course-details-portlet

MA6301 - Tallteori

Om emnet

Vurderingsordning

Vurderingsordning: Skriftlig skoleeksamen
Karakter: Bokstavkarakterer

Vurdering Vekting Varighet Delkarakter Hjelpemidler
Skriftlig skoleeksamen 100/100 4 timer D

Faglig innhold

Dette emnet er faglig tilsvarende MA1301, tilpasset til videreutdanning. Emnet gir en innføring i elementær tallteori. Temaer som behandles er: Delelighetseori, Euklids divisjonsalgoritme, lineære diofantiske ligninger, elementær primtallteori, lineære kongruenser, kinesisk restteorem, Fermats lille teorem, Eulers phi-funksjon, Eulers teorem med anvendelse innen RSA-kryptografi, Wilsons teorem. Spesialstoff som kan variere fra år til år kan være tallteoretiske funksjoner, Fermats problem for n = 4, kjedebrøker, rasjonale approksimasjoner, Pells ligning og kvadratiske rester.

Læringsutbytte

  1. Kunnskap. Studenten kjenner til grunnleggende begreper i elementær tallteori, inkludert Euklids divisjonsalgoritme, lineære Diofantiske ligninger, elementær primtallsteori, lineære kongruenser, det kinesiske restteorem, Fermats lille teorem, Eulers phi-funksjon, Eulers teorem, Wilsons teorem og spesialstoff. I tillegg kjenner studenten til de tallteoretiske prinsippene bak moderne RSA-kryptografi, samt den historiske utviklingen innenfor emnet.
  2. Ferdigheter. Studenten kan anvende den grunnleggende teorien på konkrete problemer, som å bruke Euklids divisjonsalgoritme, løse Diofantiske ligninger og (systemer av) lineære kongruenser, kryptere og dekryptere meldinger i gitte RSA-systemer. I tillegg kan studenten føre elementære matematiske bevis.
  3. Generell kompetanse. Studenten har en forståelse av hovedlinjer i tallteoriens historisk utvikling og betydningen av tallteori i moderne informasjonsteknologi.

Læringsformer og aktiviteter

Øvinger og avsluttende skriftlig eksamen. Fysiske eller digitale samlinger (avtales med studentene ved studiestart). Deler av emnet kan bli gitt på engelsk.

Obligatoriske aktiviteter

  • Øvinger

Mer om vurdering

Ved utsatt eksamen (kontinuasjonseksamen) kan skriftlig eksamen bli endret til muntlig eksamen. Utsatt eksamen er i august.

Spesielle vilkår

Krever opptak til studieprogram:
KOMPiS Matematikk DELTA (KDELTA)

Kursmateriell

Oppgis ved semesterstart.

Studiepoengreduksjon

Emnekode Reduksjon Fra Til
MNFMA104 6.0
MA1301 7.5 HØST 2007
TMA4155 3.0 HØST 2019
Flere sider om emnet

Ingen

Fakta om emnet

Versjon: 1
Studiepoeng:  7.5 SP
Studienivå: Videreutdanning lavere grad

Undervisning

Termin nr.: 1
Undervises:  HØST 2024

Undervisningsspråk: Norsk

Sted: Trondheim

Fagområde(r)
  • Matematikk
Kontaktinformasjon
Emneansvarlig/koordinator: Faglærer(e):

Ansvarlig enhet
Institutt for matematiske fag

Administrativ enhet
Seksjon for utdanningskvalitet og læringsmiljø

Eksamensinfo

Vurderingsordning: Skriftlig skoleeksamen

Termin Statuskode Vurdering Vekting Hjelpemidler Dato Tid Eksamens- system Rom *
Høst ORD Skriftlig skoleeksamen 100/100 D 19.12.2024 15:00 INSPERA
Rom Bygning Antall kandidater
SL110 hvit sone Sluppenvegen 14 11
Sommer UTS Skriftlig skoleeksamen 100/100 D INSPERA
Rom Bygning Antall kandidater
  • * Skriftlig eksamen plasseres på rom 3 dager før eksamensdato. Hvis mer enn ett rom er oppgitt, finner du ditt rom på Studentweb.
Eksamensinfo

For mer info om oppmelding til og gjennomføring av eksamen, se "Innsida - Eksamen"

Mer om eksamen ved NTNU