course-details-portlet

IMAG2023

Matematikk for ingeniørfag 2 C

Velg studieår
Studiepoeng 7,5
Nivå Videregående emner, nivå II
Undervisningsstart Vår 2025
Varighet 1 semester
Undervisningsspråk Norsk
Sted Gjøvik
Vurderingsordning Samlet karakter

Om

Om emnet

Faglig innhold

Basismodul. Funksjoner av flere variabler. Partiell derivasjon, gradient. Kritiske punkter og optimering. Taylors teorem med restledd. Innføring i partielle differensialligninger: eksempler og løsninger.

Partielle differensialligninger. Forskjellige typer differensialligninger må behandles ulikt, fokus på fysisk/modelleringsintuisjon. Studentene skal ha oversikt over feltet. Likevektsligninger. Eksempler: Laplace- og Poissonligningene. Løsning med datamaskin ved hjelp av lineær algebra. Iterative numeriske løsningsmetoder som konvergerer mot en likevektstilstand. Tidsavhengige systemer. Eksempler: Varmeligningen, adveksjonsligningen, bølgeligningen. Løsning med datamaskin.

Programmodul. Optimering uten bibetingelser. Metoder som bruker den deriverte. Iterative metoder. Minste kvadraters metode - lineær og ikke-lineær. Optimering med bibetingelser. Lagrange-multiplikatorer. Lineær programmering. Dualtproblem. Løsninger med simpleks-metode på datamaskin. Heltallprogrammering.

Læringsutbytte

Kunnskap

Kandidaten har god kunnskap om:

  • Funksjoner av flere variabler, inkludert den partielle deriverte og dens anvendelse i klassifikasjon av stasjonære punkter og optimering.
  • Taylors teorem og tilnærminger med taylorrekker.
  • Partielle differensialligninger, samt anvendelser og egenskaper av slike ligninger.
  • De viktigste begrepene og metodene fra optimering, som iterative metoder, bibetingelse, Lagrange multiplikator, objektivfunksjon, dualproblem.
  • Digitale verktøy til analyse av matematiske problemstillinger.

Ferdigheter

Kandidaten:

  • Kan finne og tolke de partielle deriverte av en funksjon av flere variabler.
  • Er i stand til å tilnærme funksjoner med Taylors teorem, og estimere feilen med restleddet.
  • Kan løse enkle optimeringsproblemer med flere variabler.
  • Kan verifisere at en gitt funksjon løser en partiell differensialligning.
  • Er i stand til å løse bestemte typer partielle differensialligninger med datamaskin, sette prøve på og tolke resultatene.
  • Kan bruke datamaskinen til optimering uten bibetinglese, og tolke resultatene.
  • Kan løse noen enkle optimeringsproblemer med bibetingelser ved Lagrange-multiplikatorer.
  • Kan sette opp noen anvendte problemstillinger som oppgaver i lineærprogrammering, og så løse med datamaskin og tolke resultatene.
  • Skal være i stand til å anvende digitale verktøy for å analysere matematiske problemstillinger.

Generell kompetanse

Kandidaten:

  • Kjenner godt til og kan anvende et matematisk symbol- og formelapparat som er relevant for å kunne kommunisere i ingeniørfaget.
  • Har erfaring med vurdering av egne og andre studenters faglige arbeider, og med å gi muntlig tilbakemelding på disse arbeidene på en faglig korrekt og presis måte.
  • Har erfaring med å anvende matematiske metoder og digitale verktøy på problemstillinger fra eget og tilstøtende fagområder.
  • Er i stand til å koble opp matematiske konsepter og teknikker til modeller som kandidaten treffer innen- og utenfor studiet.

Læringsformer og aktiviteter

Forelesninger, øvinger og gruppearbeid.

Arbeidskrav

Arbeidskravet består av to deler:

  • Obligatoriske øvinger som baserer seg på både analytisk og numerisk løsning av problemer og tolkning av resultatene. Øvingsopplegget inkluderer oppgaver som skal løses med hjelp av digitale verktøy.
  • Obligatorisk gruppearbeid

Spesielle vilkår

Obligatorisk aktivitet fra tidligere semester kan godkjennes av instituttet.

Obligatoriske aktiviteter

  • Arbeidskrav (øvinger og gruppearbeid)

Mer om vurdering

Emnet har to delvurderinger med bokstavkarakter; prosjektarbeid (i grupper) og individuell eksamen. Begge delvurderingene må bestås for å bestå emnet.

Vurderingsgrunnlaget til prosjektarbeidet er en prosjektrapport som leveres ved semesterslutt. Innleveringen er gruppevis. Veiledning består av forelesninger, videoer og notater som dekker tema for prosjektet. I tillegg er det gruppevis veiledning i forbindelse med fagets øvingstimer.

Kursmateriell

En oversikt over anbefalt kursmateriell vil foreligge ved semesterstart.

Studiepoengreduksjon

Emnekode Reduksjon Fra
IMAA2023 7,5 sp Høst 2023
IMAT2023 7,5 sp Høst 2023
IMAG2011 2 sp Høst 2023
IMAA2011 2 sp Høst 2023
IMAT2011 2 sp Høst 2023
IMAG2021 2 sp Høst 2023
IMAA2021 2 sp Høst 2023
IMAT2021 2 sp Høst 2023
IMAA2031 4 sp Høst 2023
IMAT2031 4 sp Høst 2023
VB6041 7,5 sp Høst 2024
IMAA2100 2 sp Høst 2024
IMAG2100 2 sp Høst 2024
IMAT2100 2 sp Høst 2024
Dette emne har faglig overlapp med emnene i tabellen over. Om du tar emner som overlapper får du studiepoengreduksjon i det emnet du har dårligst karakter i. Dersom karakteren er lik i de to emnene gis det reduksjon i det emnet som er avlagt sist.

Fagområder

  • Matematikk