Emne - Optimering 1 - TMA4180
Optimering 1
Velg studieårOm
Om emnet
Faglig innhold
Emnet gir en introduksjon i kontinuerlig optimering i endeligdimensjonale vektorrom.
Temaer som tas opp er: Første og andre ordens nødvendige og tilstrekkelige (Karush-Kuhn-Tucker) optimalitetsbetingelser for ubegrensede og begrensede optimeringsproblemer i endeligdimensjonale vektorrom. Grunnleggende konveks analyse og konveks dualitetsteori og deres anvendelser for optimeringsproblemer og algoritmer. Oversikt over moderne optimeringsteknikker og algoritmer for glatte problemer (inklusive Newton og kvasi-Newton metoder for ubegrenset optimering; algoritmer for lineær programmering; SQP). Grunnlegende algoritmer for ikke-glatte konvekse optimeringsproblemer. Introduksjon til vektoroptimering.
Læringsutbytte
Studenten som møter læringsmålene for kurset skal kunne:
- vurdere eksistens og entydighet av løsninger til et gitt optimeringsproblem;
- validere konveksitet av funksjoner, sett, og optimeringsproblemer;
- utlede nødvendige og tilstrekkelige optimalitetsbetingelser for et gitt optimeringsproblem;
- bruke duale metoder for å løse konvekse optimeringsproblemer;
- forstå løsningskonsepter i vektoroptimering;
- løse små optimeringsproblemer analytisk;
- forklare de underliggende prinsipper og begrensninger av moderne teknikker og algoritmer for optimering;
- anslå konvergenshastigheten og kompleksitetskrav i ulike optimeringsalgoritmer;
- implementere optimeringsalgoritmer på en datamaskin;
- bruke optimeringsalgoritmer for å løse modellproblemer i ingeniør- og realfag.
Læringsformer og aktiviteter
Forelesninger, øvinger og prosjekt. I sluttkarakter inngår skriftlig avsluttende eksamen (70%) og mappe med prosjektarbeid (30%).
Mer om vurdering
For å bestå emnet, må skriftlig eksamen være bestått (A-E). Ved gjentak må alle delvurderinger tas på nytt. Ved utsatt eksamen (kontinuasjonseksamen) kan skriftlig eksamen bli endret til muntlig eksamen. Utsatt eksamen er i august. Det gjennomføres ikke utsatt eksamen for mappevurdering. Studentens besvarelse kan være på norsk eller engelsk.
Anbefalte forkunnskaper
Matematikk 1-4, eller tilsvarende.
Kursmateriell
Oppgis ved semesterstart.
Studiepoengreduksjon
Emnekode | Reduksjon | Fra |
---|---|---|
SIF5030 | 7,5 sp |
Fagområder
- Matematikk
- Teknologiske fag