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Abstract: Informal inferential reasoning (IIR), described as making evidence-based 
generalizations about a population based on samples, is considered important for the 
development of argumentation-, inference-, critical thinking - and aggregate thinking 
abilities. This article aims to explore how undergraduate students’ IIR can develop in an 
inquiry problem-solving session on simple linear regression, through individual think-
aloud protocols with follow-up conversations with five students. Our findings suggest 
that enabling and supporting the students to grapple with their own hypotheses is 
important for their development of IIR encouraging critical thinking. From initial 
hypotheses with limited argumentation and little regard to the probabilistic nature of 
statistical inferences, the students’ reasoning evolved in terms of making probabilistic 
generalizations from data when they were given time and concurrent probing to 
elaborate on, and question, their own arguments and inferences. We also suggest that 
in addition to emphasize the signal in the noise, giving attention to the noise around the 
signal can be fruitful for their IIR. 
 

1 Introduction 

An important development in research on statistical learning is the change in focus from 
procedural skills and methods towards reasoning and aggregate thinking (Ben-Zvi & 
Garfield, 2004; Makar & Rubin, 2009). This shift has brought increased attention to 
critical thinking, inquiry, and inference, which are considered important for in-depth 
learning and critical application of knowledge (e.g., Artigue & Blomhøj, 2013; Dorier & 
Maaß, 2020; Garfield & Ben-Zvi, 2008). Moreover, inference “is at the heart of statistics, 
as it provides a means to make substantial evidence-based claims under uncertainty 
when only partial data are available” (Makar & Rubin, 2018, p. 262), which makes learning 
and teaching about inferences essential for statistics education (Pratt & Ainley, 2008). 



Bråtalien & Naalsund, 2024                    Nordic Journal of STEM Education, Vol. 8(2) 
 

DOI: 10.5324/njsteme.v8i2.4943 
 

74 

While formal statistical inference is based on formal statistical procedures (Makar & 
Rubin, 2009; Zieffler et al., 2008), informal statistical inference involves reasoning based 
on critical thinking and knowledge without using formal statistical procedures. Informal 
inferential reasoning (IIR) concerns the drawing of evidence-based conclusions about a 
wider population from sample data, and has shown promising effects on developing 
students’ understanding of statistical key concepts (Ben-Zvi, 2006; Konold & Pollatsek, 
2002; Makar & Rubin, 2009; Zieffler et al., 2008). We view IIR as both the process of 
drawing and evaluating inferences, and the product of such processes, without trying to 
separate the two. Similar definitions are used in other research studies on reasoning 
(e.g., Lithner, 2008; Makar & Rubin, 2009).  

Few researchers have investigated students’ IIR on correlations, for example through 
scatterplots (Makar & Rubin, 2018). Thus, there is a need for research addressing IIR in 
this statistical context. One approach is to explore IIR on a micro-level, focusing on how 
students’ informal reasoning develops over a defined period of time (Pratt & Ainley, 
2008). In this light, the study presented in this article explores how five undergraduate 
students’ IIR develop through a micro-level position in individual 30-minute inquiry 
problem-solving sessions on simple linear regression. Such research can provide 
detailed insight on for example what data in the scatterplot the students base their 
informal inferences on, the statistical and non-statistical arguments they use to support 
their inferences, and what might initiate and guide any developments in their IIR in a 
short-time perspective (for example over the course of one activity). Further, this insight 
might inform both practitioners and researchers in design and orchestration of learning 
activities that support students’ IIR. 

Recent Nordic research has looked at students’ emphasized criteria when informally 
fitting a line to a scatterplot (Bråtalien & Naalsund, 2021) and students’ thoughts on what 
mathematical ideas computers use to find the best fitted line (Petersson, 2022). The first 
study adds to the body of research on how informal curve-fitting often is based on 
uncomplicated and easily operationalizable ideas, but also reveals how students might 
combine multiple ideas in their reasoning. The second study – asking the students 
explicitly to discuss the mathematical ideas that curve-fitting could be based on – found 
similarities between several student suggestions and central mathematical ideas for 
curve-fitting throughout mathematics history. Both studies provide interesting insight 
into students’ reasoning as they construct linear regression models, but neither bring to 
focus what inferences the students believe can be drawn from the models they make. 
Drawing inferences related to linear regression and being able to critically discuss 
generalized conclusions and predictions about the correlation and causation between 
two variables, is central in several areas of education, work life and research. In addition, 
the increased attention to contrasting perceptions of the truth in different media, often 
accompanied by statistical data or models as “evidence”, makes it important to critically 
discuss and interpret sample data and the inferences that are drawn from them, for 
example regarding representativeness, sampling, correlation, and causation. Further, in 
our everyday life we make numerous conclusions, predictions and decisions based on 
the selected data that we have (Makar & Rubin, 2018), for example from experience or 
previous knowledge. In other words, we shape our future based on inferences drawn 
from limited data. These types of inferences are not necessarily – and in our daily life 
most likely not – based on formal statistical methods, which highlights the importance of 
critical thinking and informal inference. In this article, we explore the following research 
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question: How can undergraduate students' IIR on simple linear regression develop in an 
inquiry problem-solving session?  

2 Informal Inferential Reasoning 

Makar and Rubin (2009) offer a theoretical framework on IIR in statistics, highlighting 
three key principles: Generalizations beyond the data, the use of data as evidence and 
probabilistic language. Similar principles are highlighted in other frameworks on IIR as 
well (e.g., Ben-Zvi et al., 2007; Zieffler et al., 2008). Based on this consensus, and the 
lucid explanations offered by Makar and Rubin (2009), we adopt their framework to 
interpret the students’ IIR. Generalization refers to predictions, estimations and 
conclusions that go beyond describing the sample it is based on, often used to generate 
a hypothesis about a greater population or to evaluate it (Makar & Rubin, 2009). The 
generalizations must be based on some form of evidence, which can include 
observations, descriptions, numerical data and even unrecorded data (Makar & Rubin, 
2009). When drawing and communicating inferences, the language used should be 
probabilistic, which means “any language appropriate to the situation and level of 
students to suggest uncertainty in a speculated hypothesis, that a prediction is only an 
estimate, or that a conclusion does not apply to all cases” (Makar & Rubin, 2009, p. 87). 
Makar and Rubin (2009) formulate the three key principles together as probabilistic 
generalizations from data, underpinning their intertwinement in inference processes. 
Even though the focus in IIR is on generalizations beyond the data, the data at hand 
serves a critical role. Being able to properly and critically evaluate the validity of claims 
based on the data, and the data themselves, is important for understanding statistical 
relationships (Ben-Zvi & Garfield, 2004). Moreover, generalizations should be 
accompanied by supporting arguments (Ben-Zvi, 2006; Ben-Zvi et al., 2007; Makar & 
Rubin, 2009; Zieffler et al., 2008), and data is required to build such arguments. This links 
generalizations beyond data to the use of data as evidence. Similarly, generalizing based 
on a data sample always includes some level of uncertainty. A different sample (e.g., 
other observations) would probably give a different scatterplot, which could lead us to 
draw completely different inferences. Any generalized inference must therefore be 
stated in probabilistic terms (Ben-Zvi et al., 2007; Makar & Rubin, 2009).  

This study focuses on IIR in connection with simple linear regression, which involves 
making inferences by using samples to describe, interpret and model a possible general 
relationship between two variables. The sample can be illustrated as a scatterplot, which 
indicates whether there is an overall association between the response- and explanatory 
variable and the strength of the association between them. IIR is in our research used to 
describe the construction of generalizations, predictions, and conclusions, from mainly 
reasoning on a scatterplot. In this complex reasoning process of drawing informal 
statistical inferences, one must navigate through, and assess, great amounts of data to 
decide what evidence to build one’s arguments on. Making inferences from scatterplots 
includes reasoning on sample size, variability, representativeness, signals and noise, 
interpretations, hypotheses, generalizations, uncertainties, and alternative expla-
nations, all using a flexible view by shifting between emphasizing local points or clusters 
of data, viewing the data as an aggregate, and viewing the data as a fragment of a wider 
population. From these arguments, a generalization about the wider world forms – if the 
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sample is considered representative for a larger population. “The key idea in inferential 
reasoning is that a sample provides some, but not complete, information about the 
population from which it is drawn” (Sotos et al., 2007, p. 101). This idea involves both the 
issue of representativeness, inasmuch as the characteristics of the sample should 
resemble the characteristics of the population (if the sample selection has been done 
properly), and variability between samples, inasmuch as different samples will reflect 
the populations to different extents (Batanero et al., 1994). 

Research indicate that students might oversimplify statistical criteria for simple linear 
regression (e.g., Bråtalien & Naalsund, 2021) and use ideas and procedures that are only 
sufficient in special situations (e.g., Batanero et al., 1994). Students, across grade levels, 
often see sample data as a collection of single values or cases (Ben-Zvi, 2004; Ben-Zvi & 
Arcavi, 2001; Konold et al., 1997) in opposite to focusing on general patterns in the 
sample. Moreover, in their study on first year university students, Batanero et al.(1997) 
found that the students often based their conclusions and judgements on selected parts 
of the data. This can heavily affect their informal inferences, as the evidence for their 
inferences will be based on fragments of the sample (which again is just a fragment of a 
larger population). An aggregate view is considered fundamental to discover and explain 
patterns and draw inferences that take into consideration the variability in the data (Ben-
Zvi & Arcavi, 2001), but several researchers argue that this can be a complex process 
(Ben-Zvi, 2004; Ben-Zvi & Arcavi, 2001; Konold et al., 1997). Some students believe that 
any sample, regardless of size, is representative (Sotos et al., 2007; Watson, 2004). This 
may lead to deterministic inferences, as the students do not reflect on how the sample 
affects the level of certainty their conclusions have. Students with such conceptions will 
typically generalize beyond what is appropriate. Another challenge is how students, even 
after formal instruction, struggle realizing that causation cannot be claimed solely from 
a strong association between two variables (Batanero et al., 1997). These findings are 
somewhat alarming, as generalizing and determining whether association in samples 
suggests casualization are key elements in statistical inference (Ben-Zvi, 2006).  

3 Method 

3.1 Participants and data collection 
The data was collected in February 2017 at a Norwegian university. Five students 
participated: Emma, Heidi, Karoline, Linn, and Susanne. The study used purposive sam-
pling in selecting participants (Bryman, 2016), and the five students were chosen in 
collaboration with the lecturer in a first course in university level elementary statistics, 
which all five students had participated in the previous autumn. The five students had all 
been verbally active in classroom discussions, which was considered positive for 
participation as verbalizing one’s thinking is an important criterion for the chosen 
method (think-aloud protocol) to function optimally (Afflerbach & Johnston, 1984; Van 
Someren et al., 1994). Another important criterion was that they all freely agreed to 
participate in the study. We acknowledge that the all-female and talkative sample might 
not represent the average student in an elementary statistics course, which is not 
considered an issue, since the aim of the research was not generalizability to a 
population, but in-depth insight into how undergraduate students’ IIR might develop 
throughout an inquiry problem-solving session.  
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The study was conducted approximately one month after the students had finished their 
final exam in the university level elementary statistics course, where linear regression 
was one of the topics taught. The reason for the delay between the course and the study 
was the university course schedule and holidays. The critical reader might question if we 
can talk about informal inferential reasoning when the students had received formal 
instruction on linear regression. Our view on this is that informal reasoning does not 
require that the students do not have any (formal) knowledge on the topic, only that the 
reasoning is done without using formal statistical procedures (for example, calculating 
R2-values to evaluate the fit of a regression line would be a formal statistical procedure). 
Although we cannot rule out that the students’ reasoning in this study might have been 
affected by their formal instruction on linear regression, the problem that the students 
worked on did not offer them information needed to do formal procedures (e.g., numbers 
from which they could calculate R2-values) and, hence, the problem encouraged IIR. We 
outline the problem in the next subsection (3.2), while our actions to promote informal 
reasoning are further addressed in subsection 4.2. 

Individual think-aloud protocols were used, which means that the students were 
encouraged to continually speak aloud their thoughts as they worked through a problem 
(Afflerbach & Johnston, 1984; Van Someren et al., 1994; Young, 2005). The think-aloud 
sessions were followed by a short conversation (cf. Van Someren et al., 1994) between 
the student and one of the researchers to enable further exploration of relevant 
reasoning sequences without interrupting the students’ chain of thought during the 
problem solving. Thus, the researcher’s role was initially to mainly provide prompts when 
the student was quiet for some time and to identify reasoning sequences to pursue in the 
conversations. Each think-aloud protocol lasted 30 – 45 minutes, including the 
conversation, and was video recorded.  

There are some issues of reactivity connected to think-aloud data (Young, 2005), 
especially concerns related to the ability to think and attend to a problem at the same 
time, the effects of having to talk during problem solving, and the effect of drawing the 
attention to underlying cognitive processes whilst working on a problem. Measures were 
taken to ensure a calm and safe environment for the sessions: Research ethics were 
specifically discussed with the students, the interactions with the students during the 
sessions were limited, although encouraging and supportive, and the students were 
offered lunch after the sessions. There might be variations regarding how used the 
students are to verbalizing their thoughts, thus there is a risk for underestimating the 
students’ reasoning abilities. However, this study does not aim to test students’ abilities, 
nor classify them into different reasoning types, but to uncover possible developments 
in their IIR working with one data sample during a defined period. A central question then, 
is to what extent the think-aloud data reflects the students’ reasoning. We believe that 
the post-activity conversation helped bring actions to consciousness that perhaps were 
unconscious during the activity, thus allowing us to gain further insights into the 
students’ reasoning. 
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3.2 The problem 
Tasks used to study IIR should challenge the students to build on their prior knowledge, 
draw inferences (without using formal statistical methods), and identify evidence to 
support their claims (Zieffler et al., 2008). The students were given the scatterplot in 
Figure 1, made from fabricated data pairs, with a line going through the plot. They were 
asked to discuss the model and what inferences they could draw from it (“what can you 
say based on this model?”). The line through the plot was not the best-fitted line. The 
reason for this was that the students later were asked to draw what they believed was 
the best-fitted line for the plot in Figure 1, without any calculations or technology to 
support them, and argue for the placement of their line. The students were then given the 
same plot but without the line. We have addressed their emphasized criteria for 
informally fitting the line elsewhere (Bråtalien & Naalsund, 2021); in this study we do not 
focus on their emphasized criteria but rather on their informal inferences they drew from 
the plot. The line seen in Figure 1 was placed in the plot to provide the students a starting 
point for their problem-solving and to encourage informal reasoning on for example 
variability, skewness, signals and noise, correlation, and causation. Formal measures 
such as the R2-value was intentionally left out, and the placement and number of points 
discouraged the students from making such formal calculations themselves. The 
context, exam result versus amount of candy eaten, facilitated discussion on correlation 
and causation, in addition to relating the problem to the students’ real world (as most 
students can relate to eating candy and studying for exams). We made a pedagogical 
decision to work with a sample of 19 datapoints, although the low sample size is 
insufficient for drawing conclusions. The reason for this was to highlight issues of low 
sample sizes, uncertainties, and representativeness, in addition to operationalize 
informal strategies for, and encourage discussion on, the placement of a regression line 
(as addressed in Bråtalien and Naalsund (2021)). 
 
 

 
Figure 1. The problem, a scatterplot with a line through it (not the regression line). 
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3.3 Data analysis 
The video recordings of the think-aloud sessions and subsequent conversations were 
transcribed to make easier the further process of coding and analysis. Through the 
transcription phase, we gained familiarity with the data (Lapadat, 2000; Powell et al., 
2003). Thereafter, based on the theoretical framework and previous research, 
interpretive marginal notes were made alongside the transcriptions for each of the five 
students. “Coding and categorizing in this manner allow the researcher to identify the 
types of thinking evident in the think-aloud data” (Young, 2005, p. 26). The students’ IIR 
was coded according to the three key principles of IIR: 1) making generalizations (e.g. 
hypotheses, predictions, conclusions that go beyond describing the sample), 2) the use 
of data as evidence (e.g. observations, variability, signals and noise), and 3) the 
probabilistic nature of the language used (e.g. reflection of uncertainty in evidence, 
hypotheses and conclusions).This structured the data into three overarching codes 
(generalizing, evidence, probabilistic language), each containing a substantial number of 
sequences from the transcripts. Both researchers discussed the codes, the coding 
procedures, and the interpretations. 

The next analytical step was to write rich descriptions of each student’s IIR working on 
the problem, from the coded sequences (Powell et al., 2003). The descriptions followed 
the development of their IIR through the session and a pattern (Stake, 2003) of three 
phases of the students’ IIR grew forth, connected to the presence (or absence) of the key 
principles and any interconnection between them. The three phases are illustrated in 
Figure 2 and guide the results and discussion. Quotes are included that illustrate typical 
student IIR. The typicality is explained where the quotes are included. Thereafter, we 
identified reoccurring reasoning across cases, and differences between cases, that 
could offer useful insight considering our research aim. The similarities and differences 
were centered around the three key elements for IIR. 

 
 

 
Figure 2. The five students' IIR process. 

4 Results and Discussion 

All the students followed a similar process in their IIR (see Figure 2), even though they 
solved the problem individually. When handed the problem, they all looked within the 
data, before stating an initial hypothesis about the wider world. This was done within few 
minutes and with little to no interaction with the researcher. Building on this, the 
students, on their own or through inquiring interaction with the researcher, critically 
assessed their initial hypothesis through elaborating on the arguments it was based on 
and including new evidence and arguments – a process leading them to state a 
reformulated hypothesis.  
 
 
 

Stating an initial 
hypothesis

Critical assessment of the 
initial hypothesis

Stating a reformulated 
hypothesis
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4.1 Stating an initial hypothesis 
The students all started their IIR by stating an initial hypothesis within just minutes after 
receiving the problem. Common for all five students was that this process was initiated 
by commenting the context (given by the axis labels) and the variability and placement of 
data points on the x- and y-axis (mainly focusing on skewness). The following extracts 
illustrate this, showing Emma and Susanne’s individual first verbalized thoughts when 
receiving the problem. While Emma emphasized some selected “clumps” of data, 
Susanne seemed to focus on single data points.  

Emma: (Receives the problem). So, I’m just trying to see where there are more [data 
points], and what [the scatterplot] really shows me. First of all, there are many 
students eating a lot of candy, it seems. (…) It tells me that the students with 
higher exam results eat a little more candy. But, then you have quite a few on the 
middle here, if I’m getting this right... So, in a way, the students with the best 
exam results have also eaten the most candy the week before their exam. So, 
from this, candy helps a little – one can assume that candy improves how you 
perform on the exam. 

Susanne: (Reading the problem out loud). Mm… I see that on the x-axis we have amount 
of candy eaten the week before [the exam]. And here we have the exam result, 
and then it’s plotted together. (…) If you look here (pointing) it’s 150 grams of 
candy eaten, and that person got 60 percent correct on the exam, I guess. Well, 
that’s just one person, there’s many different. But it looks like the exam result 
actually improves, with the more candy you eat. (…) ‘Cause it increases, and the 
more candy, the better the exam results get. So maybe it helps to eat candy the 
week before the exam, then. 

Four of the five students formed initial hypotheses like Emma and Susanne’s (Table 1), 
leading in the direction of causation in the form of candy intake improving the exam 
results. The last student (Linn) emphasized alternative explanations for the correlation 
between candy intake and exam results in her initial hypothesis. Common for all five 
students’ initial hypotheses is that arguments and generalizations seemed to be based 
on parts of the data (Batanero et al., 1997), treating the sample as representative for a 
greater population (Sotos et al., 2007; Watson, 2004), and (apart from Linn) uncritically 
claiming a causal relationship (Batanero et al., 1997), all with little probabilistic 
language.  
 
Table 1. The five students' initial hypotheses. 
Student Initial hypothesis 
Emma One can assume that candy improves how one performs on the exam. 
Heidi The more candy you eat, the better mark you’ll get apparently.  
Karoline It seems like the more candy you eat, the better you do at the exam. 

Susanne 
It looks like the exam result actually improves, with the more candy you 
eat. (…) So, maybe it helps to eat candy the week before the exam, then. 

Linn 
Students who read a lot eat a lot of candy, and they also do well on their 
exams. 
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We see the initial hypotheses that were made as what Makar and Rubin (2009) describe 
as generative hypotheses: “Speculative statements which are created by a reasoned 
process but for which their likelihood has not necessarily been systematically assessed” 
(Makar & Rubin, 2009, p. 86). As both Emma and Susanne’s transcripts illustrate, the 
“reasoned process” was short. The lack of justification of their claim of a causal 
relationship between candy intake and exam result supports Batanero et al. (1997) in 
that students might struggle, even after formal instruction, with the concept of causality. 
However, the students’ comments on the axis labels show that they were aware that the 
data did not exist in some vacuum but represented some sort of relation. 

At first, we were puzzled by how the students’ arguments and emphasized evidence 
focused on a quick look at single values or clusters in the plot (clearly within the data) 
while the hypotheses were expressed as generalizations about a greater population 
(clearly beyond the data) with no arguments offered to justify this advance. Further, the 
inferences were expressed in rather non-probabilistic manners, especially considering 
the limited evidence. Nevertheless, formulating an initial hypothesis means creating a 
starting point. As Makar and Rubin (2009) point out and we will see in 4.2, this starting 
point can be followed by more critical assessment. 

 
4.2 Critical assessment of the initial hypothesis 
The following transcript follows directly from the previous transcript of Emma forming 
her initial hypothesis and shows the interaction between Emma and one of the 
researchers.  

Researcher: Could you clarify what makes you say this [the initial hypothesis]? 

Emma:  Yes, well… You have exam results on the y-axis, and the dots that are the 
highest on the y-axis are also the furthest out on the x-axis, which means 
that they’ve eaten more candy. So, kind of, if you also look at the line that 
has been drawn to show the relationship here, it shows that there is a 
positive growth, which tells me that more candy also get better exam 
results. (…) There isn’t really many observations, though, so maybe this 
gives a bad representation of the reality. But, from the observations used 
here, it seems like this is the case. 

Emma and Linn expressed a development in their IIR after none or just gentle probing 
from the researcher, through few and focusing questions, while Susanne, Heidi and 
Karoline’s reasoning developed through more substantial interactions with the 
researcher. The questions asked by the researcher were guided by each student’s 
arguments and hypothesis. The following transcript of the interaction between Susanne 
and the researcher after Susanne had stated her initial hypothesis, gives insight on the 
development in her IIR. 

Researcher:  What are your thoughts on what you just said [the initial hypothesis]? 

Susanne:  That it seems like a good idea to eat candy a week before the exam? 
(Laughs). Well, the students who ate little candy, like no candy, they had 
half of the exam right. And this is the regression line, I guess. The best 
fitted line for all the different single values here. In this sample, anyway. 

Researcher:  Could you add to that? 
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Susanne:  Well, you have asked many different persons what they’ve eaten and what 
their exam results were, and then you get all these single values here. And 
you represent them like this, with a straight line that fits the best with all 
the values. (…) So, when you look at the distance from every value and to 
the line, then every value should be as close to the line as possible, in a 
way. 

Researcher:  All right. Could you say something about the fit, then? 

Susanne: (…) [H]ere we see that many points are not on the line. So, the regression 
line maybe isn’t really the truth. (…) Well, it could be better, so, that tells 
me that it might not always be true that eating candy the week before the 
exam gives a better exam result, but from this plot, it looks like this is the 
case. 

Researcher: Mm… Is there anything that would have helped you say something about 
this relationship? 

Susanne:  Mm… If they’d asked more people, they would have had more values in 
the plot. Then the line would maybe fit better. ‘Cause the more data you 
have, the more you have to base your representation on. And it would be 
closer to the truth, like, the more people you ask, the more basis you have 
for saying how it really is.  

We see this phase as the students starting to critically assess the likelihood of their own 
inferences (cf. Makar & Rubin, 2009). When evaluating their initial hypotheses, the 
students all gave more details on what evidence they based their inferences on, and 
included more evidence such as trends and variability in the scatterplot, signal (the line 
through the scatterplot) and noise (distance from the line to observations, both 
individual distances and overall distance), uncertainty levels in different samples, 
representativeness, how an outlier would greatly affect small samples like the one in 
their problem, and alternative explanations to the relationship between the two variables 
(like studying). Moreover, when the students introduced sample size and variability to 
their reasoning, it seemed to catalyze their critical thinking on the other aspects 
mentioned above. The idea that the sample, with its variability and limited size, gives no 
complete conclusion – the key idea in inferential reasoning (Sotos et al., 2007) – seemed 
to have triggered the students’ probabilistic reasoning on alternative explanations, 
suggestions for improving the model’s generalizability, and discussing the relationship 
between statistical models and reality.  

IIR may show problematic for students if they are completely unconnected with 
statistical properties (Pfannkuch, 2006). However, we here see that the inclusion of 
statistical ideas contributed to a fruitful development in the students’ IIR. In the process 
of critically reviewing their initial hypotheses, their argumentation gradually took a more 
probabilistic approach, both through explicitly discussing elements that increase 
uncertainty and in their wordings in general. The students now to a greater extent 
included probabilistic wordings like “it seems like …”, “it could be …”, “maybe …”, “from 
this plot …” and addressed the general uncertainties in drawing statistical inferences. 
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4.3   Stating a reformulated hypothesis 
Following the critical discussion of their own inferences, which we have outlined above, 
the students all reformulated their initial hypotheses. Though in individual phrasings, 
their reformulated hypotheses reflected a development in evidence used, degree of 
generalization and in terms of probabilistic reasoning. Each student’s reformulated 
hypothesis is presented in Table 2. 
 
Table 2. The five students' initial and reformulated hypotheses. 
Student Initial hypothesis Reformulated hypothesis 
Emma One can assume that candy improves 

how one performs on the exam. 
If you work hard, then you deserve a treat. 
And if you work extra hard, you’ll get better 
results. 

Heidi The more candy you eat, the better 
mark you’ll get apparently. 

It seems like there’s a trend showing that 
the more candy you eat, the slightly better 
exam results you might get. 

Karoline It seems like the more candy you eat, 
the better you do at the exam. 

If I eat a lot of candy before the exam, 
then, in theory, I should get better results 
on the exam. 

Susanne It looks like the exam result actually 
improves, with the more candy you 
eat. (…) So, maybe it helps to eat 
candy the week before the exam, 
then. 

It might not always be true that eating 
candy the week before the exam gives a 
better exam result, but from this plot, it 
looks like this is the case. 

Linn Students who read a lot eat a lot of 
candy, and they also do well on their 
exams. 

There are examples showing that there’s 
not necessarily a connection between 
candy intake and exam results. 

The increased emphasis on uncertainties within statistical inferences, especially related 
to representativeness but also to some extent causality, was reflected in the students’ 
reformulated hypotheses. They continued to assume some kind of correlation between 
candy intake and exam results within the data but were now expressing doubt in whether 
this applied to the real world (beyond the data). Critically reflecting on the validity and 
adaption of a model is crucial in linear regression (Garfield & Ben-Zvi, 2008). The 
students’ reformulated hypotheses to a greater extent show awareness of the risk of 
over-generalizing when drawing inferences that go beyond the data, through 
formulations like “a trend”, “in theory” and “from this plot”, illustrating a more 
probabilistic approach. Emma and Linn’s reformulated hypotheses (and to some extent 
Susanne) also reveal their concerns regarding claiming causality between the two 
variables. Through critically reflecting on their own starting point – their initial hypothesis 
– the students’ reasoning developed towards expressing a probabilistic generalization 
beyond data, which is in line with the key elements of IIR presented by Makar and Rubin 
(2009).  
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5 Concluding Discussion 

Entering this study, we were curious on how undergraduate students’ IIR could develop 
in an inquiry problem-solving session. In three stages after receiving the problem, we’ve 
described and exemplified the development of five students’ IIR from a micro-
perspective. The creation of an initial hypothesis – although unjustified and deterministic 
– seemed important for the students’ IIR, as it served as a starting point for them to 
verbally express and further critically evaluate and challenge their inferences. The 
process of creating initial, tentative hypotheses might in this way have prepared their 
minds for what was to come and thus made a useful starting point for their IIR. Makar and 
Rubin (2009) consider the process of generating initial hypotheses as one type of 
informal inference, and this creative but maybe uncritical first attempt to interpret 
statistical data has been acknowledged as fruitful for students’ reasoning in previous 
research (e.g Batanero et al., 1997; Ben-Zvi, 2004; Ben-Zvi & Arcavi, 2001). An important 
aspect of statistical modelling is finding an overall trend to “let students see the signal in 
the noise” (Bakker & Gravemeijer, 2004, p. 165). We argue that critical reasoning on 
samples also can facilitate the students in seeing the noise around the signal, and that 
awareness of the noise – variability, shape, and outliers – is crucial in facilitating 
probabilistic reasoning. Focusing too much on the signal can contribute to overlooking 
the uncertainties within a statistical model, as illustrated through the students’ rather 
non-probabilistic and un-justified initial hypotheses about the general correlation (and, 
for four of the five, a claimed causal relationship) between candy intake and exam 
results. Reflecting on the noise led the students toward recognizing that a sample only 
provides partial information about a population (cf. Sotos et al., 2007). Although informal 
and hence not bound to any formal statistical methods, the students’ IIR integrated 
several statistical concepts and ideas, like representativeness, variability, context, 
correlation, (non-)causality, signals and noise, generalizations, and uncertainty, all in 
which the students critically and flexibly maneuvered, interrelated, and discussed. 
Further, they included more evidence and justifications to their arguments and 
questioned the certainty of their previous inferences. Arguing, justifying, and evaluating 
one owns thinking anchored in statistical concepts and ideas as shown here, is well-
known to foster in-depth learning (Ben-Zvi & Garfield, 2004; Makar & Rubin, 2009, 2018; 
Zieffler et al., 2008), and in the process of making logical hypotheses or conclusions, one 
needs to provide persuasive arguments based on data (Ben-Zvi, 2006; Makar & Rubin, 
2009). 

Most of the previous research on IIR has focused on how it can be a first step towards 
making formal inferences. Our research adds to a recent change in perspective (see 
Makar & Rubin, 2018) towards valuing the power of informal reasoning without it being a 
prelude to something more formal, and exploring its possible nature. This study shows 
one example of the developments that might form in students’ informal reasoning in a 
micro-perspective, as they grapple with making and evaluating their own hypotheses and 
accompanied arguments in an effort to generalize based on a small sample. IIR can be 
seen as a relatively new area of interest in statistics research (Makar & Rubin, 2018), 
meaning that further studies that explore IIR through different perspectives and with 
different aims, are needed. Our research must be seen as just one piece in a larger 
puzzle, and more research, including larger studies, is needed to gain thorough 
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understanding of the elements and developments that might occur in students’ IIR when 
grappling with scatterplots.  

Further, our research can inform teachers and researchers. We found that enabling 
and encouraging the students to grapple with their own ideas and hypotheses seemed 
central in the development of their IIR. Based on the developments we saw in the five 
students’ IIR in terms of correlation, we advocate for learning activities that give the 
students both time and intellectual space to deeply engage in, critically evaluate, and 
refine, hypotheses made from their own interpretations of what a scatter plot can tell 
them. This adds to research supporting teaching and learning approaches that 
encourages critical thinking, inquiry, and inference (e.g. Artigue & Blomhøj, 2013; Ben-
Zvi, 2006; Dorier & Maaß, 2020; Garfield & Ben-Zvi, 2008; Konold & Pollatsek, 2002; Makar 
& Rubin, 2009, 2018; Zieffler et al., 2008). Continuing our call for research that explores 
students’ IIR through different lenses, we aknowledge that the design and orcestration 
of the activity in our research was motivated by our research aim and methods (think-
aloud protocols) and must only be seen as one approach to IIR. For example, it takes 
place in a artificial context outside the classroom, and the instructors did not take on a 
teacher role. We welcome research that explore the design and use of learning activities 
that draw on our suggestions above in a real classroom context. Furthermore, while our 
study implies that IIR is an approach that promotes critical thinking as it enables and 
encourages students to express, elaborate on, end evaluate, their own ideas, and thus 
makes the students accountable for justifying and modifying their hypotheses, the role 
of the teacher should not be neglected. An idea for future research might be to look into 
the teacher role, e.g., questioning techniques and orchestration of learning activities that 
allows the students time and intellectual space but at the same time provokes critical 
thinking and evaluation of the students’ IIR. We acknowledge the micro-perspective of 
this study. Our results and discussion should be interpreted as suggestions based on the 
researchers’ interpretations of what the five students were sharing in their reasoning. 
However, we do believe that even through this small sequence, our study gives insight to 
how grappling with, and combining, statistical knowledge and informal meaning-making, 
can be catalytic on the development of key elements in IIR. Further, we highlight the 
importance of inquiry and concurrent probing in teaching, as well as providing the 
students sufficient time and intellectual space to reason and explore their own ideas.  
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