The Role of Film Processing in the Large-Area Dielectric Breakdown Performance of Nano-Silica-BOPP Films
DOI:
https://doi.org/10.5324/nordis.v0i24.2286Keywords:
Nano silica, BOPP, dielectric breakdown,Abstract
This paper summarizes the effects of various compositional, structural and film processing factors on the breakdown behavior of laboratory- and pilot-scale melt-compounded bi-axially oriented polypropylene (BOPP) nanocomposite films with silica fillers. A selfhealing multi-breakdown measurement approach has been extensively utilized for large-area breakdown characterization of a large number of material variants from different processing trials. The results suggest that although the optimum level of silica presumably resides at the low fill-fraction range (~1 wt-%), the silica content itself is not the only determining factor, as compounds with equal silica content were found to exhibit large differences in the breakdown properties depending on the compounding and film processing steps. Dispersion quality and filler agglomeration (in both the nm- and μm-scale) appear to be of great importance. Indications of possible interaction between nano-silica and co-stabilizer Irgafos 168 are also presented. Overall, the laboratory- and pilot-scale film processing trials suggest that up-scaling of the polymer nanocomposite production is sensible with traditional melt-blending technology, although further development and optimization of nanocomposite formulations and processing is necessary.
Downloads
Downloads
Published
Issue
Section
License
Proceedings of the Nordic Insulation Symposium licenses all content of the journal under a Creative Commons Attribution (CC-BY) licence. This means, among other things, that anyone is free to copy and distribute the content, as long as they give proper credit to the author(s) and the journal. For further information, see Creative Commons website for human readable or lawyer readable versions.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).