Comparison of Methods to Detect Thermomechanical Ageing of the Insulation System for Rotating High-Voltage Machines
DOI:
https://doi.org/10.5324/nordis.v27i1.4570Abstract
Increased dynamic operation of long rotating high-voltage machines as well as elevated operating temperatures lead to intensified thermomechanical stress in the insulation system of global vacuum-pressureimpregnated machines. Meanwhile, the requirements regarding reliability of the machine and the electric insulation system remain high. Consequences of thermomechanical stress include delaminations and abrasion. To satisfy the high standards of longevity, reliable diagnosis of thermomechanical ageing is essential to allow manufacturers to develop and improve countermeasures. This work identifies diagnostic tools, which investigate the effects of thermomechanical ageing on model replicates of machine insulation systems. The longitudinal thermal expansion of the conductor during dynamic operation is replicated by applying mechanical force to the conductor of specimens, thus inducing mechanical stress in the insulation system. Recurring measurements of partial discharges, dielectric losses and capacitance are evaluated regarding their sensitivity in detecting resulting ageing phenomena. The study reveals that partial discharge measurements detect preliminary damages before insulation rupture caused by mechanical
stress occurs. Knowledge of these capabilites enables future-oriented development of insulation systems for dynamically-operated long rotating machines.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Lena Elspass, Stephan Schlegel, Hans Bärnklau
This work is licensed under a Creative Commons Attribution 4.0 International License.
Proceedings of the Nordic Insulation Symposium licenses all content of the journal under a Creative Commons Attribution (CC-BY) licence. This means, among other things, that anyone is free to copy and distribute the content, as long as they give proper credit to the author(s) and the journal. For further information, see Creative Commons website for human readable or lawyer readable versions.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).