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ABSTRACT

Cox regression is much used in epidemiology to assess the influence of exposure variables and
other covariates on mortality or morbidity. Estimation in Cox’s model requires ascertainment of
covariate values for all individuals in a cohort even when only a small fraction of these actually
get diseased or die (fail). For large cohorts this may be very costly. Cohort sampling techniques,
where covariate information is collected for all failing individuals (cases), but only for a sample of
the non-failing ones (controls), then offer useful alternatives. Such case-control data can contain
almost as much statistical information as the full cohort. Two common cohort sampling designs
are nested case-control and case-cohort sampling. The paper reviews, discusses and compares the
two sampling designs. We also point out the potential benefits of stratified sampling of controls.
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1 Introduction

Cox regression is central to modern survival analysis,
and it 1s the most used method when one wants to
assess the influence of risk factors and other covari-
ates on mortality or morbidity. Estimation in Cox’s
regression model is based on a partial likelihood [see
(2) below], which at each observed death or disease
occurrence (failure) compares the covariate values
of the failing individual to those of all individuals at
risk at the time of the failure. In large epidemiologic
cohort studies of a rare disease, (standard) use of
Cox regression requires collection of covariate infor-
mation on all individuals in the cohort even though
only a small fraction of these actually get diseased or
die. This may be very expensive, or even logistically
impossible. Cohort sampling techniques, where co-
variate information is collected for all failing individ-
uals (cases), but only for a sample of the non-failing
individuals (controls) then offer useful alternatives
that may drastically reduce the resources that need
to be allocated to a study. Further, as most of the
statistical information is contained in the cases, such
studies may still be sufficient to give reliable answers
to the questions of interest.

There are two important classes of cohort sam-

pling designs: nested case-control studies' and case-
cohort studies. For nested case-control sampling,
one for each case selects a small number of con-
trols from those at risk at the case’s failure time,
and a new sample of controls is selected for each
For the case-cohort design a subcohort is
selected from the full cohort, and the individuals

case.

in the subcohort are used as controls at all fail-
ure times when they are at risk. In their origi-
nal forms, the nested case-control and case-cohort
designs both use simple random sampling with-
out replacement for the selection of controls and
subcohort (Thomas 1977, Prentice 1986). Later
both designs have been modified to allow for strat-
ified random sampling (Samuelsen 1989, Langholz
& Borgan 1995, Borgan et al. 2000). Such strati-
fied sampling may be advantageous when a surrogate
measure of the covariate of main interest is available
for everyone and can be used to classify the individ-
uals into sampling strata.

n epidemiological literature it is common to let the term
"nested case-control study” mean any case-control study un-
dertaken in a well-defined cohort or population. Here we will
use this term in a more strict sense. FEpidemiologists often
refer to this design as density or incidence sampling of con-
trols. Another term that is sometimes used is sampling from
the risk set.
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The purpose of this paper is to describe and dis-
cuss both the classical versions of the nested case-
control and case-cohort designs using simple ran-
dom sampling and their modifications with strati-
fied sampling. The outline of the paper is as follows.
In Section 2 we review Cox’s regression model, de-
scribe the type of failure time data we consider for
the cohort, and remind the readers about the usual
methods of inference for cohort data. The simple
nested case-control design is considered in Section 3.
We describe how the controls are sampled, and re-
view how statistical inference can be based on a par-
tial likelihood similar to the one for the full cohort.
Alternative methods of estimation are also briefly
discussed, and the similarity between nested case-
control studies and matched case-control studies is
pointed out. In Section 4 we consider the simple
case-cohort design. Again we describe how the sam-
pling is performed, and discuss alternative methods
for estimation of the regression coefficients. In Sec-
tion 5 we compare the statistical efficiency of the
different sampling designs and estimation methods
with each other and with a full cohort study. The
stratified versions of nested case-control and case-
cohort sampling are briefly discussed in Section 6,
while some concluding remarks are given in the final
Section 7.

2 Model and inference for cohort

data

We first review Cox regression for cohort data. Con-
sider a cohort of n individuals, and let A;(¢) be the
hazard rate for the ith individual with covariates
Zi1,...,%ip. Here the time-variable ¢ may be age,
time since employment, or some other time-scale rel-
evant to the problem at hand. The covariates may
be time-fixed (like gender) or time-dependent (like
cumulative exposure), but in the latter case we have
supressed the time-dependency from the notation.
The covariates may be indicators for categorical co-
variates (like the exposure groups “non-exposed,”
“low,” “medium,” and “high”) or numeric (as when
actual amount of exposure is recorded). We assume
that the covariates of individual i are related to its
hazard rate by Cox’s regression model:

Ai(t) = Ao(t) exp{Brzin + .. + Bpzip} (1)

Here f1,..., By are regression coefficients describing
the effects of the covariates, while the baseline haz-
ard rate Aq(t) corresponds to the hazard rate of an
individual with all covariates equal to zero. In par-
ticular we interpret the RR; = exp(f;) as hazard-
rate ratios or more loosely as relative risks. This
in the sense that RR; = A;/(¢)/Ai(¢) when the co-

variates of individuals ¢ and i are equal except for
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Figure 1: Illustration of data from a hypothetical cohort
of ten individuals with four observed failures. Each indi-
vidual is represented by a line starting at an entry time
and ending at an exit time corresponding to censoring or
failure. Failure times are indicated by dots (e).

covariate j for which z;; —z;; = 1.

The individuals in the cohort may be followed over
different periods of time, from an entry time to an
exit time corresponding to failure or censoring. The
risk set R(¢) is the collection of all individuals who
are under observation just before time ¢, and n(t) is
the number at risk at that time. We will number the
individuals so that 1 = 1,2, ..., d correspond to the
failures with ordered failure timest; < ts < --- < 4.
(Here we have assumed that there are no ties, that is,
no failure times are equal. A few ties may, however,
be broken at random.)

Figure 1 illustrates the data for a small hypothet-
ical cohort of 10 individuals. Each individual in the
cohort is represented by a horizontal line starting at
some entry time and ending at some exit time. If
the exit time corresponds to a failure, this is repre-
sented by a “e” in the figure. In the hypothetical
cohort considered, four individuals are observed to
fail.

We assume throughout that late entries and cen-
sorings are independent in the sense that the addi-
tional knowledge of which individuals have entered
the study or have been censored before any time ¢
do not carry information on the risks of failure at ¢
(Kalbfleisch & Prentice 2002, sections 1.3 and 6.2).
Then the regression coefficients in (1) are estimated
by ﬁl, cen ﬁp, the values of f;,..., 8, maximizing
Cox’s partial likelihood

d

L(8) = exp{frzj1+ ..+ Bpip}
o1 Loker(ey) XPUIZRL + o+ Bpap}

It is a standard result that ﬁl, ce ﬁp can be treated
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as ordinary maximum likelihood estimators. In par-
ticular, as implemented in many statistical packages,
standard errors se; for the (; are obtained auto-
matically from the partial likelihood?, 95% confi-
dence intervals for RR; = exp(f;) are then given
as exp(ﬁj + 1.96s¢;). Furthermore nested models
may be compared by likelihood ratio tests.

3 Nested case-control sampling

3.1 Design: sampling of controls

The nested case-control design was originally sug-
gested by Thomas (1977). For this design, if an in-
dividual fails at time ¢, one selects m — 1 controls
by simple random sampling (without replacement)
from the n(t) — 1 non-failing individuals in the risk
set R(t). The set ﬁ(t) consisting of the case and
these m — 1 controls is denoted a sampled risk set.
Covariate values are ascertained for the individuals
in the sampled risk sets, but are not needed for the
remaining individuals in the cohort. Thus the design
can be summarized as

e Case occurs at time ¢

Sample m — 1 controls from the risk set R(#)

e Sampled risk set ﬁ(t) consists of the case and
the sampled controls

e Ascertain covariates for the individudals in ﬁ(t)

Figure 2 illustrates the basic features of a nested
case-control study for the hypothetical cohort of Fig-
ure 1 when one control is selected per case (i.e. when
m = 2). The potential controls for the four cases are
indicated by a “|” in the figure, and are given as all
non-failing individuals at risk at the times of the fail-
ures. Among the potential controls one is selected
at random as indicated by a “o” in the figure. The
four sampled risk sets are then represented by the
four e, o pairs in Figure 2.

Note that the selection of controls is done indepen-
dently at the different failure times. Thus subjects
may serve as controls for multiple cases, and cases
may serve as controls for other cases that failed when
the case was at risk. For example, the case at time
ts in the figure had been selected as control at the
earlier time ¢;.

A basic assumption for valid inference is that not
only delayed entries and censorings, but also the
sampling of controls, are independent in the sense
that the additional knowledge of which individuals
have entered the study, have been censored or have

2The variance estimates for maximum (partial) likelihood
estimators are given as the inverse of the information matrix.
This matrix is minus the second derivatives of log(L(3)) eval-
uated at the parameter estimates.
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Figure 2: [llustration of nested case-control sampling,
with one control per case, from the hypothetical cohort
of Figure 1. FEach individual is represented by a line
starting at an entry time and ending at an exit time cor-
responding to censoring or failure. Failure times are in-
dicated by dots (e), non-failing individuals at risk at the
failure times are indicated by bars (]), and the sampled
controls are indicated by circles (o).

been selected as controls before any time ¢ do not
carry information on the risks of failure at ¢. This
assumption will be violated if; e.g., in a prevention
trial, individuals selected as controls change their
behavior in such a way that their risk of failure is
different from similar individuals who have not been
selected as controls.

3.2 Estimation for nested case-control data
For nested case-control studies, it 1s common to base
estimation of the regression coefficients in (1) on the
partial likelihood

L(8) = exp{izj1+ ..+ Bpzjp}
) 1;[ Zkeﬁ(tj) exp{fr1er1 + ..+ Bpxrp}

(Thomas 1977, Oakes 1981, Goldstein & Langholz
1992, Borgan et al. 1995). Note that the partial like-
lihood (3) is similar to the full cohort partial likeli-
hood (2), except that the sum in the denominator is
only over subjects in the sampled risk set.

Inference concerning the regression coefficients,
using usual large sample likelihood methods, can be
based on the partial likelihood (3). Thus the maxi-
mum partial estimators ﬁl, ey ﬁp are approximately
normally distributed, and their standard errors may
be obtained as for usual maximum likelihood esti-
mators. Further nested models may be compared by
the likelihood ratio test.

For computing one may use standard software for
Cox regression, formally treating the label of the
sampled risk sets as a stratification variable in the
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Cox regression. Alternatively the partial likelihood
(3) is of the same form as a conditional likelihood
for logistic regression. Thus software typically used
for analysis of matched case-control studies can also
be applied. For both types of software each case and
control has to be entered as a separate line in the
datafile for every sampled risk set they are members
of.

In the partial likelihood (3), cases are included
only at their failure times. Samuelsen (1997) and
Chen (2001) have developed estimation methods
that use information from the cases and all the sam-
pled controls whenever they are at risk. Estimation
is then carried out by maximizing pseudo-likelihoods
or weighted likelihoods of the form (6), as will be
discussed in connection with case-cohort studies in
Section 4.2, with weights equal to 1/pg for inclusion
probabilities py. For instance Samuelsen (1997) sug-
gested using pr = 1 for cases and

for controls. Here the product is over the failure
times ¢; for which individual % is at risk. Estima-
tion of the relative risks is then, as discussed in Sec-
tion 4.2, fairly straightforward. However, variance
estimation requires some more attention. When the
disease under study is fairly common, or if follow-
up time depends strongly on covariates, these al-
ternative methods of estimation give more precise
estimates than the one based on the partial like-
lihood. However, nested case-control sampling is
mainly used for rare diseases, and then the gain of
these more complicated methods is often modest.

3.3 Matching in nested case-control studies
In order to keep the presentation simple, we have so
far considered the proportional hazards model (1)
where the baseline hazard rate is assumed to be the
Sometimes
this may not be reasonable. To control for the effect
of one or more confounding factors one may want to
adopt a stratified version of (1) where the baseline
hazard differs between population strata generated
by the confounders. The regression coefficients are,
however, assumed to be the same across population
strata. Thus the hazard rate of an individual ¢ from
population stratum c is assumed to take the form

same for all individuals in the cohort.

Ai(t) = Aoc(t) exp{Brzir + .. + Bpzip }. (4)

When the stratified proportional hazards model (4)
applies, the sampling of controls in a nested case-
control study need to be restricted to those at risk
in the same population stratum as the case. We say
that the controls are matched by the stratification
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variable. In particular if an individual in popula-
tion stratum c fails at time ¢, one selects at random
m— 1 controls from the n.(¢) — 1 non-failing individ-
uals at risk in this population stratum. The partial
likelihood (3) then still applies. Thus estimation of
the relative risks is carried out as described in Sec-
tion 3.2.

3.4 Matched and nested case-control studies
As mentioned Section 3.2 nested case-control stud-
ies may be analyzed as matched case-control studies.
In fact one may think of nested studies as matched
studies where time is a matching factor, and there
are many examples of nested case-control studies
that have been described as matched studies. The
distinction, however, is that in the nested studies
non-cases can be sampled controls for several cases,
and cases still at risk can be chosen as controls. But
under a rare disease assumption the chance of sam-
pling cases or controls repeatedly is small.

4 Case-cohort sampling

4.1 Design: sampling of the subcohort

The case-cohort design was originally suggested by
Prentice (1986). For this design one selects by simple
random sampling (without replacement) a subcohort
C of size m from the full cohort, and the individuals
in the subcohort are then used as controls at all the
failure times when they are at risk. Covariate values
are ascertained for the individuals in C as well as
for the cases occurring outside the subcohort, but
they are not needed for the non-failures outside the
subcohort. The design can be summarized as

e Sample subcohort C from full cohort
e Case occurs at time ¢

e Sampled risk set S(¢) at time ¢ consists of the

case and the individuals in C that are still at
risk

. Ascertai~n covarlates for indivicludals in the sub-
cohort C and for cases not in C

Figure 3 illustrates a case-cohort study for the hy-
pothetical cohort of Figure 1 with a subcohort size
of four (i.e. with m = 4). The individuals selected
to the subcohort are indicated by thick lines.

As for nested case-control sampling, it is also for
case-cohort sampling an assumption for valid infer-
ence that individuals sampled to the subcohort do
not change their behavior in such a way that their
risk of failure is different from similar individuals
who have not been selected to the subcohort.
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Figure 3: Illustration of case-cohort sampling, with a
subcohort of size m = 4, from the hypothetical cohort
of Figure 1. Each individual is represented by a line
starting at an entry time and ending at an exit time
corresponding to censoring or failure. Failure times
are indicated by dots (), and the individuals in the

subcohort are indicated by thick lines.

4.2 Estimation for case-cohort data
Different methods have been suggested for estima-
tion of the regression coefficients in (1) from case-
cohort data. The original suggestion of Prentice
(1986) consist of maximizing what is referred to as
a pseudo-likelihood

_ explfiant .+ G}
RS (5)
j=1 LekeS(t;) exp{frzr1 + ..+ ﬂpxkp}

L(B)

Here the summation in the denominator is over the
set S(t;) consisting of subcohort individuals at risk
at time ¢; with the case added whenever it occurs
outside the subcohort.

Each term in the product in (5) is of the same
form as a term in the product in (3). However con-
trols from the subcohort are used over again for each
case. For this reason (5) is not a partial likelihood
(Langholz & Thomas 1991). This has the drawback
that estimation of standard errors becomes more
complicated and that likelihood ratio tests are not
valid. Nevertheless one may show that the maximum
pseudo-likelihood estimators 31, ..., B, are approxi-
mately normally distributed (Self & Prentice 1988,
Borgan et al. 2000).

Fitting of the pseudo-likelihood (5) was early on
implemented in the program Epicure. The standard
error estimates in this implementation uses the pro-
cedure originally proposed by Prentice (1986) and
required substantial computational power (around
1990). Self & Prentice (1988) derived alternative es-
timates for standard errors, but presented them in
a form that was difficult to implement. This earned
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case-cohort studies the reputation of being hard to
analyze.

Actually the standard error estimates of Self &
Prentice (1988) can be rewritten in a much simpler
form as shown by Samuelsen (1989) and Therneau &
Li (1999). The latter paper also provides computer
code in the programs SAS, S-PLUS and R for fitting
case-cohort studies with correct standard errors.

Another option for obtaining correct inference was
suggested by Barlow (1994). Details for obtaining
his corrected standard error estimates in SAS are
given in Barlow et al. (1999). In S-PLUS this method
is accomplished simply by using the robust variance
estimator.

Another proposal for case-cohort studies, in the
spirit of Kalbfleisch & Lawless (1988), is to maximize
a weighted pseudo-likelihood

d

exp{f1zj1 + .. + BpZjp}
L =
) 11:[1 Zkeg(tj) exp{frax1 + .. + Bprp brn

(6)
where now g(tj) is the joint set of the subcohort in-
dividuals along with all cases that are at risk. The
weights are wy = 1 for the cases (whether in the
subcohort or not), and wy, = 1/py for an inclusion
probability pg for the non-failures belonging to the
subcohort. Borgan et al. (2000) suggested using py
equal to the proportion non-cases in the subcohort
compared to all non-cases. When the disease un-
der study is fairly common, this alternative method
of estimation will perform better than the one orig-
inally suggested by Prentice (1986). However, for
rare diseases the difference is of less importance.
Chen & Lo (1999) and Chen (2001) argued that
other weights will reduce the variability in the esti-
mates even further. However with a rare disease and
with length of follow-up not strongly dependent on
covariates the gain will again be modest.

Variance estimation under (6) can be carried out
similarly to the procedure of Therneau & Li (1999).
Correction of the variances can also be obtained by
specifying robust variances in S-PLUS or by proba-
bility weighting in Stata. These corrections can be
conservative, that is produce standard errors that
are too large and confidence intervals that are to
wide. However for this effect to be pronounced the
effect of covariates needs to be quite strong.

5 Relative efficiency

5.1 Relative efficiency of simple random
sampling

The relative efficiency of a cohort sampling method

compared to a full cohort analysis, is the ratio of

the variance of the estimator for full cohort data to

the variance of the estimator based on the sampled
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data. Thus, e.g., a relative efficiency of 1/2 means
that the variances of the sampled data estimator is
twice as large as the variance of the full cohort esti-
mator (and that its standard error is V2 = 141 as
large). With a relative efficiency of 1/2 it would also
require two such case-control studies to obtain the
same statistical power as a cohort study. We may
thus say that such a case-control study is only half
as informative as a cohort study.

If there 1s only one covariate in the model, and its
regression coefficient equals zero, the (large sample)
relative efficiency of the simple nested case-control
design compared to a full cohort study is (m—1)/m,
independent of censoring and covariate distributions
(Goldstein & TLangholz 1992). Thus for testing a
simple association the relative efficiency is 1/2 with
one control per case and 2/3 when three controls
are used. The relative efficiencies by the (m —1)/m
rule for several values of m are given in the following
table.

Table 1: Relative efficiency of a nested case-control
study with m—1 controls compared to a cohort study

when = 0.

m 2 3 5 10
Efficiency 0.5 0.67 0.8 0.9

When the regression coefficient departs from zero,
and when more than one regression coefficient has
to be estimated, the efficiency of the nested case-
control design may be much lower than given by the
“(m — 1)/m efficiency rule”. E.g., with one binary
covariate for exposure with relative risk e? = 4, the
relative efficiency of the nested case-control design
with one control per case is about 1/4 when 10%
of the cohort is exposed rather than 1/2 as the rule
suggests.

For the simple case-cohort design, it does not
seem possible to derive a similar general and sim-
ple result as the “(m — 1)/m efficiency rule” (Self
& Prentice 1988). Although published results are
somewhat conflicting (Langholz & Thomas 1991,
Barlow et al. 1999), the relative efficiencies of simple
nested case-control and case-cohort studies seem to
be about the same when they involve the same num-
ber of individuals for whom covariate values have to
be ascertained.

5.2 Simulation

To illustrate the relative merits of nested case-
control and case-cohort studies we have carried out
a Monte-Carlo simulation experiment.
periment the cohort size was set to n = 1000 and
the average number of cases to 125. The model

In this ex-

(J.Borgan and S.0O.Samuelsen

for the cohort was a proportional hazard model
Ai(t) = Ao(t) exp(z;), that is the log-relative risk
3 = 1. The covariates x; come from a uniform distri-
bution over the interval [0,1]. The baseline hazard
is given as Ag(¢) = ¢, thus survival times are drawn
from Weibull distributions.

We will consider consider three different censor-
ing patterns in the simulations. First we assume
that every individual has the same potential follow-
up time, thus censoring is at a fixed time. This will
mimic studies in which all individuals are recruited
at the same time and where there is no loss of follow-
up. In the second set of simulations we let half of
the individual have censoring according to a uniform
censoring distribution and the other half have cen-
soring time at the maximum value of this uniform
distribution. This may correspond studies where
all individuals are recruited at the same time, but
with considerable loss of follow-up. In a third set of
simulation the censoring times all come from a uni-
form distribution. This will correspond to studies in
which individuals are recruited over time and follow-
up is ended at the same date for all individuals.

For nested case-control samples we use one control
for every case, i.e. m = 2. The size of the subcohorts
in the corresponding case-cohort studies were then
set such that the total number of individuals in both
types of case-control studies are equal on average.

For each censoring scheme the simulations were
repeated 2000 times. Results from the simulations
are given in Table 2. For each censoring scheme we
present in the first column averages of the estimates,
in the second column the empirical variances of the
estimates, and in the third column the averages of
the variance estimates. These results are given for
the complete cohort data Cox-estimates, for nested
case-control data both with the usual partial likeli-
hood estimates and the weighted (pseudo-likelihood)
estimates of Samuelsen (1997), and for case-cohort
data using the Prentice estimates based on (5) and
the Kalbfleisch & Lawless (K & L) estimates based
on (6).

The simulations shows that the log-relative risk
[ is estimated without any noticeable bias for all
designs and estimation methods. Similarly all vari-
ances seems to be estimated without important bias.
The variances are for most of the case-control esti-
mators about twice the variance of the cohort esti-
mator and thus in accordance with the relative effi-
ciency rule in Table 1 with m = 2.

In general we see that with all censorings at the
same time the variances for nested case-control and
case-cohort estimates are approximately equal, per-
haps with a slight advantage for case-cohort (Table
2a). The same holds true for the second censoring
scheme, but now with a slight advantage for nested



Cohort sampling designs

Table 2: Results from the simulations

a) The censorings all at a fixed time.

Ave.est. Emp.var. Ave.var.

Cohort 1.00 0.10 0.10
Nested C-C

partial 1.01 0.22 0.22
pseudo 1.01 0.19 0.20
Case-cohort,

Prentice 1.01 0.20 0.20
K &L 1.02 0.20 0.20

b) Half of the censorings at fixed time, the rest
drawn from a uniform distribution up to this time

Ave.est. Emp.var. Ave.var.

Cohort 1.00 0.10 0.10
Nested C-C

partial 1.01 0.21 0.21
pseudo 1.00 0.18 0.18
Case-cohort,

Prentice 0.99 0.24 0.23
K &P 1.00 0.23 0.23

c) All censorings from a uniform distribution

Ave.est. Emp.var. Ave.var.

Cohort 1.02 0.10 0.10
Nested C-C

partial 1.03 0.22 0.22
pseudo 1.04 0.19 0.18
Case-cohort,

Prentice 1.05 0.30 0.28
K &P 1.02 0.31 0.28

case-control (Table 2b). This difference can easily be
made up for by choosing a slightly larger subcohort.
However as the proportion of censorings increases
the variance of the case-cohort estimators increases
while the variance of the nested case-control estima-
tors seems to remain the same.

Thus for the third censoring scheme the case-
cohort design fares rather bad compared to the
nested case-control design (Table 2c). With this cen-
soring scheme it may happen that (almost) everyone
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in the subcohort was censored before the last few
cases. Then the case-cohort estimators we have pre-
sented are not able to pull much information out of
these last cases. The nested case-control design on
the other hand ensures that a minimum of controls
are available for all cases. In a situation like this
a simple case-cohort design should be avoided. As-
suming that it is possible to determine the censoring
time in advance one should instead carry out a strat-
ified case-cohort study (see Section 6) with censoring
time as a stratification variable.

Regarding the different estimation methods we see
a consistent improvement for the pseudo-likelihood
over the partial likelihood estimator for nested case-
control. This i1s mainly due to the relatively high
incidence (12.5 % cases). For case-cohort there is
here no improvement of the Kalbfleisch & Lawless
estimator (6) over the Prentice estimator (5) partly
due to a relatively small effect of the covariate.

Some comments regarding variance estimation are
in place. For case-cohort we used both the estima-
tion routine of Therneau & Ti (1999) and the ro-
bust variance of Barlow (1994). On average these
gave the same result. However the variation of the
robust variances is higher than that of the model
based variances. This may indicate that for very
small case-control studies the model based variances
should be preferred. The variance estimates for the
pseudo-likelihood estimator under the nested case-
control design were carried out both by specifying
robust variances in the weighted Cox-regression and
by a similar routine as that of Therneau & Ti (1999).
Again these agreed on average. However they are
both conservative relatively to the variance estima-
tor in Samuelsen (1997), that is the variances are
somewhat too large. In the present situation the
conservatism was negligible. In fact the variance es-
timators of Therneau & Li (1999) and Barlow (1994)
for the case-cohort design are also conservative for
the estimates based on (6) although no indication of
this was visible from these simulations.

6 Stratified Designs

Our presentation of nested case-control studies and
case-cohort studies so far has assumed that all co-
variate information is obtained only on the case-
control sample. However, since such studies are per-
formed within well-defined cohorts there will gen-
erally be additional background data that are avail-
able for all cohort members. For instance a surrogate
measure of exposure, like type of work or duration of
employment, may be available for everyone. Based
on such information it is possible to construct more
efficient case-control designs. The main idea is that
the cohort can be stratified according to the available
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background data, so that predetermined number of
controls can be sampled from each stratum. This
will, e.g., ensure that we sample control individu-
als with long and short employment time, and thus
likely also individuals with low and high cumulative
exposure. In this section we describe variants of the
nested case-control and the case-cohort design that
effectively takes the background data into account.

6.1 Counter-matched sampling of controls
Langholz & Borgan (1995) have developed a strati-
fied version of the simple nested case-control design
which makes it possible to incorporate additional in-
formation into the sampling process in order to ob-
tain a more informative sample of controls. For this
design, called counter-matching, one applies the ad-
ditional information on the cohort subjects to clas-
sify each individual at risk into one of say, S, strata.
We denote by R (¢) the subset of the risk set that
belongs to stratum s, and let n,(¢) be the number
at risk in this stratum just before time ¢t. If a failure
occurs at t, we want to sample our controls such that
the sampled risk set will contain a specified number
m, of individuals from each stratum s = 1,...,5.
This is obtained as follows. Assume that an indi-
vidual who belongs to stratum r fails at £. Then for
s # r one samples randomly without replacement m
controls from R;(t). From the case’s stratum r only
m; — 1 controls are sampled. The failing individual
is, however, included in the sampled risk set R(t), so
this contains a total of m, from each stratum. The
design can be summarized as

e Case occurs at time t from stratum r

e Sample m, — 1 controls from the those at risk
in the stratum of the case

Sample m controls from the other strata

e Sampled risk set ﬁ(t) consists of the case and
the sampled controls

e Ascertain covariates for individuals in ﬁ(t)

Even though it is not made explicit in the nota-
tion, we note that the classification into strata may
be time-dependent; e.g., one may stratify accord-
ing to the quartiles of a time-dependent surrogate
measure of the covariate of main interest. A cru-
cial assumption, however, is that the information on
which the stratification is based has to be known
just before time ¢. This assumption is similar to the
requirement that time-dependent covariates need to
be known prior to events.

By counter-matching, one may be able to increase
the variation in the value of the covariate of main
interest within each sampled risk set, and this will
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increase the statistical efficiency for estimating the
corresponding regression coefficient. In particular,
if this covariate is binary, and we select one control
per case, concordant pairs (i.e., the case and its con-
trol have the same value of the covariate) do not give
any information in estimating the effect of the covari-
ate. For a counter-matched design with S = 2 and
my; = my = 1, and where stratification i1s based on
a surrogate measure of the covariate of main inter-
est, the single control is selected from the opposite
stratum of the case. This will reduce the number
of concordant pairs, and thereby increase the infor-
mation contained in the pairs of cases and controls.
The situation with two strata and one control per
case also gives a motivation for the name counter-
matching. As the name suggests, it 1s essentially the
opposite of matching where the case and its control
are from the same stratum (cf. Section 3.3).

Inference for counter-matched nested case-control
studies may be based on a partial likelihood sim-
ilar to (3). However, weights have to be inserted
in the denominator of the partial likelihood in or-
der to reflect the different sampling probabilities in
the various strata. Specifically, if individual k in
sampled risk set R(¢;) belongs to stratum s, its con-
tribution to the partial likelihood 1s multiplied by
wy = n4(tj)/ms. Note that the weight is the same
whether individual % is a case or a control.

Inference concerning the regression coefficients,
using usual large sample likelihood methods, can be
based on the weighted partial likelihood. Moreover,
software for Cox regression can be used to fit the
model provided the software allows us to specify the
logarithm of the weights as “offsets”. For further de-
talls on counter-matched nested case-control studies,
the reader is referred to the review by Langholz &
Goldstein (1996).

6.2 Stratified case-cohort studies

Above we indicated how counter-matched sampling
in nested case-control studies may increase the vari-
ation in the value of the covariate of main interest in
the sampled risk sets, and thereby increase the sta-
tistical efficiency for estimating the corresponding
regression coefficient. In a similar manner, strati-
fied sampling of the subcohort may be advantageous
in case-cohort studies when a surrogate measure for
the covariate of main interest is available for every-
one and may be used to classify the individuals in
the cohort into a number of distinct strata. With n;
individuals in stratum s, one then selects a random
sample of m; individuals to the subcohort € from
each stratum s (Samuelsen 1989, Borgan et al. 2000).

The design can be summarized as

e Sample subcohort C from full cohort by strati-
fied sampling
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e Case occurs at time ¢

e Sampled risk set S(¢) at ¢ consists of the case
and the individuals C that are still at risk

. Ascertai~n covariates for indiviguals in the sub-
cohort C and for cases not in C

Note, however, that while the strata may depend
on time for nested case-control studies, they need to
be fixed over time for the case-cohort design. It is
on the other hand possible to define strata according
to the length of follow-up.

As for the simple case-cohort design, there are
different options for the analysis of stratified case-
cohort studies. One possibility 1s to modify the
pseudo-likelihood (5) by including weights in the de-
nominator to reflect that the sampling fractions vary
between strata. Specifically, if individual £ belongs
to stratum s its contribution to the pseudo likelihood
(5) is weighted by wy = ny/m;. Alternatively, one
may modify the pseudo-likelihood (6) and use infor-
mation from the cases at all failure times when they
are at risk. Then the proper weights are wy = 1 for
the cases and wy = n?/m? for the non-failing sub-
cohort members from stratum s. Here n? and m®
are the number of non-failures in the cohort and the
subcohort, respectively, belonging to stratum s. It
should be noted, however, that the gain by including
the cases at all failure times when they are at risk,
seems to be of less importance for stratified sampling
than is the case when the subcohort is selected by
simple random sampling (Borgan et al. 2000).

6.3 Efficiency gain by stratified sampling
Stratified sampling is a useful option when there is
one covariate that is of particular interest in the
study. Then one may use a surrogate measure for
this covariate (available for everyone) to increase the
variation in this covariate within the sampled risk
sets or the subcohort, and thereby obtain an effi-
ciency gain for estimating the regression coefficient
corresponding to this covariate. However, one should
be aware that there 1s “no free lunch,” so stratified
sampling may result in a loss in efficiency for other
covariates compared to simple random sampling.
For the nested case-control design, the efficiency
gain has been documented both by large sample rela-
tive efficiency calculations (Langholz & Borgan 1995,
Langholz & Goldstein 1996) and by Steenland and
Deedens’ (1997) study of a cohort of gold miners. For
the latter, a counter-matched design (with stratifica-
tion based on duration of exposure) with three con-
trols per case had the same statistical efficiency for
estimating the effect of exposure to crystalline silica
as a simple nested case-control study using ten con-
trols. The efficiency gain by using stratified sampling
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for the case-cohort design has been less studied. But
the simulation study of Borgan et al. (2000) seems to
indicate that the gain by using stratified sampling is
of comparable size for nested case-control and case-
cohort studies.

7 Discussion

Cohort studies are usually considered to be the most
reliable study design in epidemiology, while “classi-
cal” case-control studies are easier and quicker to
implement, but usually also less reliable. The co-
hort sampling methods considered in this paper have
been developed in response to the need to have avail-
able study designs which, like cohort studies, take
the time aspect in the development of a disease into
account, and at the same time combine the cost-
effectiveness of a “classical” case-control study with
the presumably greater validity of a cohort study.

If one in a study wants to use a cohort sampling
method to reduce the workload of data collection
and error checking, a choice between a nested case-
control and a case-cohort study has to be made. As
the two designs generally are comparable as far as
statistical efficiency is concerned, the choice between
the two has to be based on other considerations.

The statistical analysis of nested case-control data
may be performed using partial likelihood methods
and standard software for Cox regression. Since the
usual large sample likelithood methods do not apply
for case-cohort data, the analysis of data from case-
cohort studies is more cumbersome.

Control sampling in a nested case-control study
are from those at risk at the cases’ failure times,
while in a case-cohort study the subcohort is selected
without consideration of at risk status. This differ-
ence 1n the way sampling is performed, creates two
limitations for nested case-control studies which are
avoided for case-cohort studies (Barlow et al. 1999):

e ascertainment of covariate values for the controls
has to wait until failures occur

e choice of time-scale for the analysis has to be
decided before the controls are selected

The relevance of these limitations depends on the
situation at hand, but they are most likely to be of
importance for prospective studies like disease pre-
vention trials.

Often there will be some background information
available for all members of a cohort. If some of this
information is correlated with the covariate of main
interest, it may be advantageous to adopt a stratified
study design. However, one should keep in mind that
one sometimes has to pay for the increased statistical
efficiency for estimating the effect of the covariate
of main interest by a lower statistical efficiency for
estimating the effect of other covariates.
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