course-details-portlet

IØ8304 - Prognosemodeller i økonomi og finans

Om emnet

Vurderingsordning

Vurderingsordning: Arbeider
Karakter: Bestått/ Ikke bestått

Vurdering Vekting Varighet Delkarakter Hjelpemidler
Arbeider 100/100

Faglig innhold

Økonomiske prognoser er en viktig ingrediens i beslutningsprosesser både i offentlig og privat sektor. Dette kurset gir en oversikt over både teori og anvendelser. Doktorgradsstudenter vil lære både grunnleggende og avanserte prognostiseringsteknikker ved bruk av "state of the art" metoder, programvare og databaser. Kurset dekker en bred oversikt over tidsserieprediksjon: deskriptiv statistikk og grafisk analyse, regresjonsanalyse, prognoseevaluering, kombinasjon av prognoser, ARIMA modeller, VAR modeller, VECM modeller, Bayesianske VAR-modeller, TAR/STAR modeller, regime switch modeller, State Space-modeller, Modeller med varierende datafrekvens, Stor data og maskinlæringsmetoder, GARCH modeller og riskprognoser. Kurset vil dekke praktisk implementering av modeller i Eviews og R sammen med FRED databasen på makroøkonomi og finans. Studenter står fritt til å bruke andre programmer (feks. Phyton etc.) og andre databaser (feks. Eikon Datastream, Bloomberg etc.) i deres forelesninger.

Læringsutbytte

Kandidaten vil i dette kurset erverve seg sentrale kunnskaper innen moderne prognosemetoder i økonomi og finans. Kandidaten vil få trening i å utarbeide selvstendig forelesninger på valgte tema innenfor området og presentere dette. Kandidaten vil også få trening i å lage og presentere data, metoder og implementering av disse fra kurset. Dette vil være en viktig del av den generelle doktorgradstreningen for kandidaten. Kandidaten vil også bli kjent med bruk av databaser og statistisk programvare.

Læringsformer og aktiviteter

Kurset vil bestå av en blanding av tradisjonelle forelesninger og praktiske øvelser. Undervisningen vil være seminarbasert (intensivt i september, oktober og november). Alle forelesninger blir også bli tilgjengelig digitalt. Forelesninger vil gis av fagstab.

Obligatoriske aktiviteter

  • Aktiv deltakelse i forelesning

Mer om vurdering

For å få kurset godkjent må studentene lage en forelesning på en valgt metode fra kurset og presentere denne sammen med spesifikke data, implementering av modell og analyse av resultater. Kandidaten må demonstrere innsikt i spesifikke data, metoder og programvareimplementering. Kvaliteten på disse forelesningene vil bli evaluert av en ekstern sensor og av faglærer. Presentasjonene vil bli tatt opp.

Kursmateriell

Gis ved kursstart

Flere sider om emnet

Ingen

Fakta om emnet

Versjon: 1
Studiepoeng:  7.5 SP
Studienivå: Doktorgrads nivå

Undervisning

Termin nr.: 1
Undervises:  HØST 2024

Undervisningsspråk: Engelsk

Sted: Trondheim

Fagområde(r)
  • Bedriftsøkonomi og optimering
  • Industriell økonomi og teknologiledelse
  • Bedriftsøkonomi
  • Finansiell økonomi
Kontaktinformasjon

Eksamensinfo

Vurderingsordning: Arbeider

Termin Statuskode Vurdering Vekting Hjelpemidler Dato Tid Eksamens- system Rom *
Høst ORD Arbeider 100/100

Innlevering
26.11.2024


23:59

Rom Bygning Antall kandidater
  • * Skriftlig eksamen plasseres på rom 3 dager før eksamensdato. Hvis mer enn ett rom er oppgitt, finner du ditt rom på Studentweb.
Eksamensinfo

For mer info om oppmelding til og gjennomføring av eksamen, se "Innsida - Eksamen"

Mer om eksamen ved NTNU