

Evaluating the performance and privacy of a token-based collaborative recommender

INRA 2017, August 23rd, 2017, Leipzig Ville Ollikainen & Valtteri Niemi

Background

- § VTT has developed a collaborative recommendation method which is based on exchanging random numbers, "tokens".
 - § Each party can own their own data (tokens, that is) and control the use of it.
- § This is in harmony with General Data Protection Regulation by EU
- § Furthermore, these tokens do not carry any history; we claim that exchanging these tokens is safe from privacy point of view.

This is how it works... (a use case)

Link to video: https://www.youtube.com/watch?v=jxCVR2CMKHA

That was about the recommendation method itself

ISBN (International Standard Book Number)

- § First digit(s) after the prefix represent a registration group ("agency"):
 - § Language code for English (0 and 1), French (2), German (3)
 - § National agency otherwise (Finland, Norway, Netherlands, Seychelles...)
- § Note: ISBN refers to manifestation of write art, not writer art itself
 - § i.e. from ISBN you can NOT say who was the writer or single writer art
 - § e.g. there are lots of ISBN's for "Adventures of Huckleberry Finn", one for each publication over decades.

Book-Crossing ("BX") database; some issues

- § Book-crossing is an open community for exchanging second hand books
- § In general, books are left to a random location with an instruction sticker.
- § Someone finds them and registers the action.
- => Users pick the books by chance, not by selecting them.
- § When you have read the book you found, you MAY rate it 1..10
- § If you don't bother to rate it, the "rating" is becomes ambiguous 0
 - § A common practice is to treat '0' ratings as missing data; that's wrong!
 - § '0' ratings count for 62% of all "ratings"
 - § '0' does not tell, if you bothered to read it at all (truly '0'), or just did not rate
 - § The remaining ratings are highly biased with median value of 8

=> Understand BX process before using BX dataset

Step 1: What we found usable in BX - ISBN agencies

- § Books are physical objects; tendency to circulate within a region.
- § We created a permutation matrix containing agencies (no single-visit users):

Agency		0	2	3	4	5	7	80
		English la	French lar	German la	Japan	former U.	China, Pe	former C
0	English language	41395	974	1569	141	64	34	21
2	French language	974	1501	250	23	25	11	(
3	German language	1569	250	3721	32	21	6	-
4	Japan	141	23	32	145	6	2	1
5	former U.S.S.R	64	25	21	6	69	4	1
7	China, People's Rep	34	11	6	2	4	44	1
80	former Czechoslova	21	6	7	2	1	1	30

- § Over all users: if a user had registered even a single e.g. English and even a single French book, the corresponding cell in the matrix was incremented.
- § Each column was sorted in decrementing order
- => ground truth for any agency; other agencies in order of relevancy.

Step 2: Prepare transaction data sets A and B Step 3: Create recommendations for A and B

- § Create transaction log: UserID ItemID pairs
 - § ItemID was the agency
 - § Shuffle it into random order
 - § Divide into two halves: A and B
- § First,
 - § Train the recommender with transactions in A
 - § Create Agency-Agency recommendations for each agency
 - § Create Ground truth for B (previous slide)
 - § Compare recommendations with the ground truth (how: next slide).
- § Second,
 - § Swap A and B and do the same

Step 4: Compare recommendations with ground truth

- § Kendall Tau is a metric to compare the order of items in two lists
 - § Are each pair of two items in the same order in both lists?
 - § Does not matter how far they are, only their mutual order counts

$$au = rac{ ext{(number of concordant pairs)} - ext{(number of discordant pairs)}}{n(n-1)/2}$$

- § Tau-b has an adjustment for lists that contain ties (like ours)
- => calculate statistical significance
- § One list is the **recommendation list** for an agency (set A or B)
- § Ground truth list is based on the other set (set B or A, respectively)
- § 63 agencies had users in both sets => 63 Tau-b's

Results 1/2

§ 78 out of 126 recommendation requests were successful § Found similarities in token collections, if an agency had >33 users

	A	В	Total	%	max non-pass N (total)
Recomm. Requested	63	63	126		
Recomm. Analyzed	37	41	78	100	33
#(z > 0)	29	31	60	77	41
#(p<0.05)	18	20	38	49	137

§ All recommendations of agencies with > 41 users had positive correlation (Tau-b) with the ground truth

28/08/2017 10

Results 2/2

§ All recommendations of agencies with > 137 users passed p=0.05 significance test

Summary of privacy considerations

- § Related to details presented in the paper...
- § Recommendations are based on aggregating token collections.
- § Tokens float around the system and are not associated with anything in the real world.
- § Tokens are random values without any history data.
- § If a token collection becomes disclosed to an adversary, the adversary is not able to deduce, where the token came from
 - § In the case of similarities with other users and items there is plausible deniability that the token has propagated from somewhere else.

28/08/2017 12

