5
1.4. Cellulose and
its derivatives
55
1.4.1. General.
55
1.4.2. Chemical
structure
55
1.4.3. Biosynthesis
56
1.4.4. Solubility and
crystallinity
56
1.4.5. Cellulose
I.
57
1.4.6. Cellulose
II
57
1.4.7. Cellulose
solvents
58
1.4.8. Alkaline
cellulose
-‐ Mercerization
59
1.4.9. Cellulose derivatives
59
1.5. Starches
61
1.5.1. General
61
1.5.2. Amyloses and amylopectins: Overview
62
1.5.3. Amylose.
62
1.5.4. Synthetic amylose: Perfect model
substances?
63
1.5.5. Amylopectin
64
1.5.6. Cyclic
α
-‐1,4 glucans
64
1.5.7. Shape and
extension of amyloses and amylopectins
in
solution.
65
1.6. Pullulan: Fundamentals
(keywords)
66
1.7. Xanthan: Fundamentals
(keywords)
67
1.8. Carrageenans and agarose
68
1.9. Hyaluronan
(hyaluronic acid): Fundamentals
(keywords)
70
1.10. Heparin
fundamentals
(keywords)
72
1.11. Dextrans
73
1.12. Pectin
fundamentals
76
2.1. MOLECULAR WEIGHT DISTRIBUTIONS AND AVERAGES
81
2.1.1.
Introduction
81
2.1.2. DP: Degree of polymerization
81
2.1.3. Molecular weight
(molar mass)
81
2.1.4. Polydispersity
82
2.1.5. Molecular weight distributions
83
2.1.6. Molecular weight averages: M
n
, M
w
and M
z
85
2.1.7. DP averages
87
2.1.8. Continuous distributions
87
2.1.9. The Kuhn distribution
88
2.1.10 Practical examples
88
2.2. THE SHAPE OF BIOPOLYMERS
IN SOLUTION
91
2.2.1.
Introduction and
examples
91
2.2.2. Radius of gyration
(R
G
)
94
2.2.3. The R
G
-‐M
relationships
for
solid
spheres.
96
2.2.4. The R
G
-‐M
relationships
for
rigid
rods.
97
2.2.5. The R
G
-‐M
relationships
for
randomly
coiled
chains.
98
2.2.6. Real
chains
102
2.2.7. The
characteristic
ratio
(C
∞
): A
stiffness parameter
103
2.2.8. Excluded
volume
effects and
θ
-‐conditions
103
2.2.9. How
to determine C
∞
from
experiments?
104
2.2.10. How
small
chains
can we analyse using
the
random
coil model?
107
2.2.11. Other
stiffness parameters based on
the
random
coil model.
107
2.2.12. The
radius of gyration of denatured proteins
109