Emne - Robotsyn - TTK4255
TTK4255 - Robotsyn
Om emnet
Vurderingsordning
Vurderingsordning: Skriftlig skoleeksamen
Karakter: Bokstavkarakterer
Vurdering | Vekting | Varighet | Delkarakter | Hjelpemidler |
---|---|---|---|---|
Skriftlig skoleeksamen | 100/100 | 4 timer | D |
Faglig innhold
Elements of Visual Perception, Image Sampling and Quantization, related Mathematical tools applied to Image Processing and Analysis (array, matrix, linear and non-linear operations, arithmetic and geometric operations, morphology, spatial and temporal operations, frequency analysis, linear algebra, probabilistic methods, image transformations and geometric operations) Image Formation: Camera Models, Calibration, Single view geometry, Multiple view geometry, Epipolar geometry, Feature extraction, Bundle adjustment Position and Orientation: Feature based alignment; Pose estimation; Time varying pose and trajectories, Structure from motion, dense Motion Estimation, Visual Odometry (Semi-direct VO, direct sparse odometry) Localization and Mapping: Initialization, Tracking, Mapping, geometric SLAM formulations (indirect vs. direct error formulation, geometry parameterization, sparse vs. dense model, optimization approach), Relocalization and map Optimization, Examples: Indirect (Feature based) methods (MonoSLAM, PTAM, ORB-SLAM), Direct methods (DTAM, LSD-SLAM), Sensor combinations (IMU, mono vs. Stereo, RGB-Depth), Analysis and parameter studies Recognition and Interpretation: Object detection, Instance recognition, Category recognition, Context and Scene understanding
Læringsutbytte
Knowledge: Knowledge about core applications in Robotic Vision. Knowledge about fundamental (physical) concepts about visual perception. Knowledge about image formation, image representation and camera models. Knowledge about image sampling, quantization and processing. Knowledge about structure from motion concepts for pose, tracking, motion estimation as well as visual odometry (VO) simultaneous localization an mapping (SLAM) strategies exploring popular methods. Basic knowledge about feature extraction, object recognition, context awareness/semantics and scene understanding. Skills: Be able to choose imaging systems with respect to specific applications. Calibrate the imaging system. Modify different imaging setups with respect to environmental conditions. Manipulate and implement pose, tracking and motion estimation techniques. Implement, tune and evaluate SLAM alorithms. Implement object recognition and classification methods. At the end of the semester a successful student should have skills in processing and analysis of digital images and be able to design simple robot vision and machine vision systems. General competence: Be able to apply the fundamental imaging principles. Consciousness about the role of visual sensing in robotic applications. Be able to analyze strength and weaknesses of different vision based approaches.
Læringsformer og aktiviteter
The course is given as a mixture of lectures, and assignments. Five of seven assignments must be approved to enter the final exam.
Obligatoriske aktiviteter
- Øvingsoppgaver
Mer om vurdering
The evaluation will consist of a written exam (100/100). It is obligatory to pass at least 5 of 7 assignments to be eligible to take the exam. If there is a re-sit examination, the examination form may change from written to oral.
Anbefalte forkunnskaper
Calculus 1, 2, 3 and 4 (TMA4100, TMA4105, TMA4115, TMA4120), TTK4105 Control Systems, TTT4275 - Estimering, deteksjon og klassifisering,TTT4120 - Digital signalbehandling, TDT4195 - Grunnleggende visuell databehandling or a comparable background
Forkunnskapskrav
TMA4245 - Statistikk, TTK4115 - Linear System Theory
Kursmateriell
Information on this is given at the start of the semester.
Ingen
Versjon: 1
Studiepoeng:
7.5 SP
Studienivå: Høyere grads nivå
Termin nr.: 1
Undervises: VÅR 2025
Undervisningsspråk: Engelsk
Sted: Trondheim
- Datateknikk og informasjonsvitenskap
- Marin kybernetikk
- IKT og matematikk
- Informatikk
- Anvendt og industriell matematikk
- Grafikk/bildebehandling
- Medisinsk informatikk/datateknikk
- Signalbehandling
- Multivariat bildeanalyse
- Numerisk matematikk
- Havbruk
- Prosessautomatisering
- Mekanikk - fluidmekanikk
- Fotogrammetri
- Teknisk kybernetikk
- Optikk
- Bildediagnostikk
- Informasjonsteknologi og informatikk
- Matematikk
- Statistikk
Eksamensinfo
Vurderingsordning: Skriftlig skoleeksamen
- Termin Statuskode Vurdering Vekting Hjelpemidler Dato Tid Eksamens- system Rom *
- Vår ORD Skriftlig skoleeksamen 100/100 D INSPERA
-
Rom Bygning Antall kandidater - Sommer UTS Skriftlig skoleeksamen 100/100 D INSPERA
-
Rom Bygning Antall kandidater
- * Skriftlig eksamen plasseres på rom 3 dager før eksamensdato. Hvis mer enn ett rom er oppgitt, finner du ditt rom på Studentweb.
For mer info om oppmelding til og gjennomføring av eksamen, se "Innsida - Eksamen"