course-details-portlet

IMT4392 - Deep Learning for Visual Computing

Om emnet

Vurderingsordning

Vurderingsordning: Project report and presentation of project work
Karakter: Bokstavkarakterer

Vurdering Vekting Varighet Delkarakter Hjelpemidler
Project report and presentation of project work 100/100

Faglig innhold

Course content(Tentative) :

  • Introduction to deep learning (DL)
  • Deep neural networks (DNN)
  • Convolutional neural network (CNN)
  • Recurrent neural network (RNN)
  • Transformers, Vision transformers (VIT)
  • Generative models,
  • Explainable AI

Læringsutbytte

On successful completion of the module, students will be able to:

  • Possess advanced knowledge within the area of deep learning for visual computing. Understand the meaning of concepts such as multi-layer perceptron, dropout, and convolutional networks.
  • Possess specialized insight and a good understanding of the research frontier of deep learning techniques and algorithms for visual computing applications.

Skills and general competence:

  • Be able to use relevant and suitable methods when carrying out further research and development activities in the area of deep learning for visual computing.
  • Be able to critically review relevant literature when solving an assigned problem or topic.
  • Is able to communicate academic issues, analysis, and conclusions, with specialists in the field, in oral and written forms.
  • Is experienced in acquiring new knowledge and skills in a self-directed manner.
  • Develop a course project based on an application scenario and implement several of the algorithms to solve practical problems.
  • The students will also enhance their programming skills in Pytorch and Tensorflow.

Læringsformer og aktiviteter

Lectures, exercises, self-study, presentation and obligatory course project. This course will focus on practical implementation of deep learning for visual computing.

Obligatoriske aktiviteter

  • Mid-project presentation

Mer om vurdering

The grade is based on the project report and obligatory presentation of the project work.

Spesielle vilkår

Krever opptak til studieprogram:
Applied Computer Science (MACS)

Kursmateriell

There is no required textbook and students should be able to learn everything from the suggested materials and mentoring during the course project.

Flere sider om emnet

Ingen

Fakta om emnet

Versjon: 1
Studiepoeng:  7.5 SP
Studienivå: Høyere grads nivå

Undervisning

Termin nr.: 1
Undervises:  HØST 2024

Undervisningsspråk: Engelsk

Sted: Gjøvik

Fagområde(r)
  • Informatikk
Kontaktinformasjon
Emneansvarlig/koordinator:

Ansvarlig enhet
Institutt for datateknologi og informatikk

Eksamensinfo

Vurderingsordning: Project report and presentation of project work

Termin Statuskode Vurdering Vekting Hjelpemidler Dato Tid Eksamens- system Rom *
Høst ORD Project report and presentation of project work 100/100

Utlevering
25.11.2024

Innlevering
29.11.2024


09:00


23:59

INSPERA
Rom Bygning Antall kandidater
  • * Skriftlig eksamen plasseres på rom 3 dager før eksamensdato. Hvis mer enn ett rom er oppgitt, finner du ditt rom på Studentweb.
Eksamensinfo

For mer info om oppmelding til og gjennomføring av eksamen, se "Innsida - Eksamen"

Mer om eksamen ved NTNU