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Motivation  
News in a rapidly changing world 

 

 Recommender Systems have been developed as powerful tools 
 Popular application domains: Entertainment (movies, books, music), and online shops 
 Most recommender system use Collaborative Filtering  
 Trained on large static datasets (describing user-item interactions) 
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Dynamic collections instead of static sets of items & users
Cold-start ( user) & new item problem & sparsity



Motivation  
News in a rapidly changing world 

►News  
 Continuous changes in set of news items, frequent updates in news items 
 News must provide new/unknown information 
 Users are interested in a wide spectrum of topics, e.g. unexpected breaking news 
 The relevance of news depends on the context 
 Most news are published online – users do not have to register explicitly 

 

►Challenge 
 Traditional CF-based approaches do not work well – due to the cold-start problem (item/user) 
 The changes in the news sets require continuous model updates 
 Context and user habits must be considered 
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Objectives  
Incorporating Context and Trends In News Recommender Systems 

 

►Objectives 
 Analyze and optimize models for recommending news 
 Develop models for learning recommender models likely to fit best the near future 
 Models for incorporating contexts and trends  
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Objectives of the talk  what will audience learn?



Outline 

► Motivation 
► The analyzed News Recommendation Scenario 
► Approach 
► Evaluation 
► Conclusion 
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NewsREEL - Overview  
Problem Description 

►The NewsREEL Scenario 
 Recommending News 
 Online News Portals 
 Live user feedback 
 Evaluation with respect to CTR 

(Click-Through-Rate) 
 Ensure Technical constraints 
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NewsREEL – Challenge Architecture  
Problem Description 

►The NewsREEL challenge architecture 
 Online – Live feedback |  Offline – Replay log data 
 http-based  

communication, 
JSON-formatted data 

 
►Message types: 
 Item updates 
 Impressions 
 Recommendation requests 
 Clicks 
 Errors 
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NewsREEL – Challenge Architecture  
Problem Description 

The NewsREEL challenge key figures 
►Online 
 3-5 new portals 
 40 messages per second (typically) 
 up to 200 messages per second possible 
 
 

►Offline 
 Data stream recorded over 2 month 
 100 GB JSON data 
 Item creates, item updates, impressions, 

recommendation requests, clicks,  errors 
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NewsREEL - Overview  
Problem Description 

►The NewsREEL Scenario 
 Online / offline (academic and industry-style evaluation) 
 Live evaluation / Large dataset – real world data 
 Stream-based recommendation (time and context as success-critical aspects) 
 Dynamic sets of users and items 
 Multi-dimensional benchmarking 

 
►More Details available at: 
 http://www.clef-newsreel.org/ 

9 



Outline 

► Motivation 
► The analyzed News Recommendation Scenario 
► Data Analysis 
► Approach and Evaluation 
► Conclusion 
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NewsREEL – Data Analysis  
Data - Analysis 

►Data Analysis with respect to context and temporal dynamics (trends) 
 Number of interactions in the system 
 Number of accepted recommendations 
 Device usage in the system 
 Item popularity 
 Item lifecycle 
 User reading preferences 
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NewsREEL – Data Analysis 1  
Data - Analysis 

►We analyze the number of impressions 
over one week 
 

►Observations: 
 Huge changes in the number of 

impressions in the week 
 Day/night pattern 
 Working day / week end pattern 
 Highly domain dependent 
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NewsREEL – Data Analysis 2  
Data - Analysis 

►We analyze the fraction of accepted 
recommendations over the day 
 

►Observations: 
 The CTR highly depends on the  

time and the domain 
 At night the CTR is higher than 

during the day (for most portals)  
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NewsREEL – Data Analysis 3  
Data - Analysis 

►How users consume news? 
What devices are mostly used? 
 

►Observations: 
 The proportion between the used 

devices changes significantly over the 
day. 

 The device used typically influences 
the user preferences and the  
presentation of recommendations. 
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NewsREEL – Data Analysis 4  
Data - Analysis 

►What recommender algorithm performs best? 
What type of recommendations do users expect. 
 

►Observations: 
 The recommender 

performance strongly 
depends on the  
time of day 

 Example: At night 
users tend to have a 
higher interests in 
longer news sequences 
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NewsREEL – Data Analysis 5  
Data - Analysis 

►How does the interest in specific items change over time? 
How does the typical item lifecycle look like? 
 

►Observations: 
 Items show a specific lifecycle 
 After the release the interest in 

the news items grows fast, 
 Having reached the maximum, the 

number of impressions decays  
exponentially 
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NewsREEL – Data Analysis 6  
Data - Analysis 

►How  does the set of recommendable  
items changes over time? 
 

►Observations: 
 We analyze the freshness of the 

recommender model 
 We analyze the loss of predictive 

performance 
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NewsREEL – Data Analysis – Summary – Research Question  
Data - Analysis 

►Conclusion 
 Context has an high influence of the user behavior / user preferences 
 Dynamics in the set of items  
 Static recommender models do not cover the requirements 

 
►Research Questions: 
 How to optimize models for incorporating the context 
 How recommender models can considering 

the item lifecycle / trends in the item set 
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Outline 

► Motivation 
► The analyzed News Recommendation Scenario 
► Data Analysis 
► Approach and Evaluation 
► Conclusion 
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Models for Predicting the Context and Incorporating Trends  
Approach 

 
►Objective: 
 Study approaches for  

− Incorporating time-dependent preferences 
− The item life cycle 
− Adapting to current trends 
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Method 1: Idea  
Approach 

Method 1: Handle Data streams - Ensuring the model freshness 
► Idea: 
 Aggregate stream data in batches 
 Use traditional recommender frameworks optimized for sets 
 Scheduler-based model updates 
 

►Challenge 
 Components for parallelizing batch-building 

model-building, and computing recommendations  
 Definition of optimal batch sizes 
 Model building may slow down the recommender 
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Method 1: Evaluation – Discussion  
Approach 

Method 1: Ensuring the model freshness 
►Evaluation - Discussion: 
 Works well in the typical news recommendation scenario 
 Use existing, mature recommender components 
 Delayed incorporation of trends 
 Cold-start problem cause by new batches 
 Load peaks when caused by model rebuilding 
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Method 2: Idea  
Approach 

Method 2: Handle Data streams - Ensuring the continuous model freshness 
► Idea: 
 Continuous updates in order to ensure fast adaptation to new trends 
 Fixed model size (remove data when new data is added) 

 
 

►Challenge 
 Adapt algorithms so that continuous updates are supported 
 Find optimal model size considering the context 
 Handle the concurrency of model updates and  

model deployment 

23 



Method 2: Evaluation – Discussion  
Approach 

Method 2: Ensuring the continuous model freshness 
►Evaluation - Discussion 
 Overcomes the most problems of batch-based model updates 
 Constant load in model adaptation 
 Limited complexity of the supported recommender models 
 Adapts faster than batch updates, but does not anticipate trends 

and changes in the context 
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Method 3: Idea  
Approach 

Method 3: Recommender ensembles for specific contexts 
► Idea:  
 Define an ensemble 
 Learn an algorithm for each relevant context 
 Learn what algorithm should be selected considering  

context and trends 
 

►Challenge:  
 What are relevant contexts? 
 How to ensure that the context is relevant over time 
 Handle unexpected/unusual situations 
 How to ensure that enough training data exists 

(fine-grained contexts vs. significant amount of training data) 
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Method 3: Evaluation – Discussion  
Approach 

►Method 3: Recommender Ensembles for specific contexts 
 

►Evaluation: 
 Works well for “normal” days 
 Cover well daily and weekly usage patterns 
 Anticipate periodical usage pattern 

 
►Discussion: 
 Ensemble lead to a significantly higher complexity,  

several different algorithms must be trained 
 Rare events/contexts are often not well considered 

(due to limited training data) 
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Method 4  
Approach 

Method 4: Consider the item lifecycle 
► Idea: 
 Traditionally, recommender are trained on past data 
 Knowing the item characteristic lifecycle for all items, 

we can predict the item characteristic in the near future 
 We can build a model fitting the near future best 

 
►Challenges 
 Train a model allowing us to predict the  

lifecycle of  all items 
 Fit the model parameters 
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Method 4  
Approach 

Method 4: Consider the item lifecycle  
►Evaluation – Discussion 
 Anticipate observed / periodically trends 
 Avoid the problem of late adaptation 
 The model cannot predict breaking events 

(untypical events) 
 Models computed based on predicted data 

are often noisy 
 An extended evaluation is needed 
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Discussion  
Approach and Evaluation 

►Discussion 
 Different approaches tailored for solving specific challenges 
 Each approach focus on one specific aspect – each approach has specific strength 

and weaknesses 
 The combination is promising but reduces the number of training data for each 

context/situation 
 Extended evaluation is needed, is planned for the next month 
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Outline 

► Motivation 
► The analyzed News Recommendation Scenario 
► Data Analysis 
► Approach and Evaluation 
► Conclusion 
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►Results 
 Recommender system require special methods for considering contexts and 

anticipating trends 
 We have presented four methods (each focusing on one aspect) 
 Improved performance compared with traditional static recommender models 
 Combination of different methods is promising 
 “news” are difficult to predict, user preferences are changing 

=> news recommendation is challenging 
 
► Future Work 
 Extended Evaluations 
 More combinations 
 Consider additional types of items, e.g., blogs 

Conclusion 
Incorporating Context and Trends In News Recommender Systems 
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►Do you have own algorithms? Evaluate algorithms online live – it’s free! 
 
 
 

Try our own ideas 
NewsREEL 

http://www.clef-newsreel.org/ 



DAI-Labor,  Sekr. TEL 14 
Ernst-Reuter-Platz 7 
D-10587 Berlin, Germany 

Andreas.Lommatzsch@dai-labor.de 
Benjamin.Kille@dai-labor.de 
 

Get In Touch 

http://www.clef-newsreel.org 
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