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ABSTRACT: Earth science education should provide space for students to engage with real-world
problems involving complex earth systems and their societal implications. However, the ill-
structured nature of such problems creates uncertainty among both teachers and learners. To
explore the effect of this uncertainty, we designed and taught a bachelor-level earth science course
that introduced geology students to computational practices allowing them to work with authentic
data, methods, and ill-structured problems. In addition, the course was designed entirely for active
learning and formative assessment. Students provided reflection notes as part of every learning
activity, and a series of focus group interviews were conducted at the end of the course to
triangulate student experiences with computational practices and problem solving in groups. Our
findings suggest that the introduction of computational practices to novices, combined with the
transition from passive to active forms of learning, were major sources of uncertainty. This
uncertainty needs to be understood and confronted in order for students to engage with real-world
problems in an effective manner. On the other hand, our results indicate that collaborative work
in groups can alleviate some of the effects of this uncertainty. Our study also supports the
systematic use of student reflections as a means of fostering feedback literacy among students as
well as teachers.

1 INTRODUCTION

Earth science education has gained new levels of importance as climate change and sustainability have
risen on the global agenda [1, 2]. It provides unique opportunities for students to seek the knowledge,
practices and dispositions needed to confront the complexity of life-sustaining earth systems and their
socio-economic impacts [3-7]. However, the ill-structured nature of real-world problems involving
dynamical earth systems raises a challenge for teachers and learners [8]: Unlike classic textbook
problems that typically have solution recipes and a correct answer, ill-structured problems require a
different approach [9, 10], e.g., the problem itself is often unclear; solution strategies cannot be copied
from other situations; information is incomplete and conflicting; students need to confront their personal
beliefs, make choices and provide argumentation. In a learning situation, these properties of real-world
problems inevitably create uncertainty among both students and teachers [8, 9]. What implications does
this inevitable uncertainty have for learning design and students' learning experience at a bachelor level?

In an influential analysis of higher education curriculum, Barnett and Coate [11] emphasise that higher
education is about opening up new spaces with opportunities for new ways of understanding the world
and of being in the world. Hence, both students and teachers have to dare to — and be allowed to — take
chances ("a pedagogy of mutual risk" [12]) and be willing to engage with the uncertainty of the world
("a committed uncertainty" [13]). In a similar vein, Biesta [14] speaks of the "beautiful risk" of
education. How do these notions of uncertainty and risk play out in teaching and learning practice?

The course GEOV114 Introduction to geobiology was designed with a view to exploring these
questions. Geobiology is the study of interactions between the biosphere and other components of the
Earth system. For example, billions of years of biological evolution has led to fundamental changes in
Earth's surface environments, geochemical cycles and climate, storing energy in a biosphere that has
literally fuelled human civilization. Geobiological processes are thus central to the global challenges
represented by the sustainable development goals. Although it integrates several sub-disciplines with
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long traditions (e.g. biogeochemistry, paleobiology), geobiology is considered a relatively young field
of research due to its modern orientation towards microbial ecosystems and molecular biology.
Geobiology was established as a research group at the University of Bergen Department of Earth Science
in 2007, and courses soon appeared at the master's level. Due to the conservative nature of curricula,
however, the mandatory bachelor-level course GEOV114 was first offered to Sth semester students in
2019.

We first outline some of the key choices made in the learning design of the course before turning to the
specific research questions of this study.

Computational practices. The aim of introducing computational practices was to empower students to
reproduce and critically assess the results of scientific research, as a way of opening new spaces in the
curriculum: from the safe but inert facts of a textbook to a more turbulent research in constant motion.
In our own personal experience, many of the concepts encountered in science education, such as
dynamical systems, modelling, and statistical testing, became tangible and open to inquiry and self-
determined learning only after figuring out how to implement them in a programming language. Being
able to visualise and analyse data, to build and explore systems, and to run numerical experiments,
helped open up new ways of asking and answering questions. Hence, our primary motivation for
introducing students to computational practices was to provide them with opportunities to have the same
kind of experience. Our personal perspective is consistent with reported linkages between programming
experience and problem-solving abilities [15], is aligned with the conceptual classification of systems
thinking as a subset of computational thinking [16, 17] and is empirically supported by a meta-analysis
suggesting that learning computer programming has some transfer value to other domains of learning
[18]. We prefer the term “computational practices” rather than “programming” because the latter can be
perceived as a more restrictive notion of following precisely structured algorithmic recipes. We thus
agree with Weintrop et al. [16], who deconstructed computational thinking into a richer taxonomy of
practices used by scientists: data practices, modelling and simulation practices, computational problem-
solving practices, and systems thinking practices. Fundamentally, this taxonomy describes various
aspects of processing data, from acquisition through analysis to model evaluation. In our experience as
working scientists, this process involves a set of important heuristics (“tricks of the trade”) that help
clarify goals and explore solution pathways in real-world problems. Building proficiency in
computational practices may thus be regarded as acquiring a new skill rather than new knowledge [16,
19, 20]. Therefore, teaching computational practices is arguably best carried out by letting the students
work on tasks that focus on building skill. For this purpose, we chose an active learning approach.

Active learning. The course was designed as a series of learning activities where two were performed
in a geomicrobiology laboratory, one was doing geology and palaecontology in the field, and the rest
were computational activities carried out in a room designed for collaborative, active learning. The
explicit focus on real data and methods created the need for a diverse range of literature and digital
resources that would not be available in any textbook. There were no lectures attempting to cover a pre-
determined syllabus. Instead, students used class hours to work together on acquiring data from online
databases, during field work, or from experiments in the lab, and to use computational methods for
analysis, visualisation, and modelling of these data. The teaching team was present at all times. A final
letter grade is a requirement for mandatory courses in our programme, and a total of seven learning
activities counted for 100% of the final grade, replacing the traditional final exam. GEOV114 thus
differed substantially from most courses students had attended in their previous four semesters, because
neither full-fledged commitment to active learning nor computational practices were common in our
bachelor programme. We believed that the aggregated uncertainty stemming from the unfamiliar course
design would be best met in groups, so we assigned all students to groups of three or four (10 groups in
total) that would last for the duration of the semester at random and presented them with a progression
of assistance: consult the instructional materials and online resources first, your group second, other
groups third, and finally the teachers or teaching assistants (TAs). This setup was facilitated by the
course being taught in a room equipped specifically for active learning, with group tables seating up to
six students, each with its own screen and whiteboard that students could use for in-group sharing and
discussion. A physical learning space of this kind makes it easier to actively approach and encourage
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students during the activities, both of which are important facilitation strategies to successfully
implement active learning [21].

Formative assessment and reflection. In addition to informal feedback during class hours, each
learning activity had an associated rubric with assessment criteria describing to students what aspects of
their working process they would receive feedback on. Some critiera were generic and common across
most activities (e.g. referring to aspects of writing, programming, communication, or collaboration),
others were specific to a given task, and some were linked to the use of previous feedback for
improvement and progression. Each assessment rubric also contained criteria that prompted students to
reflect upon specific aspects of each activity. Three achievement levels were specified for each criterion,
and these fine-grained rubrics were used to generate written individual feedback reports for each
activity. Students did not receive any scores or grades on the individual activities, only feedback
comments (colour coded by achievement level), but at the end of the course the achievement levels were
used quantitatively as input to the total, summative assessment and final grade. Even though the order
and contents of the learning activities were determined by the teachers, adjustments were made to
activities and rubrics during the course in response to student feedback and reflection notes, which is
recognised as an important step teachers may take to reduce resistance to active learning [22].

The main challenge in designing this course was introducing real-world computational practices to
students that had little or no experience with programming or related practices. The teachers are
experienced computational practitioners who are very familiar with having to face the unknown (e.g., a
different programming language, a novel method) in the fast-paced world of computing. Hence, they
are used to spending time in what has been referred to as the “learning pit” [23]: the sustained feeling
of incompetence and frustration associated with not understanding, not knowing, until you slowly work
your way out of the pit. This situational awareness prompted specific measures: The learning activities
were designed assuming no prior experience with programming, data processing, visualisation or
modelling. The first computational activity was a basic introduction to Python using tried and tested
instructional materials aimed at novices, ranging from installation and interfacing with the Jupyter
notebook environment, via basic syntax, programming concepts and control flow, to functions, file I/O
and visualisations. This first introduction to programming also had a detailed assessment rubric and
provided a feedback report to the students, but it was not included in the final summative assessment.
Subsequent activities built on and referred to these tutorials, but introduced authentic practices involving
real data (e.g. streaming from online databases), visualisation (e.g. map projections) and methods (e.g.
machine learning). Subsequent computational activities were centred around accessing online databases,
in other words authentic data, to, for instance, plot sedimentological maps or extinction rates inferred
from fossil records. All these activities combined computational with geobiological questions (e.g., first
plot a map and then discuss its main features). In the final activity of the course, activity number seven,
students were tasked with programming part of the global carbon cycle for a geological period of their
choosing. Before coding the model, they were instructed to make a conceptual schematic of the carbon
cycle model and the fluxes between its reservoirs. After having received feedback on the schematic, the
students could start programming, running and tuning the model and answering questions related to their
task. Given the ill-structured nature of this activity, with no given answers, no clear solution pathway
and limited information provided at the beginning [9], the assessment criteria of this activity in particular
emphasised argumentation and discussion of one’s findings and beliefs.

Our line of reasoning in designing the course and when presenting it to students was that computational
practices would enable them to work with authentic data and methods, and help promote expert-like
behaviour when faced with real-world (ill-structured) problems. Furthermore, we argued that both the
problems and the practices would require an active learning approach and formative assessment. The
goal of this study, which is intended as a contribution to the scholarship of teaching and learning, is to
explore the consequences of introducing computational practices and active learning for student learning
and well-being in a discipline-based earth science course. Specifically, we are interested in how students
experience the uncertainty that is expected to arise from the nature of ill-structured problems as well as
from a lack of previous experience with both computational methods and active learning pedagogies.
We pose the following research questions: 1. How do students respond to the uncertainty elicited by the
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introduction of computational practices in a discipline-based course? 2. How is the students’ motivation
to learn computational skills as well as discipline-based content influenced by two main pedagogical
choices: (a) an active-learning approach to teaching computational practices, and (b) assigning students
randomly to groups that they will remain in for the duration of the semester?

Our notion of uncertainty is related to the concept of resistance towards active learning, which has
received much attention [21, 22, 24-27]. Likewise, strategies to reduce or even leverage uncertainty
overlaps with advice on how to aid implementation of active learning, (e.g., [21]). However, uncertainty
does not necessarily lead to resistance, and resistance does not necessarily arise from uncertainty, hence
the two should not be conflated.

Our study is intended as a contribution to the scholarly discussion of teaching and learning in higher
education. While grounded in an earth science context, we attempt to write about our findings and
experiences such that we believe our study is relevant to other teachers within STEM who are
considering, planning, or in the process of implementing or reviewing computational practices and ill-
structured problems in their course syllabus. Our findings highlight fundamental uncertainty regarding
what is to be learned, and how it may prevent the course from being completed as intended, and we
propose solutions chiefly revolving around cooperation among students as well as between students and
teaching staff to solve the problems that are applicable even as the course is being implemented.

2 METHODS

Our specific research focus unequivocally calls for a qualitative design, due to its ability to capture
and represent the perspectives, views and emotions of the students attending the class, as well as cover
the contextual (i.e. classroom) conditions in which they take place by collecting data from several
different sources [28, 29]. Similar approaches have been adopted successfully by comparable studies
(e.g., [19, 22, 30]). Moreover, the relatively low number of students enrolled to GEOV114 (n = 38)
renders results from quantitative methods ambiguous if not invalid. Furthermore, our combined role,
performing research on (the first iteration of) a course we are also teaching, calls for a method that
allows for this specific context. Because it permits the researcher an active role [31], we find Grounded
Theory (GT) to be a suitable methodology for addressing our research questions.

2.1 Data collection and treatment

A total of, 25 (15 female/10 male) out of 38 (19/19) students volunteered to participate in the study. Of
these, all agreed to let us use their handed-in project assignment, 11 (8/3) wrote and handed in at least
one reflection note, and 20 (12/8) agreed to participate in one of five focus group interviews after the
project assignment was handed in. We also asked all students enrolled in the course whether they would
let us use all the assignments they had handed in during the course. Twenty-one students agreed, 17 of
which were enrolled in the initial project, and four who were not. As recommended by Yin [29], we use
multiple data sources to corroborate our findings, with the aim of strengthening our conclusions.

Because we as investigators were also involved in grading the students, all written research data was
submitted to a secure online server and not accessible to anyone involved with grading until after the
option to appeal had expired. Interviews were led by two TAs who were not involved in grading. We
acknowledge the possible insider's dilemma posed by letting interviewers, possibly carrying
preconceptions about the interviewees, or vice versa, conduct these interviews. We have, however,
found no indications of such during the processes of transcribing or coding any of the interviews.

Introduction-level courses at Norwegian universities are by default taught in Norwegian, hence all
course and research material were originally written in Norwegian. However, students were allowed to
answer any task in English if they so preferred. All direct mention of course material or research
questions and answers have consequently been translated from Norwegian to English unless stated as
verbatim.
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2.2 Project-related reflection notes

All participants were asked to regularly write reflection notes for the duration of the research project,
corresponding to learning activity seven (described in paragraph two under the section “Formative
assessment and reflection” in the introduction). Note that unlike learning activity-specific notes (see
below), these project-related notes were not mandatory or part of the assessment. The reflection notes
were open-ended, but contained three tentative questions the students could choose to answer:

1) Think of a situation that occurred during today's work with the carbon cycle model where you
felt frustration, mastery or another strong emotion. Describe the situation (but not yet what you
were thinking or feeling)

2) What did you think and feel in this situation? Why?

3) What did you learn from this situation? In what way will your thoughts and emotions connected
to the situation affect your work to come?

A total of 28 reflection notes were submitted.

2.3 Learning activity-specific reflection tasks

Most learning activities throughout the course included two to four brief questions for reflection at the
end of each assignment. These questions were mandatory, and assessed based on set criteria, partly to
let the students themselves reflect upon their performance and specific aspects of the assignment, partly
to provide feedback to the teachers about specific aspects of the learning activity and associated
instruction, and to ensure individual grading even of predominantly group-based assignments. The
students received feedback on the quality of the reflection, regardless of whether the tone of the
reflection was positive or negative.

2.4 Focus group interviews

The five focus group interviews lasting for approximately one hour were carried out using the course's
two TAs as interviewers. There were 4, 4, 4, 2, and 6 interviewees in each interview, respectively. All
five interviews were based on the same semi-open interview guide developed by the interviewers and
the authors according to principles outlined in [32], e.g. relating our questions to specific goals,
preparing multiple ways to phrase a question and asking colleagues to comment on them. Audio was
recorded for each interview and transcribed verbatim, including pauses, stuttering, hesitation and short
replies from the interviewers such as “yes” and “OK”. We motivate this choice by noting and
acknowledging the importance of the widespread tendency of concurrence and agreement uttered by our
interviewees through the recorded material. A total of 3799 utterances were transcribed.

To analyse the transcribed interviews, we applied GT, a method used to construct theory based on data
[33]. To maintain a unified and focused text set as the basis for constructing our theory, we chose to not
include the reflection notes, nor the activity-specific reflection tasks in this process. Building a GT
consists of three primary coding steps: Open, axial and selective coding [29]. For the first step of
establishing our GT, open coding, we decided to use a system of main and sub codes to code each
utterance. This step was carried out collaboratively between three researchers. Main codes, such as
attitude towards uncertainty, perception of (course) relevance, and motivation for collaboration, were
generated collaboratively based on one interview. Sub-codes were categorical, such as whether the
utterance expressed positive or negative attitude towards the topic of the main code, or whether the
utterance concerned a specific aspect of the course, such as programming or collaboration, when
appropriate within the context of the main code. We decided that to best convey the expressed meaning
and nuances of each utterance, we allowed multiple main codes and sub-codes assigned to each
utterance. This choice made it easier for us to break down the expressed sentiment of each utterance as
well as map a more enriched context for each code created during the first stages of coding.

The enriched context obtained from allowing multiple codes and sub-codes per individual utterance
during open coding allowed us to easily establish coding categories as part of the second step of GT,
namely axial coding. During the subsequent step of selective coding, namely careful analysis of
utterances, codes and categories, we found that the main category emerging from our interview data was
the response to uncertainty. Activity-specific reflection tasks and reflection notes were not coded but
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often supplement findings from the coded interviews. Excerpts from all three sources of data are referred
to below.

3 RESULTS
3.1 Students’ response to uncertainty

Students’ response to uncertainty emerged from the data as the central category. As underlined by our
research questions, our primary concern here is the uncertainty that students experience when
computational practices are introduced as a means of finding solution pathways in the context of
authentic data, and which must be understood in order for efficient teaching and learning of
computational thinking and practices to happen [15, 17, 34]. We use the term “response” because we
are interested in student actions beyond their immediate reaction to uncertainty, including choices of
strategies for exploring solution pathways, individually and in groups. The focus on response highlights
factors that may ameliorate or exacerbate the feeling of uncertainty and therefore, unlike the immediate
reaction, covers the impulse to respond to the experienced feeling. As the experienced uncertainty may
be compounded by several disparate factors like collaboration, decision-making and lack of information
[9], the emphasis on response in the coded material enables us to separate the different sources of
uncertainty and examine how they interact and impact one another. This raises the prospect of working
more systematically with student uncertainty when applying computational practices in one's teaching.

Axial coding yielded two categories. The first category, transition to active learning, encompassed the
entire course from start to finish. The second category, working as a group on computational tasks, was
centred around the final learning activity in the course.

3.2 Uncertainty and the transition to active learning

Using computational practices as a means of transitioning the course from a passive to active learning
environment was challenging for many students. In line with Weimer’s [24] discussion of student
resistance, this challenge was probably amplified by the students expecting something else entirely from
the course: “/I] did not expect it to be so based on programming. More on the syllabus, in a way.” Here
it seems that the student conceptualises learning as something you receive rather than acquire; something
you can summarise as a set of bullet points on a sheet of paper. In contrast, acquisition of new skills is
perceived as “not learning”. This is not surprising considering that most prior courses have been graded
using a final exam. Final exams are arguably designed to test memory more than skill [35], and in this
context the above utterance may be described as a strategy for aligning oneself with the prospect of the
best possible grade.

The course content and learning activities were designed to not require previous experience with
programming. Nevertheless, as the course progressed, oral feedback from the students during teaching
indicated that computational activities were too hard and time-consuming. Such feedback is common in
active learning classrooms [36]. Generally having no prior experience with programming, many students
were thrown into the learning pit [23]: students expressed a sense of uncertainty when confronted with
the mere notion of programming, tantamount to formulating a simple sentence in a foreign language:
“The only thing that really helped us understand the programming was the teacher going through [the
code] line by line.” This utterance, which was given in the context of the final learning activity toward
the end of the course, suggests that the student is not yet proficient enough at programming to have
ascended from the learning pit.

It has been shown that active learning methods may lead to lower self-reported learning outcome, even
though tests show that realised learning outcomes are indeed higher than for passive methods, causing
some students to prefer classical, teacher-centred lecturing despite the lower learning outcome [37]. This
attitude was true for our students as well: “/ really think all of learning activity seven could have been
done as lectures.” And “With a little more concrete setup, with a more defined result you are supposed
to reach, I think I would have learned a lot more.” The students here refer to the lack of a clearly defined
problem-solving strategy, which is common [15], and not to a lack of clearly defined assessment criteria.
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[ll-structured problems place a strong but often implicit emphasis on skills rather than knowledge,
for example through having the students themselves design the path to solving the problem [9]. The
focus on skill over “bullet point knowledge” is another factor that may leave students demotivated as
they are not experiencing the learning outcome they are used to [20, 36]. This was also often reported
by our students:

We were asked about the assignment, that it was open to interpretation, or something. I don't
like open questions/tasks. I like to be told what is expected.

It is always easier when you know what you are supposed to do.

The lack of observable progress made me feel like I learned less from activity 7 than
previous activities.

We can't see the same progress in activity 7, as we did in the other activities. In the other
assignments you solve one question/task, and think: yes, I did it, I feel accomplishment. While
activity 7 has one big problem/question that never gets solved.

One of the worst parts with activity 7 was that you read six different papers, where they give six
different numbers on the same reservoir you want to work on. And yeah, that is annoying.

[T had] a stronger feeling of accomplishment from structured activities due to a clearer sense of
progress.

If you get a concrete example to solve, you are able to get a sense of accomplishment. This is
something [ don't feel we have had in activity 7, compared to the previous ones.

As our students confirm, maintaining motivation is crucial when trying to have them cross the learning
pit. Our students generally expressed an “it would have been a lot easier if I had just known this before
I started the course” attitude towards learning computational practices. We cannot tell whether this is
just a manifestation of being in the learning pit, or something else, and further research is needed to
explore this notion. Regardless of cause, the effect is possibly detrimental to a teacher's motivation to
continue the effort with active learning and computational practices.

3.3 Uncertainty and working in groups

After the final learning activity (activity 7), in which students were set to work in groups to model parts
of the carbon cycle for a geological time period of their choosing, they reported having to work
collaboratively in ways novel to them. The group members first had to understand and agree upon the
assignment text and define the problem: geological time period and carbon reservoirs. “It was a little
hard to start. It was very difficult to agree on what to work on. But after a while, and after a lot of
discussion within the group, we agreed on something we wished to work on. And after that, everything
went smoothly.” However, not all groups agreed with the above assertion of a smooth ride through the
assignment. All groups were assigned at random at the beginning of the semester and remained fixed.
Consequently, the individual student's experience with collaboration varied. As one student describes:

[The] group lacks discipline and motivation to complete the assignment, which in turn resulted
in nobody working and me being left alone with all responsibility. [...] I feel frustrated and
resentful towards the group for this. [...] The motivation to working with the group plummeted.
I don't think anyone else in the group feels this way, since they don't take responsibility or care
much for the assignment.

Computers are usually operated by a single individual, and while there exist strategies for pair
programming [38], collaboration in groups larger than pairs is not common in beginner-level
programming. The challenge of group collaboration on computational practices, combined with the ill-
structured nature of the problem they had to solve, caused a sense of urgency with getting the assignment
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done in time, and resulted in a “forced” distribution of tasks among its members, as two students point
out:

Previously, we've split the assignment; you take that task, I take this task, we write, read through
it, and hand in. But now, we're dependent on understanding it, reading through everything, and
depend upon maybe one plotting and someone else writing. So we're more dependent on each
other, and it's a harder task, so... you need more than one person.

You cannot write it [your part of the assignment] yourself without understanding everything
else.

To streamline the working process, the student deemed by the group as the most proficient programmer
would often work on the code and then explain or disseminate their progress to the remaining group
members, who would then proceed with the writing. This division of work was seen as imbalanced by
some students, who were concerned about the difficulties of comparing each member's effort on the
assignment. This difficulty to a certain extent led to frustration and fear of free riding members that
would negatively impact their grade.

Most assignments faced by our students prior to this course had been either puzzles or well-structured
as defined by Jonassen [9]. Ill-structured problems, on the other hand, require decision making and
argumentation. Having to make choices and provide argumentation to support these choices felt alien
and discomforting to a majority of students because they lacked experience with decision making. This
was pointed out by one of the older students with prior work experience:

[Verbatim:] I thought, here we go again. This class' methodology of drastically changing the
universities learning method. I liken it to pulling off a bandage that has grown in to the skin. It
hurts, it's frustrating, aggravating, creates feeling of mistrust of the individual that is preforming
the task, but it is necessary. I believe that the majority of the class has not reflected over that
this is in fact what is happening and is only experiencing the feelings with out realising the
situation in which it is being done.

However, many students reported being comforted by working collaboratively and thus being able
to address and discuss uncertainty, beliefs they held, and share knowledge among peers. Crucially,
several students highlighted an increasingly efficient and satisfactory learning process. It is further
worth noting that the discomfort related to making choices seems strongly dependent on context

for our students. A few weeks prior to the final learning activity, they participated in a field trip
where they, with little prior instruction, were told to collaborate on solving a challenging field work
assignment under difficult circumstances. This task was highly ill-structured, but due to experience
with field work from other courses, the students expressed very little negative sentiment towards this
task, and many highlighted the field trip as their favourite part of the course in the focus group
interviews.

4 DISCUSSION

The uncertainty faced by the students enrolled in GEOV114 was compounded, because multiple aspects
of this course were new to them. Having little or no previous experience with programming, and at the
same time transitioning from their familiar role as passive recipients of knowledge to active drivers of
their own learning the students were slowly becoming accustomed to a new pedagogical setting.
Uncertainty is uncomfortable, and students, like anyone else, will resist exposure to it [24]. In this
regard, our findings reflect those of a previous meta-study on resistance to active learning [36].

Learning programming and growing accustomed to computational practices may be likened to learning
a new language or skill [16, 19, 20]; it often takes considerable time — and frustration — before the
fundamentals are sufficiently operationalised to reach a feeling of flow, or competence. This initial
struggle has been referred to metaphorically as the learning pit [23], and crossing it is crucial to building
the student's confidence as a programmer (in the context of programming) for subsequent courses and
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later. The ease — or lack thereof — with which the students navigate and eventually re-emerge from the
learning pit is closely connected to the teacher's ability to approach the course assignment design as a
novice as well as their ability and willingness to process feedback from the students and adjust the course
accordingly in a continuous process of constructive alignment [21, 22, 39]. We as teachers found it
highly beneficial to accept a lack of total control over course design and simultaneously encourage TAs
and students alike to actively influence their learning environment. We did this by actively including
TAs in the design, alignment and assessment of each learning activity as well as encouraging
constructive feedback from students informally during teaching hours as well as in the assignment hand-
ins, creating a two-way formative assessment. As expected from the conclusions of [40], this feedback
loop was particularly helpful when it came to weeding out ambiguity in the assignment texts, which we
found was often a key factor creating uncertainty in otherwise well-structured programming tasks.
Second, according to [8], the role of the expert should be to show and demonstrate and to address the
students' “unknown unknowns”. In our experience, expert demonstrations, in the form of guided plenary
programming, had a polarising effect on the students: While some said this made them understand the
coding process and outcome better, others said it just caused them to blindly transcribe our code without
gaining any understanding of it.

According to Weintrop et al. [16], proficiency with programming and computational practices involves,
beyond the ability to program, the capacity to choose effective computational tools, to assess different
solutions to a problem, and to troubleshoot and debug code. A student who still struggles to understand
code line by line will quite likely not have attained the proficiency required to operationalise these
features of computational practice. The students spent much time learning how to work with the various
errors and quirks of the code, which led to a loss of focus and commitment to the intended discipline-
based learning outcome, for instance to plot and interpret relevant maps. Given the students' equating
syllabus with list-knowledge, this derailment of the learning process felt demotivating and was
perceived as clearly lowered learning outcome. In other words, the experienced lack of self-efficacy
with programming caused the computational activity itself to carry the hallmarks of an ill-structured
problem: The student did not even know where to start, what problem-solving technique to apply.
Repeated trial and error can be frustrating, but in the context of programming there is the benefit of
working systematically with errors and learning solution strategies by engaging with explicit error
messages generated by the code, learning how to read them and how to effectively search for solutions.
As experienced practitioners we use these same strategies because we typically don't remember specific
details about syntax, which means that as teachers we had to expose our own uncertainty and
demonstrate how we go about navigating our way out of the unknown.

In line with the course pedagogy, the groups were to an extent left to figure things out for themselves
beyond the instructions provided by the learning activity assignment text. The discomfort initially linked
to working with an ill-structured problem ended up having a predominantly positive effect within a
group work context: Students reported enjoying the discussion and sharing their understanding of the
problem within the group, and while there were disagreements, these led to a maturation in their
understanding of group work. Our findings thus fit well with the problem-solving practices centred
around the learning environment as laid out by Holder et al. [8]: Students collaborate on an ill-structured
problem, using data from multiple sources, and align with the initial two stages of strategies for solving
ill-structured problems listed by [9], namely constructing a problem representation and searching for
solutions. Both stages rely intimately on available schema acquired from problem-solving experience

[9].

Nowhere was the link between experience, and hence the availability of appropriate schema [9], and the
experienced self-efficacy required to solve an ill-structured problem more pronounced than in the field.
In a field setting, the students intuitively adopted some of the problem-solving practices characteristic
of ill-structured problems highlighted by Holder et al. [8]; with no clear answer available, the students
immediately took to the work in groups within which they defined the problem at hand, discussed new
findings and adjusted the perceived result accordingly, turning to the teachers only as a last resort. The
contrast between student self-reflection and feedback on the computational and field work activities tells
us that the response to uncertainty, rather than uncertainty by design itself, is the crucial component to
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be addressed during instructional design. It furthermore underpins the necessity of creating a culture for
working with ill-structured problems that must pervade the bachelor programme rather than be restricted
to a few, scattered courses.

This study has strongly emphasised the role of the teacher in creating a learning environment where
students can develop their computational practice and use programming to solve ill-structured earth
science-related problems. We would also like to add a word of caution, based on experience, that as a
teacher, one should be prepared to endure sustained frustration among students stemming simply from
the fact that something is novel and not yet understood [36]. Students will try to find ways to be less
frustrated, possibly leading to resistance which may range from passive, non-verbal response, via partial
compliance, to open resistance [24, 27]. Luckily, recent reviews provide ample tools both for
implementing active learning, such as explaining the purpose of learning activities, reviewing student
feedback and continuously adjusting the course accordingly [21, 22, 26, 27], and for teaching
computational practices, such as working collaboratively on project-based problems akin to learning
activity seven reported herein [15-17, 34]. Opening up to iterative rounds of real-time constructive
alignment based on student feedback, whatever its nature, is potentially valuable [40] but may be
challenging in the midst of a course. Like others [26], however, we found it a powerful and
pedagogically meaningful way of empowering the students and lessening — but by no means removing
— resistance. In the words of Barnett [13; p. 131]: "What it is to learn at the highest level, in these
circumstances, is to come into an awareness — however hazy — as to the interconnectedness of matters-
in-motion and to a state of reasoned disequilibrium, all the while unstable in a perplexing world. It is a
task of higher education to help to bring about in students this state of reasoned-and-discomforted-but-
not-overly-discomforted disequilibrium."
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