DataSHIELD – shared individual-level analysis without sharing the data: a biostatistical perspective
DOI:
https://doi.org/10.5324/nje.v21i2.1499Abstract
Very large sample sizes are required for estimating effects which are known to be small, and for addressing intricate or complex statistical questions. This is often only achievable by pooling data from multiple studies, especially in genetic epidemiology where associations between individual genetic variants and phenotypes of interest are generally weak. However, the physical pooling of experimental data across a consortium is frequently prohibited by the ethico-legal constraints that govern agreements and consents for individual studies. Study level meta-analyses are frequently used so that data from multiple studies need not be pooled to conduct an analysis, though the resulting analysis is necessarily restricted by the available summary statistics. The idea of maintaining data security is also of importance in other areas and approaches to carrying out ‘secure analyses’ that do not require sharing of data from different sources have been proposed in the technometrics literature. Crucially, the algorithms for fitting certain statistical models can be manipulated so that an individual level meta-analysis can essentially be performed without the need for pooling individual-level data by combining particular summary statistics obtained individually from each study. DataSHIELD (Data Aggregation Through Anonymous Summary-statistics from Harmonised Individual levEL Databases) is a tool to coordinate analyses of data that cannot be pooled. In this paper, we focus on explaining why a DataSHIELD approach yields identical results to an individual level meta-analysis in the case of a generalised linear model, by simply using summary statistics from each study. It is also an efficient approach to carrying out a study level meta-analysis when this is appropriate and when the analysis can be pre-planned. We briefly comment on the IT requirements, together with the ethical and legal challenges which must be addressed.Downloads
Downloads
Published
How to Cite
Issue
Section
License
Norsk Epidemiologi licenses all content of the journal under a Creative Commons Attribution (CC-BY) licence. This means, among other things, that anyone is free to copy and distribute the content, as long as they give proper credit to the author(s) and the journal. For further information, see Creative Commons website for human readable or lawyer readable versions.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).