Design and Verification of a Calculable Composite Voltage Calibrator
DOI:
https://doi.org/10.5324/nordis.v27i1.4491Resumen
Components used in the power grid need to be tested to verify they can withstand specified voltage stresses. Composite voltage test according to IEC 60060-1:2010 is a test method where impulse voltage is applied simultaneously with AC or DC voltage to the same terminal of the test object. To provide traceability to instruments used for composite voltage measurements, low-voltage calibrator based on combining existing calibrators was developed. The developed composite voltage calibrator can generate lightning and switching impulses together with DC and AC. The calibrator design is based on a series connection of a DC/AC calibrator and a calculable impulse voltage calibrator. Maximum impulse voltage peak is 330 V whereas the DC/AC voltage can be within 1000 V. Reference parameters for composite waveshape are calculated based on the applied voltage, charging voltage of the impulse calibrator, internal impedance of the impulse calibrator, and the input impedance of the device under calibration. The main uncertainty components of this composite voltage calibrator are the uncertainties related to the separate calibrators and the uncertainty of the load impedance needed for the parameter calculation.
Descargas
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Jussi Havunen, Jari Hällström, Johann Meisner, Frank Gerdinand, Alf-Peter Elg
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Proceedings of the Nordic Insulation Symposium licenses all content of the journal under a Creative Commons Attribution (CC-BY) licence. This means, among other things, that anyone is free to copy and distribute the content, as long as they give proper credit to the author(s) and the journal. For further information, see Creative Commons website for human readable or lawyer readable versions.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).