Short and long term behavior of functionally filled polymeric insulating materials for HVDC insulators in compact gas-insulated systems
DOI:
https://doi.org/10.5324/nordis.v0i23.2445Keywords:
HVDC, gasAbstract
Conventional insulators optimized for high-voltage alternating current transmission tend to accumulate surface and volume charges in direct voltage applications. This is especially true for gas-insulated systems, where the surrounding gas is extremely dry, thus having very low conductivity. This may result in a strong decrease of the dielectric strength of the insulators and can lead to dielectric breakdown, especially when polarity reversals are applied. Main challenges for the development of HVDC insulators are avoiding surface and volume charge accumulations and featuring both suitable capacitive and resistive field distributions. The use of polymeric insulation materials filled with functional fillers of defined low and possibly non-linear, field dependent electric conductivity avoids these charge accumulations.
Several specimens of polymeric insulation materials of different, controlled conductivities for high field stress applications were produced and experimentally investigated for this contribution. Since electric conductivity depends on parameters such as temperature, humidity or long term ageing, the longterm behavior of the specimens was investigated in 1000 h tests under temperature and electrical field stress. Furthermore, tests in a high-voltage gas insulated test setup were performed in order to determine the dielectric strength of the filled polymers under high electric stationary and transient fields as present in gas insulated systems. Results of these investigations are presented and discussed in detail in this contribution.
Downloads
Downloads
Published
Issue
Section
License
Proceedings of the Nordic Insulation Symposium licenses all content of the journal under a Creative Commons Attribution (CC-BY) licence. This means, among other things, that anyone is free to copy and distribute the content, as long as they give proper credit to the author(s) and the journal. For further information, see Creative Commons website for human readable or lawyer readable versions.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).