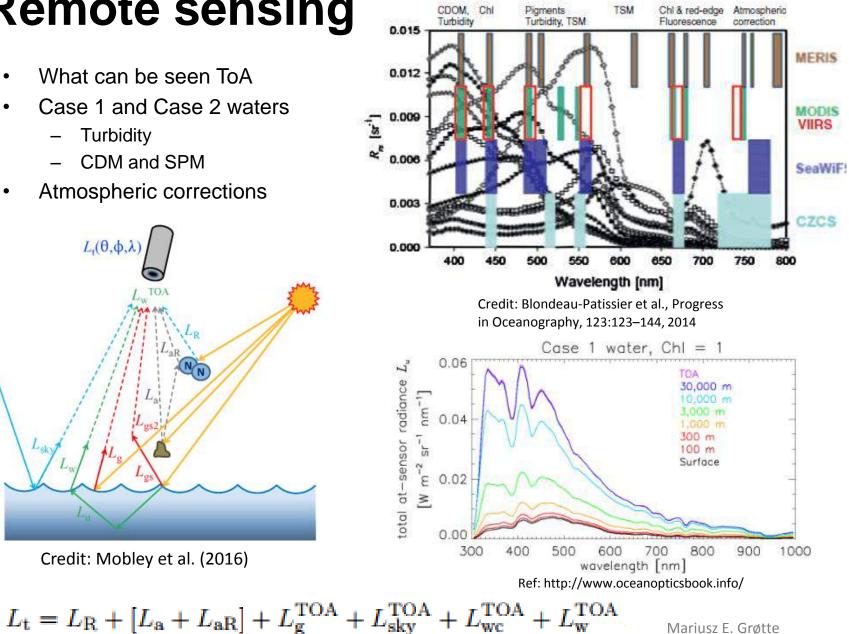
6		
N	TINI	r
1.5	TINC	

Q4 2018	450-500km 52.6°	USA		•	Θ		Θ	Θ	Θ	Θ	Θ
Q4 2018	536km SSO	Foreign			۲						
Q1 2019	220-420km 52.6°	Foreign		•	Θ		Θ	Θ	Θ	Θ	Θ
Q2 2018	500km SSO	USA		٠	Θ		Θ	Θ	Θ	Θ	Θ
Q2 2019	185 x 35,786km 27°	Foreign	•	٠	•	•	•	•	•		QUIRE
Q2 2019	220- <mark>4</mark> 20km 52.6°	USA	•	Θ	Θ	Θ	Θ	Θ	Θ		
Q3 2019	450-500km 52.6°	USA	•	Θ	Θ	Θ	Θ	Θ	Θ		
Q4 2019	220-420km 52.6°	USA	•	Θ	Θ	Θ	Θ	Θ	Θ		
Q4 2019	450-500km 52.6°	USA	۲	Θ	Θ	Θ	Θ	Θ	Θ		QUIRE
Q4 2019	220-420km 52.6°	USA	•	Θ	Θ	Θ	Θ	Θ	Θ		
Q4 2019	500km SSO	Foreign	•	•		٠	٠		•		QUIRE
Q4 2019	185 x 35,786km 27°	USA	•	•	•	•	•	•			

Launchers Summary

Date	Where	Orbit Type		
Q2 2018	N/A (not US)	550 km SSO		
Q2 2018	USA	500 km SSO		
Q2 2018	N/A (not US)	450 km SSO		
Q3 2018	N/A (not US)	550 km SSO		
Q4 2018	N/A (not US)	536 km SSO		
Q4 2019	N/A (not US)	500 km SSO		
H2 2019	Russian	450-600 km SSO		
Q4 2019	European	500-700 km SSO		
Q4 2019	European	450-600 km SSO		
Q1 2020	European	500-700 km SSO		

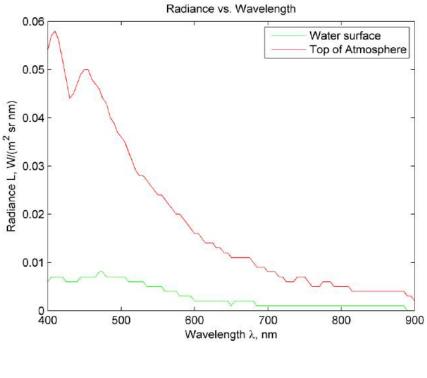

Source: <u>https://www.isispace.nl/launch-services/</u> <u>http://spaceflight.com/schedule-pricing/</u>

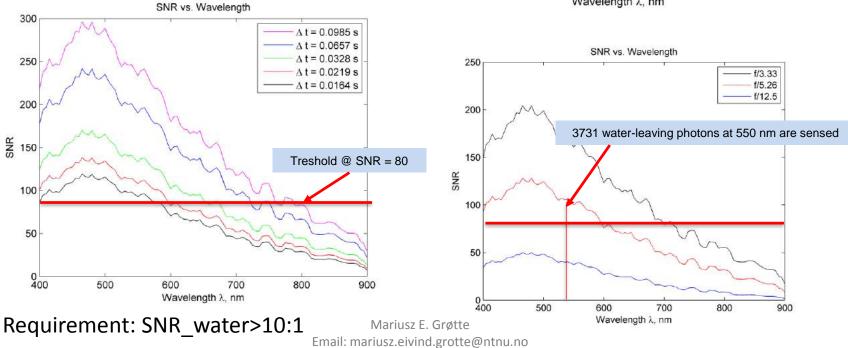

Remote Sensing

Remote sensing

- What can be seen ToA
- Case 1 and Case 2 waters
 - Turbidity
 - CDM and SPM
- Atmospheric corrections

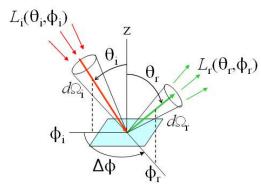
Credit: Mobley et al. (2016)

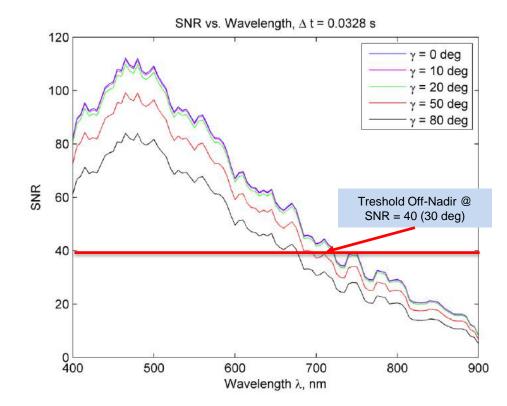

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no


NTNU

Sensitivity

Humidity	56%
Solar Zenith Angle	45 ⁰
Surface wind speed	6 m/s
Viewing angle	0 ⁰
Chl-a concentration	1 mg/m ³
Water	Case 1
f ₀	50 mm
f/#	5.5
Н	500 km
dx	250 m

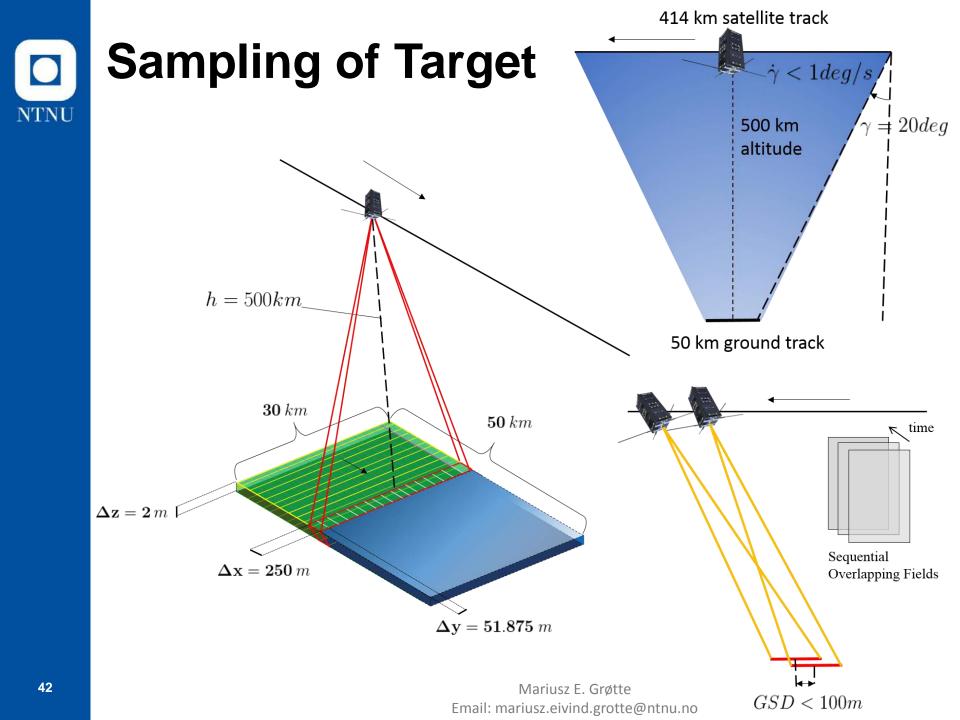




Viewing Angle Effects

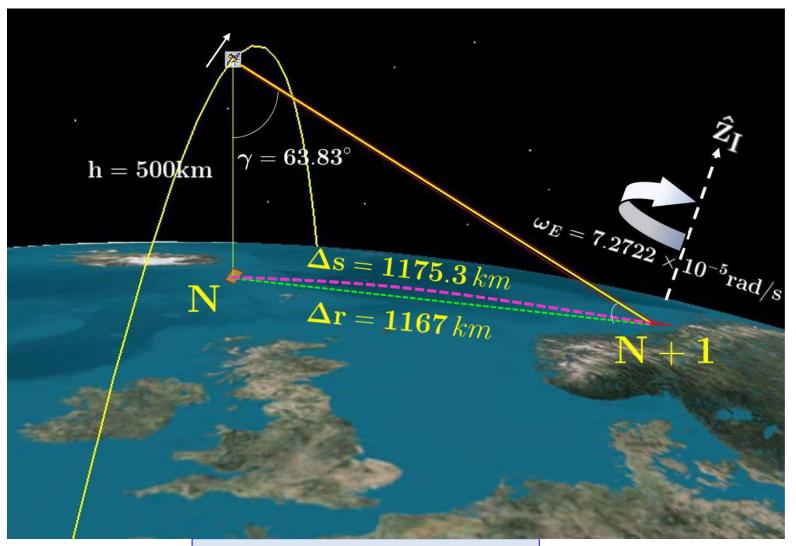
• Lambertian BRDF: $p(\phi) = \frac{2}{3\pi^2}(\sin\phi + (\pi - \phi)\cos\phi)$

- Slant range increases
 - Spatial resolution worsens
 - Added distortions
- Less water-leaving photons reaching sensor
- Exposure time matters for GSD



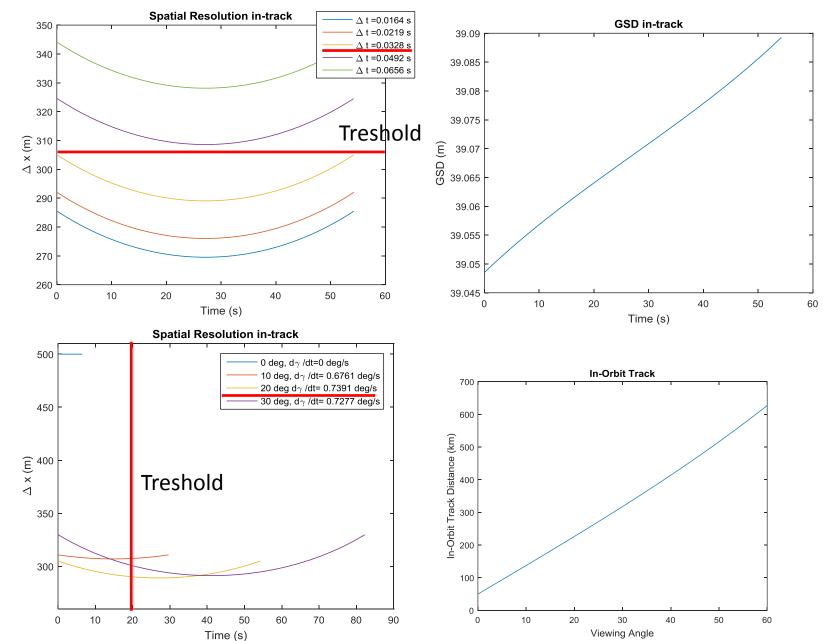
Requirement: Total SNR off Nadir > 40:1 for all bands

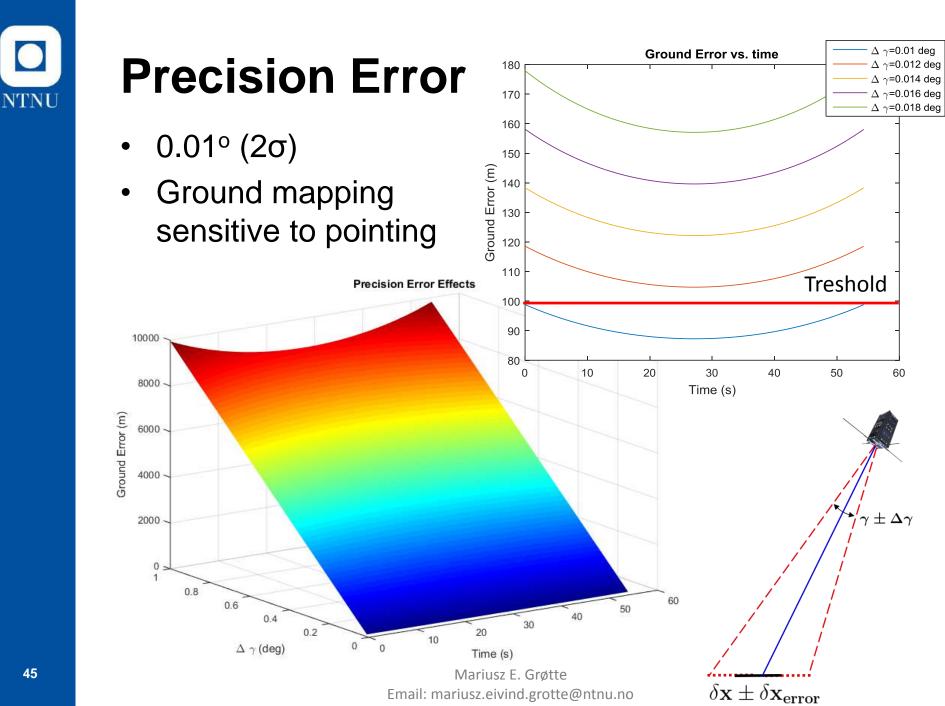
Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no



Mapping & Pointing Requirements

Cross-Track Slew Requirements




 Θ = 20 deg wrt. Nadir along-track $\dot{\gamma}$ = <1 deg/s, $\dot{\theta}$ = 0.7361 deg/s

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no

NTNU

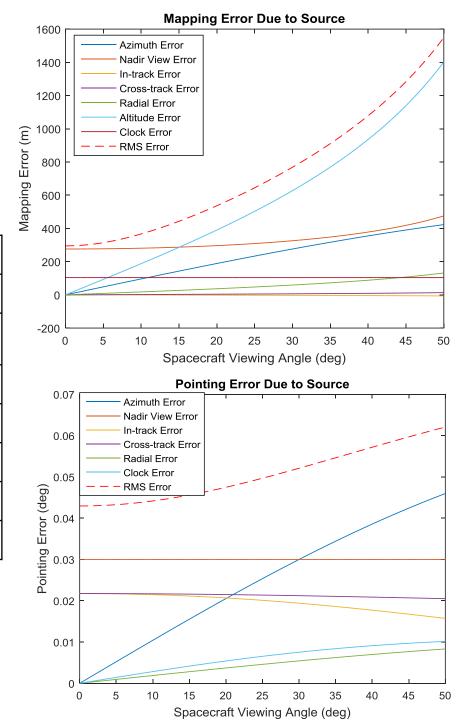
GSD and sampling calculations

NTNU

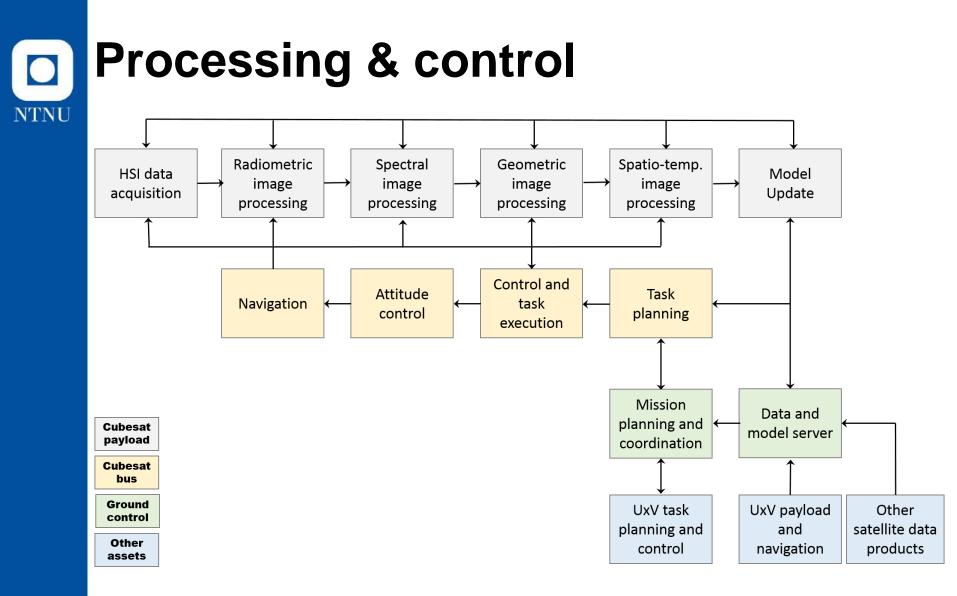
Error Budget

Quote: «Pointing Accuracy should be 10%-20% of FoV», *Wertz & Larson: SMAD (1999)*

Accuracy Level	System
	Gravity Gradient spacecraft, no
<10 deg	attitude determination
<2 deg	Magnetometer only
	Earth sensing, no oblateness
<0.5 deg	corrections
<0.1 deg	General Earth sensing
<0.03 deg	High-accuracy Earth sensing
<0.01 deg	Star sensing


Sourc	es of Mapping and P	ointing Errors			
Space	craft Position Errors:				
ΔΙ	In-or along-track	Displacement along the spacecraft's velocity vector			
ΔC	Cross-track	Displacement normal to the spacecraft's orbit plane			
ΔR_{s}	Radial	Displacement toward the center of the Earth (Nadir)			
Sensir	Sensing Axis Orientation Errors:				
Δη	Elevation	Error in angle of the sensing axis about Nadir			
Δφ	Azimuth	Error in rotation of the sensing axis about Nadir			
Other	Other Errors:				
$\Delta R_{\rm T}$	Target Altitude	Uncertainty in the altitude of the observed object			
ΔΤ	Clock Error	Uncertainty in the real observation time (results in uncertainty in the rotational position of the Earth)			

Error Budget

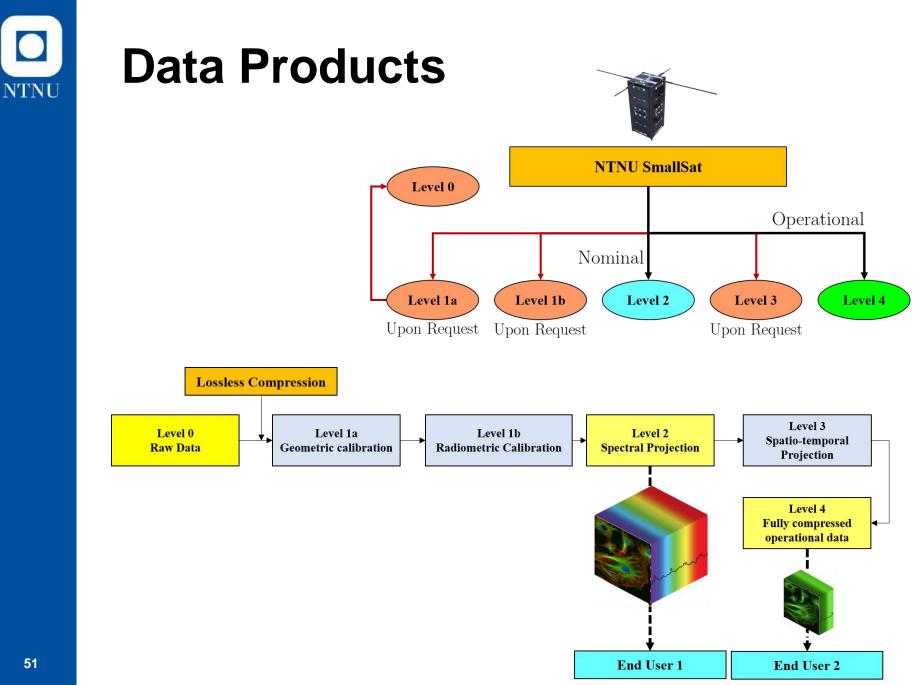

Source	Error
Azimuth	0.06 deg
Nadir Angle	0.03 deg
In-Track	0.2 km
Cross-Track	0.2 km
Radial	0.1 km
Target Altitude	1 km (exag.)
S/C Clock	0.5 s

* Attitude determination error, instrument mounting error, stability over exposure time (mapping only), control error (pointing only)

Data Processing Requirements

Need to meet 3 firm requirements: data size, timeliness (processing time), data quality (Operational & Scientific)

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no



Data Processing

Algorithm	Application
JPEG2000	Spatial Compression (lossless)
PCA	Spectral compression
EMSC	Signature Detection
Anomaly Detection	Spectral compression & signature detection
2 nd Order Derivatives	Spectral shape reconstruction
Standard atmospheric correction	Spectral compression & signature detection
LCMV beamforming	Signature detection
Spectral–Spatial Classification	Spectral-spatial compression & detection
Deconvolution	Pixel fusion
Super-resolution	Increase in spatial resolution
Bold: B	asolino

Bold: Baseline Ask for references

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no

DATA SIZE 1 IMAGE PACKET

21		
Option	Format	Size
1	Raw A (1 frame)	1600×580 pixels \times 16 bits/pixel \times 1 frame = 14.848 Mbit
2	Raw A (JPEG2000)	1600×580 pixels \times 3 bits/pixel \times 1 frame = 2.784 Mbit
3	Raw B (1653 frames)	$1653 \times 1600 \times 580$ pixels $\times 12$ bits/pixel = 24.5437 Gbit
4	Raw B (JPEG 2000)	$1653 \times 1600 \times 580$ pixels \times 3 bits/pixel = 4.603 Gbit
5	Raw C (Raw B deconvoluted)	500×580 pixels $\times 100$ channels $\times 16$ bits/(pixel \times channel) = 464 Mbit
6	Raw C (with JPEG2000)	500×580 pixels \times 100 channels \times 3 bits/(pixel \times channel) = 87 Mbit
7	Compressed (spectrally)	500×580 pixels $\times 20$ components $\times 24$ bits/pixel = 139.2 Mbit
8	Compressed (spectrally + JPEG2000)	500×580 pixels $\times 20$ components $\times 3$ bits/pixel = 17.4 Mbit
9	TM/TC & geometric data (NavData)	7 Mbit

Downlink to Ground Station at ϵ =10 deg

- 0 - 1		01	1111111 1 100 11	01 1110	X1. 110.10
Optio	n Format	Size	UHF-band 100 kbps	S-band 1 Mbps	X-band 10 Mbps
1	Raw A (1 frame)	21.848 Mbit	3.6413 min	21.848 s	2.1848 s
2	Raw A (JPEG2000)	9.784 Mbit	1.631 min	9.784 s	0.9784 s
3	Raw B (1653 frames) + NavData	24.5507 Gbit	68.1964 hrs	6.8196 hrs	40.9178 min
4	Raw B (JPEG2000) + NavData	4.607 Gbit	12.7972 hrs	1.27972 hrs	7.6783 min
5	Raw C (Raw B deconvoluted) + NavData	471 Mbit	1.3083 hrs	7.85 min	47.1 s
6	Raw C (with JPEG2000) + NavData	94 Mbit	15.667 min	1.5667 min	9.4 s
7	Compressed (spectrally) + NavData	146.2 Mbit	24.3666 min	2.4367 min	14.62 s
8	Compressed (spectrally + JPEG2000) + NavData	24.4 Mbit	4.0667 min	24.4 s	2.44 s

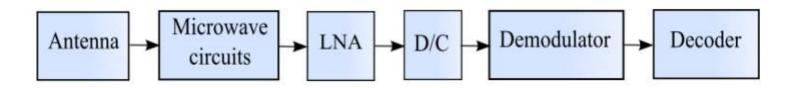
Needs to be stored onboard and consecutively downlinked

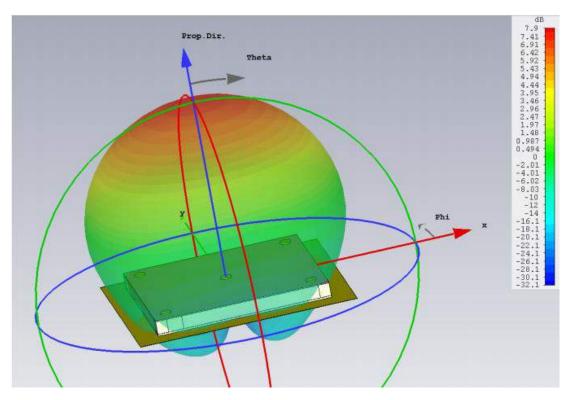
NTNU		Detectable Algal Bloom $$\mathbf{\nabla}$$	Actual Detection Time Segment	Proces detect $t_0 + 3$	ion	E	Mission Data to End User 	
mine	Res Tim	sponse e	Processed Valid Detection			fir Prep. Data	Select/Queue Distribution	Mission Data to End User
	Time Segme	ent 1 Requirements						
	Time to	2 Orbits prior to Remote c	letection		3 hrs			
	Actual Detection	Pushbroom scanning and view angle = 20 deg	HSI operations given SN	R>50:1 at	54 s			
	Time Segme	ent 2 Requirements						
		Initial Validation (processi	ng time given detection)	2 min			
		Downlink (S-band)			2 min			
		Obit and Attitude Determi	nation		5 min			
		Ground Look Point Detern	nination		2 min			
	Time from Detection	Completion of Ground Pro	ocessing		3 min			
	to Data	Confirmation of Algal Bloc	om (Chl-a or –b)		3 min			
	Delivery	Data Preparation (Sorting,	formatting, internal rou	iting)	2 min			
		Queuing for User Distribut Processing)	tion (Sorting, distributio	n, Queue	3 min			
		Distribution to End User (I	Network Mgmt., Channe	el Rates)	2 min			
53		Margin			5 min			
	Total				30 min			

Communications Architecture

Ground Stations

- Baseline:
 - KSAT Svalbard (only S-band uplink and downlink)
 - NTNU (UHF/VHF uplink or S-band downlink)
- Additional:
 - University of Porto
 - Gran Canaria
 - Mountain View High School
 - GomSpace/Tyvak/UTIAS + others (upon selection)
- Proposal for Concept 2: must have S-band uplink capability or uplink 1 orbit prior to acquisition
 - UHF antenna at KHO, Longyearbyen if not?
- Concept 1 is fine
- Pointing accuracy relaxed (1 deg) i.e. not all ADCS turned on peak performance




KSAT & ISIS S-band Downlink

	Units	KSAT ground station	ISIS ground station
Size ¹	[m]	3.,7	2 ²
Gain	[dB]	64 dB ³	31.35 dB ⁴
Frequency band	[MHz]	2200-2300	2200 - 2500
Polarisation		RHCP/LHCP	Circular
G/T	[dB/K]	12.6	~4.95
Beamwidth	[°]	5	5.1
EIRP	[dBW]	44.8	5 - 3
Height	[m]	5.	3.3
Width	[m]		5.97
Weight	[Kg]	-	165

Downlink Architecture

S-band patch antenna. Credit: GomSpace

Link Budget

A: S-band Downlink (GOMspace + KSAT);

B: S-band Uplink (GOMspace + KSAT); and

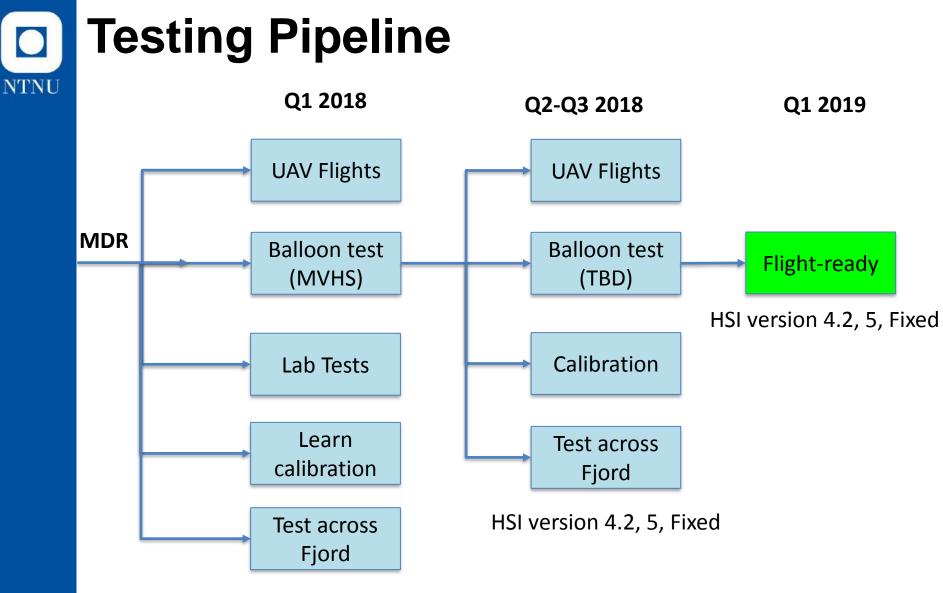
C: S-band Downlink (GOMspace + ISIS)

	A	B	C
TX			
Power input (W)	0.48	-	26.8
Antenna gain (dB)	7.90		7.90
Losses (dB)	1.00	÷	1.00
EIRP (dBm)	33.7	74.8	33.7
Propagation Losses			
Free space loss (dB)	163.88	163.48	163.88
Atmospheric loss (dB)	4.73	4.73	4.73
Other losses (dB)	4.00	4.00	4.00
Total propagation losses (dB)	172.6	172.2	172.6
RX			
Antenna gain (dB)	63.99	7.70	31.35
Losses (dB)	1.00	1.00	1.00
LNA gain (dB)	0.00	39.00	0.00
Noise figure (dB)	7.06	24.19	8.06
Bandwidth (MHz)	2	2	2
Link Quality			
Carrier power (dBm)	-75.91	-51.70	-108.56
Noise power (dBm)	-128.53	-111.40	-127.53
Signal to Noise ratio (dB)	52.62	59.69	18.97
Margin (dB)	45.13	52.20	11.48

Assuming h=500 km; elevation angle = 10 deg

Payload

Hyperspectral Imager Versions


Part	Dimensions	Description	
HSI ver. 4-1	5.		Suggestion: add
$f_0/\#$	$f_{0}/4$	f-number front lens	another RGB
$A_0(L_0)$	4 mm	Aperture front lens	
L_0	14 mm	Front lens diameter	camera to validate
f_0	16 mm	Focal length front lens	HSI images
w	0.025 mm	Entrance slit width	1011110800
z	3 mm	Entrance slit height	
S_1	10 mm	Field lens aperture	
$f_1/\#$	$f_1/3.33$	f-number collimator lens	
$A_1(L_1)$	9 mm	Aperture collimator lens	
f_1	30 mm	Focal length collimator	
f_1 G	$25\times25~\mathrm{mm^2}$	Grating area	
$f_2/\#$	$f_2/2.5$	f-number detector lens	
$A_{2}(L_{2})$	10 mm	Aperture detector lens	
f_2	25 mm	Focal length detector lens	
HSI ver. 4-2			
$A_0(L_0)$	12.5 mm	Aperture front lens	Better spatial
f_0	50 mm	Focal length front lens	resolution
HSI ver. 5			
$f_0/\#$	$f_0/2.8$	f-number front lens	Mora light in
$A_0(L_0)$	3.714 mm	Aperture front lens	More light in,
f_0	10.4 mm	Focal length front lens	→ worse spatial
w	0.075 mm	Aperture front lens	•
		-	resolution

Manufacturing Pipeline

Version 1	Version 2	Version 3
Early 2018	Summer 2018	Early 2019
 Get the entire processing chain up and running with image capture and on-board processing. Perform drone and ballon tests and decide on final optics. 	 Create a flight ready design that is the correct size, has the correct connections to the bus and has parts that can last in low-earth orbit. 	 Flight approved hardware. Correct everything that we found in testing the Version 2 design.
 Use off-the-shelf FGPA processing board combined with a custom PCB carrier plate for power supply, image sensor, SD- card for storage and USB debug/ streaming capabilities. Optics can be swapped out and multiple different versions can be tested on the same prototype. 	 Custom made PCB with the FPGA and other components. Vertical image sensor for horizontal optics to reduce space. Completely adhere to the CubeSat ISO-17770 standard. Perform all the required tests like "Shake and bake". Develop with feedback from bus- provider. 	 Correct all the bugs found in the testing of Version 2. Perform all tests necessary for official flight approval. Fully characterize flight ready hardware.
 Optics have been tested and validated with off-the-shelf camera. 	 Known bus provider Optics have been decided Known mechanical limitations and power budget. 	 Tests have been performed on Version 2. All requirements are known.
US\$ 1500	US\$ 3500	US\$ 3 500+
	 Early 2018 Get the entire processing chain up and running with image capture and on-board processing. Perform drone and ballon tests and decide on final optics. Use off-the-shelf FGPA processing board combined with a custom PCB carrier plate for power supply, image sensor, SD-card for storage and USB debug/ streaming capabilities. Optics can be swapped out and multiple different versions can be tested on the same prototype. Optics have been tested and validated with off-the-shelf camera. 	Early 2018Summer 2018• Get the entire processing chain up and running with image capture and on-board processing.• Create a flight ready design that is the correct size, has the correct connections to the bus and has parts that can last in low-earth orbit.• Use off-the-shelf FGPA processing board combined with a custom PCB carrier plate for power supply, image sensor, SD- card for storage and USB debug/ streaming capabilities.• Custom made PCB with the FPGA and other components. • Vertical image sensor for horizontal optics to reduce space.• Optics can be swapped out and multiple different versions can be tested on the same prototype.• Completely adhere to the CubeSat ISO-17770 standard. • Perform all the required tests like "Shake and bake". • Develop with feedback from bus- provider.• Optics have been tested and validated with off-the-shelf camera.• Known bus provider • Optics have been tested and validated with off-the-shelf camera.

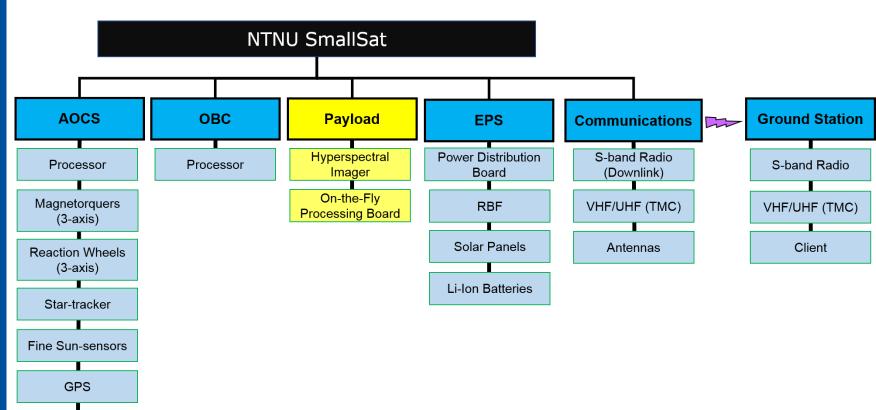
Key point: All the different versions are based on more or less the same hardware architecture. Meaning most of the development time will be spent on PCB/production design and testing/verification. Credit: Julian Veisdal (Moon Labs)

HSI version 4.1, 4.2, 5, Fixed

Calibration

- 1. Monochromatic light source (550 nm)
- 2. Sky (blue)
- 3. Black body type source of light emitting radiance.
- 4. Diffuse source of light even illumination (not focused)
- 5. Closing lid
- 6. Source of light (clean room) and subtract the noise to see signal response
- The extra noise coming from microbubbles (Rayleigh scattering) needs to be characterized.
 - Most likely random
- Ultimately ground truth vs. HSI images from space
 - HICO data
 - STK
 - Our HIS
- Solar and Lunar Calibration (radiometric stability)

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no

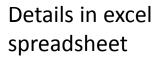


Systems Design

Product Tree

Magnetometers

Gyroscope

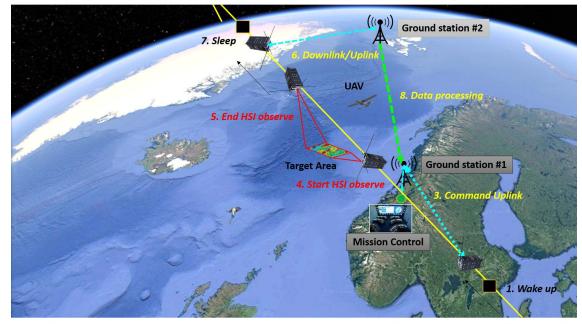

Details in excel spreadsheet

MASS BUDGET IN GRAMS

Subsystem	Mass 3U, g (+20 %)	Mass 6U, g (+20 %)
HSI	480	480
Structure	291.36	1272
Stack rods	73.8	147.6
Mechanisms	36	72
Wires & cables	120	240
Reaction Wheels	1128	1128
Star-tracker	336	672
Fine Sun Sensor	10.8	21.6
Magnetorquers	129.6	187.2
ADCS	124.8	134.4
Antenna S-band	132	132
Antenna UHF/VHF	36	108
Radio S-band	78.36	78.36
Radio UHF/VHF	29.4	29.4
GPS	28.8	28.8
OBC	112.8	112.8
EPS	120	120
Batteries	324	600
Solar Panels	448.8	909.6
SDR	N/A	250.8
Total	3910.92	6724.56

Ref: Survey of COTS from Gomspace, Hyperion Technologies, Clydespacehttps://gomspace.com/https://www.clyde.space/http://hyperiontechnologies.nlhttp://hyperiontechnologies.nl

Power Budget


POWER CONSUMPTION OF SUBSYSTEMS

Subsystem	Avg., W (+30 %)	Peak, W (+30 %)
HSI	3.9	10.4
Mechanisms	0	0.017
TT&C	0.065	0.13
Reaction Wheels	0.663	3.315
Star-tracker	0.91	1.3
Fine Sun Sensor	0.052	0.052
Magnetorquers	0.78	0.78
ADCS	0.306	1.255
Antenna S-band	0.78	13.91
Antenna UHF/VHF	0.78	13.91
Radio S-band	17.16	18.72
Radio UHF/VHF	5.304	5.304
GPS	1.5015	1.56
OBC	0.221	1.17
EPS	0.0975	0.195
Batteries	0.0052	0.0052

Ref: Survey of COTS from Gomspace, Hyperion Technologies, Clydespace <u>https://gomspace.com/</u> <u>https://www.clyde.space/</u> <u>http://hyperiontechnologies.nl</u>

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no

Mission Phases (Concept 1)

Segment	Description	Start (UTC)	Duration (s)
Phase 1	Harvest	09:37:10	5
Phase 2	Comms. Trondheim	09:37:15	125
Phase 3	Prepare slewing	09:39:20	115
Phase 4	HSI operations	09:41:15	54
Phase 5	Data processing	09:42:09	74
Phase 6	Point to Svalbard	09:43:25	20
Phase 7	Comms. Svalbard	09:43:45	270
Phase 8	Harvest	09:48:15	605
Phase 9	Sleep	09:59:20	2207
Phase 10	Harvest	10:36:07	2255
N+1	Next target	11:13:42	373

NTNU

Details in excel spreadsheet

Assuming battery discharge at 70 % capacity;

ENERGY BUDGET FOR 3U

- 1 image per orbit

Mission segment	Duty Cycle (s)	Power in (W)	Power in (Wh)	Power Consumed (Wh)	Start Power (Wh)	End Power (Wh)
Phase 1	5	7.36	0.0102	0.010	26.95	26.95
Phase 2	125	3.68	0.1278	0.953	26.95	26.13
Phase 3	115	2.208	0.0705	0.366	26.13	25.83
Phase 4	54	2.208	0.0331	0.301	25.83	25.56
Phase 5	74	3.68	0.0756	0.240	25.56	25.40
Phase 6	20	3.68	0.0204	0.158	25.40	25.26
Phase 7	270	2.208	0.1656	2.950	25.26	22.48
Phase 8	605	7.36	1.2369	1.078	22.48	22.63
Phase 9	2207	0.00	0.00	3.578	22.63	19.06
Phase 10	2255	7.36	4.6102	4.018	19.06	19.65
Phase N+1 (target)	373		0.3173	1.869	19.65	18.10
Phase N+1 (rest)	5357		6.0332	11.781	18.10	12.35

Battery capacity = 2600 mAh, Max solar power = 7.36 W, Min solar power = 2.208 W

ENERGY BUDGET FOR 6U

Mission segment	Duty Cycle (s)	Power in (W)	Power in (Wh)	Power Consumed (Wh)	Start Power (Wh)	End Power (Wh)
Phase 1	5	14.72	0.02	0.01	53.90	53.90
Phase 2	125	7.36	0.26	1.05	53.90	53.10
Phase 3	115	4.42	0.14	0.46	53.10	52.78
Phase 4	54	4.42	0.07	0.53	52.78	52.32
Phase 5	74	7.36	0.15	0.28	52.32	52.19
Phase 6	20	7.36	0.04	0.17	52.19	52.06
Phase 7	270	4.42	0.33	3.14	52.06	49.25
Phase 8	605	14.72	2.47	1.51	49.25	50.21
Phase 9	2207	0.00	0.00	5.03	50.21	45.19
Phase 10	2255	14.72	9.22	5.62	45.19	48.79
Phase N+1 (target)	373		0.63	2.34	48.79	47.09
Phase N+1 (rest)	5357		12.07	17.81	47.09	41.35

Battery capacity = 5200 mAh, Max solar power = 14.72 W, Min solar power = 4.42 W

Cost Estimates

Details in excel spreadsheet

FY17\$				
Subsystem	Cost Low MNOK	Cost High MNOK		
Hardware (3U)	1.887	2.641		
Software & Support	0.694	0.971		
Launch & Prep	2.244	2.692		
Operations	1.000	1.400		
Training (1 week)	0.428	0.599		
Total	6.253	8.303		
Hardware (6U)	3.709	5.192		
Software & Support	0.694	0.971		
Launch	4.263	5.115		
Operations	1.000	1.400		
Training (1 week)	0.428	0.599		
Total	10.094	13.277		

Ref: <u>http://spaceflight.com/schedule-pricing/</u>; <u>https://www.cubesatshop.com/</u>; NASA ARC; GomSpace

Element	3U CubeSat	6U CubeSat
Energy Budget	E	
Image flexibility (N+2)*	E	
Mapping Precision	8	
Launch costs		E
Operations costs	E	\bigcirc
Hardware costs		E
Software costs		E
SDR Mission*	(3)	
Lifetime	8	

* Not possible for 3U CubeSat

Conclusions

Orbits

- Orbit Concept 1: More available for launch, easier for constellation design
- Orbit Concept 2: Higher mission utility and meets scientific & political objectives
- Need Spring/Summer observations
- Low chances of detection off Norway motivates a constellation of SmallSats to meet scientific objectives

Payload

- Need to test and validate performance in next year flight ready by Q1 2019
- Manufacturing pipeline within schedule for launch in 2019/20
- TBD on HSI design

Data Processing

- Compressed data and science data may be downlinked (Level 4 & Level 2 respectively)
- Raw data must be stored and consecutively downlinked (Level 1a)
- Spatial compression after each frame taken (per exposure)?
- If deconvolution is applied after each frame, then also raw images may be downlinked immediately
 - Need to determine if deconvolution is reversible

Communications Architecture

- NTNU (UHF & S-band)
- KSAT Svalbard (S-band) only
- Renders Orbit Concept 2 difficult for immediate response architecture
- S-band uplink also?

Systems Design

- 3U: Overall cheaper, but loss of mapping precision and lack of power for flexibility
- 6U: More costly, higher power, higher precision and accommodates **SDR** as secondary payload
- Ready to commence systems engineering to meet mission and systems requirements
- Next milestone: PDR

Verdict: FEASIBLE

Will be useful/capable of supporting AUV campaigns for monitoring & mapping of coastal areas

Challenges: Payload, Launcher and S/C bus

S/C size: 3U good enough, 6U better

IOCCG (based on the experiences form CZCS): «The uncertainty in the (normalized) water-leaving radiance retrieved from the sensor in oligotrophic waters at 443 nm should not exceed 5%, and uncertainty in Chlorophyll should be ±30%.»

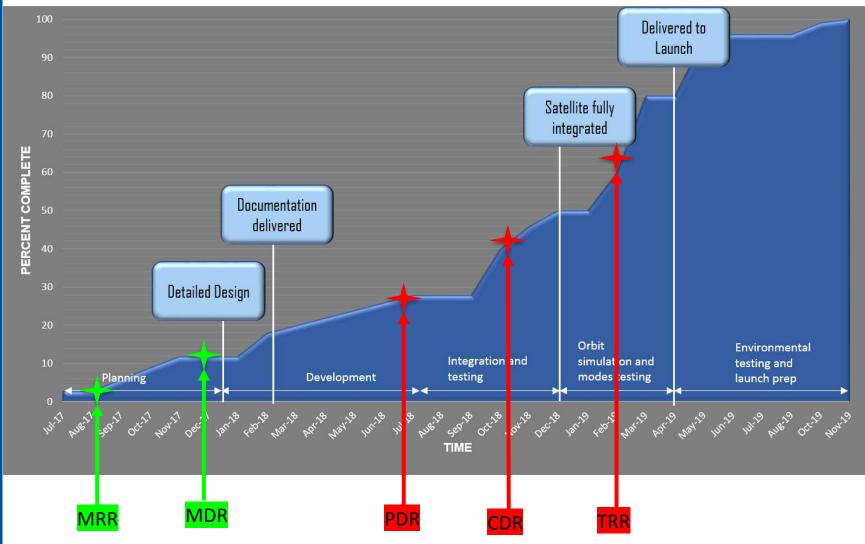
This should be the goal for any ocean color sensor. It is not achievable without applying radiometric and system vicarious calibration.

Summary of S/C Requirements

Element	Requirement
Target Area	30x30 km^2
Detection Subjects	HABs, phytoplankton, oil, plumes
Orbit	500 km SSO (RAAN ca. 83.3 or 228.3 deg)
Launch	Preferably before April 2019
Thermal	Withstand 30 degrees C/s
Radiation	Optical coating to withstand radiation effects of 10kRad
Spectral Range	400-900 nm (5 nm resolution)
Spatial Resolution	<300 m
GSD	<50 m
Image Resolution	<100 m
Data Levels (Nominal)	Level 4 and Level 2
Data Levels (Upon Request)	Level 0, 1a, 1b, 3
Mapping Knowledge	<100 m
Pointing Accuracy	<0.01 deg (1 deg for downlink)
Orbit Knowledge	<10 m
Energy	>14 Wh for one pass
Radio-link	S-band (down), UHF (up), S-band (up?)
Ground Stations	NTNU (UHF+S-band), KSAT (S-band)
Cost	<10 MNOK (13 MNOK for 6U)

Hyperspectral Imager requirements

DATA PROCESSING REQUIREMENTS


Parameter	Value
Optical along-track resolution δx	250-266.044 m
Optical cross-track resolution Δy	51.9-55.2 m
Numer of pixels in Swath Width N_p	580
Exposure time Δt	0.0328 s
Spatial resolution Δx	300-305.085 m
GSD	39 m
Image resolution (after deconvolution)	500×580 pixels
Principal Components	≤ 20
HSI observation time $[t_{\text{HSI},0}, t_{\text{HSI},f}]$	[0, 54.34] s
Processing time $[t_{\text{process},0}, t_{\text{process},f}]$	[54.34, 115] s
S-band downlink time $[t_{\text{comms},0}, t_{\text{comms},f}]$	[115, 175] s
Downlink time for raw data	unlimited
Nominal data format	Level 2
Operational data format	Level 4
Optional data formats	Levels 1a, 1b, 3
Format of data to Radio	CAN/RS422

Summary of suggestions

- 3U or 6U?
 - Cost vs. (precision + flexibility)
- UHF comms. with UAV or AUV (mother asset) or S-band with mission operations
- S-band uplink?
- Optics
 - Increase aperture
 - Increase sensitivity
 - Increase SNR
 - Increase spatial res. Vs. spectral res
 - Start testing asap
 - Add another RGB camera to validate HSI images
- Onboard processing to be validated
 - Deconvolution after each frame taken (exposure)
 - Spatial Compression after each frame taken (exposure)
 - Reduction in data size more real-time processing and power consumed
- SDR capability? Must go up to 6U

Verification, Validation and Testing

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no