Surface potential decay on silicon rubber samples at reduced gas pressure
DOI:
https://doi.org/10.5324/nordis.v0i23.2448Keywords:
surface charge, silicon rubberAbstract
Accumulation of interfacial charges is an inherent feature of HVDC insulation based on solid and gaseous media. The collected surface charges can alter the geometrical electric field leading to undesirable phenomena such as partial discharges and even unexpected flashovers.
In the present paper, surface potential decay on silicone rubber samples is analyzed at reduced pressures of ambient air that allows for elimination of surface charge neutralization by gas ions. Thus, influences imposed by bulk and surface conduction in the solid material are studied by means of computer simulations and experimental measurements. The results allow for identifying levels of bulk and surface conductivities above which the corresponding charge decay mechanism becomes dominant. It is shown that with a negligible space charge effect and significant surface leakage, there exists a notable spread of charge along gas-solid interface yielding visible crossover phenomenon in charge decay characteristics. It is also demonstrated that the effect of space charge in the material bulk on surface potential decay can only be significant within layers of material finer than ca. 100 μm.
Downloads
Downloads
Published
Issue
Section
License
Proceedings of the Nordic Insulation Symposium licenses all content of the journal under a Creative Commons Attribution (CC-BY) licence. This means, among other things, that anyone is free to copy and distribute the content, as long as they give proper credit to the author(s) and the journal. For further information, see Creative Commons website for human readable or lawyer readable versions.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).