Influence of manufacturing process on electrical properties of LDPE-GnP nanocomposites
DOI:
https://doi.org/10.5324/nordis.v0i25.2362Abstract
In this report electrical properties of the nanocomposite samples, prepared from graphene nanoplatelet (GnP) loaded low density polyethylene (LDPE) by extrusion and compression molding, were examined in order to elucidate the impacts of the nanoplatelets size and material’s manufacturing process. It is shown that the extrusion forces a strong anisotropy in material’s morphology. The graphene nanoplatelets become aligned along the flow direction. As compared to pure LDPE, a significant reductions of the through-plane low field electric conductivity is found in such samples. On the other hand, the samples produced by press molding exhibit slightly higher level of electric conductivity, which is connected to their less aligned microstructure and filler dispersion. For comparison results of measurements on LDPE-graphene monolayer sandwiches are also presented.
Downloads
Downloads
Published
Issue
Section
License
Proceedings of the Nordic Insulation Symposium licenses all content of the journal under a Creative Commons Attribution (CC-BY) licence. This means, among other things, that anyone is free to copy and distribute the content, as long as they give proper credit to the author(s) and the journal. For further information, see Creative Commons website for human readable or lawyer readable versions.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).