course-details-portlet

MA3060 - Teorier for kunnskap og læring i matematikk

Om emnet

Vurderingsordning

Vurderingsordning: Oppgave
Karakter: Bokstavkarakterer

Vurdering Vekting Varighet Delkarakter Hjelpemidler
Oppgave 100/100

Faglig innhold

I emnet vil en arbeide med å identifisere og karakterisere aspekter som er relevante for å beskrive og forklare læring av matematikk. Eksempler vil særlig bli hentet fra analyse (funksjonslære) og algebra. En vil behandle sentrale elementer fra matematikkdidaktisk teori så som begrepsdefinisjon/begrepsbilde, prosess/objekt og prototypebegrepet, og eksemplifisere disse gjennom for eksempel funksjonsbegrepet og relaterte begrep. Betydningen av representasjoner og overganger mellom representasjoner blir vektlagt. IKT-verktøy og matematikklæring diskuteres i lys av teorien om instrumentell genesis. Modellering som arbeidsform drøftes i sammenheng med teorien om Realistisk Matematikkundervisning (RME). Videre vil en arbeide med en innholdsanalyse av algebra. Ulike aspekter ved algebra vil bli diskutert (bl.a. generalisering og problemløsning) sammen med en tilhørende diskusjon av de ulike rollene til bokstavsymbolene (variabel, ukjent) og likhetstegnet. En vil også behandle ulike teorier for kunnskap og læring, spesielt sosiokulturelle teorier, samt ulike syn på og filosofier for matematikk.

Læringsutbytte

Etter fullført emne skal studenten, med grunnlag i relevant teori, kunne designe og implementere klasseromsbaserte undersøkelser innenfor et gitt matematikkfaglig emne. Studenten skal videre kunne anvende de teoretiske begrepene i en analyse av observasjoner fra klasserommet med tanke på elevers læring av matematikk. Emnet gir, sammen med emnene MA3061 og RFEL3100, det faglige grunnlaget for å kunne skrive en masteroppgave med matematikkdidaktisk innretning.

Læringsformer og aktiviteter

Undervisningen legges opp som seminarer der en veksler mellom forelesninger, gruppearbeid og diskusjon, samt studentpresentasjoner. Emnet forutsetter en høy grad av studentdeltakelse slik at tilstedeværelse i undervisningen er viktig for å få tilstrekkelig læringsutbytte. Emnet gis på høsten i partallsår. Deler av emnet kan bli gitt på engelsk.

Kursmateriell

Litteraturen er basert på matematikkdidaktiske forskningsartikler og oppgis ved semesterstart.

Flere sider om emnet
Fakta om emnet

Versjon: 1
Studiepoeng:  7.5 SP
Studienivå: Høyere grads nivå

Undervisning

Termin nr.: 1
Undervises:  HØST 2024

Undervisningsspråk: Norsk

Sted: Trondheim

Fagområde(r)
  • Matematikkdidaktikk
  • Matematikk
Kontaktinformasjon
Emneansvarlig/koordinator:

Ansvarlig enhet
Institutt for matematiske fag

Eksamensinfo

Vurderingsordning: Oppgave

Termin Statuskode Vurdering Vekting Hjelpemidler Dato Tid Eksamens- system Rom *
Høst ORD Oppgave 100/100

Innlevering
13.12.2024


18:00

INSPERA
Rom Bygning Antall kandidater
  • * Skriftlig eksamen plasseres på rom 3 dager før eksamensdato. Hvis mer enn ett rom er oppgitt, finner du ditt rom på Studentweb.
Eksamensinfo

For mer info om oppmelding til og gjennomføring av eksamen, se "Innsida - Eksamen"

Mer om eksamen ved NTNU