
Designing a Decentralized Identity Verification
Platform

Surya Bahadur Kathayat

Norwegian University of Science and technology, Norway
surya.b.kathyat@ntnu.no

Abstract. In today’s world, almost every private and public service has
either fully embraced digitalization or is in the process of doing so, which
is generally a positive trend. However, significant foundational challenges
remain. Many services still depend on various centralized physical and
digital identities, making it increasingly difficult for users to securely and
reliably prove their identity with trusted credentials. Additionally, there
are other risks, such as single points of failure, identity theft and fraud,
censorship and discrimination, and limited user autonomy. To address
some of these issues, the European Union has been developing the de-
centralized Digital ID Wallet initiative. This initiative functions like a
physical wallet, allowing users to store multiple identities in one place at
user premises and giving them control over their data, including the abil-
ity to decide what information to share, with whom, and when. While the
concept is promising, one of the major challenges lies in designing and
developing the necessary infrastructure, which involves creating secure
digital identities, integrating them with existing systems, and ensuring
they are accessible to a broad audience. This paper addresses these chal-
lenges by providing architectural guidelines and a formal description of
common operations in such ecosystems, based on our own experiences in
developing MVPs.

Keywords: Web 3.0 · Decentralized Identity · Verification · Platform

1 Introduction

Ever since Peter Steiner’s famous cartoon from 1993 proclaimed, ’On the Inter-
net, nobody knows you’re a dog,’ the Internet has evolved and revolutionized
our lives by offering various services. Most of the modern services rely on various
authentication methods, including usernames, passwords, or more secure options
like digital or physical IDs. Existing solutions for digital identity verification are
not only unsatisfactory for both users and service providers [1, 2, 8], but also
with numerous ID providers available, users struggle to manage their ID data
effectively.

However, emerging technologies such as blockchain and VC offer a new con-
cept, explored by entities like the European Commission, of a digital ID wallet
application [14]. This application would securely store all IDs, ensuring users



2 Kathayat et al.

have full ownership of their personal data without centralized collection. Similar
to a physical wallet, the digital ID wallet would consolidate multiple IDs in one
place, granting users complete control over sharing selected data.

Recently, a new paradigm, self-sovereign identity (SSI), for end-users’ digi-
tal identity management, has gained considerable momentum, likely also owing
to blockchain technology’s popularity. Although blockchain technology is not
strictly needed for SSI, several SSI projects use a blockchain as a publicly shared
and immutable registry for trusted organizations [1]. In the case of SSI, users
store their identity-related documents in so-called digital wallet apps on their
smartphones [2]. Different credentials can be stored and presented in combination
through these identity wallets, for instance, a digital ID card, a digital vaccina-
tion certificate, and a digital ticket. There are ongoing initiatives (see section
2.9) to realize these concepts however a comprehensive platform to support for
such decentralized identity mechanisms is still lacking. Most existing efforts are
focused either on backend APIs or wallet solutions, rather than addressing the
broader ecosystem. Clear guidelines are necessary to tackle the unique challenges
of this space and ensure that all pieces fit together in a puzzle seamlessly. This
paper aims to lay the groundwork for realizing this concept by proposing guide-
lines for architectural components and common necessary operations needed for
such ecosystems.

Here’s what’s coming up: In section 2, we’ll examine relevant literature, fol-
lowed by an overview of our research methodology and experiments conducted
in section 3. Section 4 outlines the result, followed by concluding remarks in
section 5.

2 Background

This section presents the relevant theoretical concepts and offers a concise overview
of the related research.

2.1 Distributed Ledger Technology

Distributed Ledger Technology, DLT , such as blockchain, is a decentralized
database managed by multiple nodes, where transactions are recorded as se-
quence of blocks, B, in a secure, transparent, and immutable manner. Each
block contains a set of transactions Ti, a timestamp ti, and cryptographic hash of
the previous block H(Bi−1). And each transaction consists of an unique id, input
data, output data, and transaction signature i.e Ti → (id, input, output, Sign(Ti)).
Then, DLT can be represented as

DLT = (B1, B2, ...Bn) → {(Ti, ti, H(Bi−1)), (Ti+1, ti+1, H(Bi)), ...} (1)

In DLT, decisions are made by all the nodes using an agreed consensus mech-
anism, meaning that a single node cannot solely control the system, preventing



Designing a Decentralized Identity Verification Platform 3

malicious intents towards the system (Moubarak, Chamoun, Filiol, 2020). A de-
centralized network of nodes also prevents system downtime since a failure in a
single node will not prevent the entire system from working, in the same way
that one malicious node will not corrupt the network.

2.2 Decentralized identity

Decentralized identities, DIDs, are used to uniquely identify subjects. A DID is
identified with the format “did:method:method-id", e.g., “did:example:987654321”
[2]. Each DID has a DID document (DIDD) that describes it in detail. The DID
document contains information like how the owner of the DID can verify their
ownership, what kind of services the DID can be utilised and so on. The DID
identifier can be extended to a URL with a path (using /), query (using ?) or any
combination of these. The URL enables retrieving sections of a DID document
and other related resources. The DIDs are stored on verifiable data registries,
such as databases or blockchains. These systems need to be able to transmit the
required data for generating or resolving a DID document.

2.3 Verifiable credentials and presentations

Verifiable credentials(VC), are a collection of claims, usually from a trusted
issuer, regarding one or multiple subjects, which can be verified through crypto-
graphic means [4]. Such claims are given inside the credential subject property
of the VC, and can be made regarding anything, e.g., a university degree. Claims
are represented as key-value pairs e.g. age:25. Proving the claims is done via the
required proof property, which can be a JWT along with other types of proofs.
This requires information about the issuer such as its public key such that it can
be dereferenced to the required information for verification, such as a DID. VCs
usually are valid for a defined or limited period of time and are expressed such as
access tokens, id tokens and etc. Verifiable credentials can use any format that
is able to represent the data structure, such as XML or JSON format.

Verfiable presentations (VP) can be created and combined from one or more
VCs. It can be a verifiable subset of data from a VC. E.g., only using the birth
date from a VC representing a passport. It can be a verifiable combination of
multiple VCs e.g. combining VCs representing job status and financial status
when applying for a bank loan. It can also be verifiable data derived from a VC
e.g. create a zero-knowledge proof (or selective disclosure) from the subject’s
birth date in another VC or VP proving that the credential subject is of legal
voting age. For proving to the verifier that all VCs used in the VP were issued to
the same holder the proof property is recommended. This property also ensures
that no unused information from the VCs is exposed to the verifier [4].

VCs and VPs must contain the proof property containing a method for ver-
ifying the data. For instance, by using RSA signing, an issuer can send a VC to
a wallet with a proof property containing the signed value of the entire VC, the
proof method (RSA signing) and the public key used for decrypting the signed
value. The wallet can then generate VPs that consists of one or more VCs, that



4 Kathayat et al.

can be presented to a verifier. The verifier should be able to use the public keys
of the issuers contained in the proof property to validate each VC by decrypting
the signatures and checking that they equal the content of the VCs [2].

2.4 Authentication

Authentication is the process of verifying the identity (or credentials CU ) of a
user or entity(U). It typically involves two main components: credentials pro-
vided by the user or en entity and verification(V ) is done by an authenticator(A).
In our context, the information from user or entity can be in the form VCs, VPs
or ZKPs.

U
CU−−→ A ∋ V (CU ) = true|false (2)

2.5 Cryptographic Hashes

A hash function is used to construct a short fingerprint of some data. That means
if the data is altered, then the fingerprint will (with high probability) no longer be
valid A cryptographic hash function is one-way deterministic function where the
same input it will always result the same output, and different inputs should give
different outputs. Given a hash, one should not be able to calculate the input.
Hash functions are used in blockchains or DLTs to generate the cryptographic
hash of a block’s data, which will be used in the next block to create a back-link
(Stinson Paterson, 2018).

Hdata = H(data) ∋ H(data1) ̸= H(data2) when data1 ̸= data2 (3)

2.6 Temper-proof

A feature of a distributed network is that it prohibits tampering, as every node
in the network has a copy of the blockchain. If a malicious node tries to change
or append a malicious block to the blockchain, other non-malicious nodes will
not validate or accept the change rendering the attempt useless [3]. That means
if any data in block Bi−1 is tampered, then the block hash Hi−1 will change,
causing Hi to change, and so on, invalidating the entire chain.

2.7 Layer-2 solutions

Layer 2 solutions and parachains are designed to address the scalability, ef-
ficiency, and interoperability issues faced by base blockchains. Parachains are
introduced in the Polkadot blockchain and can be seen as an independent chains
connected to a central “relay chain”. Each parachain can have its own specific use
case and logic while benefiting from the relay chain’s robust consensus mecha-
nism, enabling efficient cross-chain communication and transaction throughput
[5]. While in layer-2 solutions, especially in ethereum ecosystems, transactions
are processed off-chain and then batch them on the main chain, reducing con-
gestion and lowering transaction fees.



Designing a Decentralized Identity Verification Platform 5

2.8 Smart contract

A smart contract is a predefined and automatically executable script stored on
a blockchain, as Decentralised applications (DApps). When a smart contract
has been deployed on a blockchain, it can be triggered by sending a transaction
to the contract’s on-chain address. A triggered contract will execute likewise
on every node in the network, the difference being the output which may vary
depending on the data that was sent with the transaction. A byproduct of being
stored on a blockchain, is that smart contracts can never be removed, likewise for
their content. This means that any actions towards an on-chain smart contract
cannot be reverted. Therefore, sending sensitive data to the smart contract’s
storage might be dangerous if there is no “delete” function predefined in the
contract [6].

2.9 Related works

Soltani et.al, in [16], presented a novel SSI-based eKYC onboarding design and
evaluated their solution against Allen’s principles of SSI. Feulner et. al, in [11], on
the other hand presented an architecture on one very specific technology stack,
namely Hyperledger. They emphasize the degrees of freedom in blockchain-based
SSI from a technical perspective, such as what data needs to be stored on a
blockchain, also regarding nascent standards that are being actively developed
by the World Wide Web Consortium (W3C), and take this degree of freedom into
discussions with experts. Liu et. al identified 12 design patterns for blockchain-
based SSI [10], addressing key management, decentralized identifier manage-
ment, and credential design. Yet, SSI-based solutions do not necessarily need to
be based on blockchain. For instance, Nauta et al introduced the IRMA project,
representing a solution that implements the principles of SSI without using a
blockchain in its technology stack [17]. In contrast to existing approaches, we
propose design guidelines for a complete, comprehensive, and generic SSI ecosys-
tem that can be applied with or without the use of blockchain.

3 Methodology

Our research methodology draws inspiration from agile principles and design sci-
ence research, focusing on tackling one problem at a time and iterating in small
steps. This approach prioritizes flexibility, adaptability, and continuous improve-
ment, enabling us to effectively address changing requirements and uncertainties.
By integrating experimentation, hypothesis testing, and data-driven decision-
making, the conducted approach fosters curiosity, exploration, and learning. This
allows for continuous prototyping, and shorter user feedback loops to iterate, re-
fine solutions and drive innovation. We’ve undertaken a series of experimental
projects, each distinct in nature some of them are described below.

Academic Diploma Verification Platform: In this experient [12], simple de-
centralized app is developed resembling a Web 3.0 wallet! It is designed to rev-
olutionize academic credential storage and transparent verification. Users can



6 Kathayat et al.

import verified ID documents, such as academic diplomas, into a web wallet and
share them with potential employers during recruitment. While the technology
functions well, we’ve encountered challenges. The primary issue is the perfor-
mance of storing and retrieving large documents, along with associated gas fees
for blockchain transactions. Additionally, storing documents transparently in
a decentralized network somewhat limits data ownership aspects, despite the
preservation of document integrity by Web 3.0 technology.

Identity Wallet Platform: In this experiment [9, 13], we have focused on the
whole ecosystem for a cutting-edge identity platform, to transcend the bound-
aries of conventional digital identity based authentication methods. The idea
behind was based on self-sovereign identity (SSI) where user identity verifica-
tion (e.g BankID, Google) is done once, stored securely in the wallet in the form
of verified credential (VC) and later can be used by the user for verification in the
form of verifiable presentations (VP). This not only offers ownership of identity
data back to the users, but also has large economical advantages along with in-
creased privacy and security. The platform included both mobile and web-based
interfaces, and seamlessly integrated web 3.0 into a sophisticated Web 2.0 back-
end infrastructure. With this fusion of traditional web 2.0 functionalities with
the immutable, trustless architecture of web 3.0 technology, we have drawn some
Web 3.0. architectural guidelines and design principles ensuring seamless inter-
operability and enhanced security. The guidelines are comprehensively presented
later section in this paper.

4 Result

This section presents best practices for designing decentralized and Web 3.0
based identity verification platform. These guidelines provide developers a road
map for building resilient, future-ready applications in decentralized technolo-
gies. The results are divided into two main categories: the architectural structure
(section 4.2), and the operations (section 4.3 to 4.12). The key results are sum-
marised using a scenario in section 4.1.

4.1 Illustrating scenario

When the wallet app starts for the first time, a primary DID and corresponding
DID document is created using the process described in section 4.3, with Ed25519
as authentication method and empty set of service endpoints. At this point,
user can verify the ownership of this DID only by using a public-key signature
mechanism, Ed25519.

In order to have wider acceptance and usage of DID, an user can link the
primary DID to the identities from existing identity providers such as Google,
BankID, etc. When the user goes through Google, BankID (or other OAuth2,
OpenID based) authentication, information like id_token, access_token and re-
fresh_token are returned. While the id_token verifies the user’s identity, the ac-
cess_token manages access to server-protected resources, and the refresh_token



Designing a Decentralized Identity Verification Platform 7

allows for seamless re-authentication without requiring the user to log in repeat-
edly. In order to linkup the user information from these ID providers, we need
a VC. However, at the time of writing, these ID providers does not issue user
information a format of verified credentials (VC). Therefore, we implemented a
VC issuer on our own VC issuer and call it issuer agent, in section 4.2, that not
only issues VCs but also helps integration with existing ID providers.

When VC’s are linked with primary DID, the corresponding DID document
gets updated, especially the authentication methods, as described in section
4.3. Foe example, after successful user authentication with Google and BankID,
the updated DID document will have authentication methods as given in equa-
tion (8). The DID owner can then verify the identity ownership using Ed25519,
Google, and BankID authentication methods. That means that user DID can be
used with any services that allow user authentication with these auth methods.
Similarly, the user can add other identities to the wallet, such as scan an machine
readable passport, drivers licence etc and link them to the primary DID.

Depending on user preferences or contexts, an user can have multiple DIDs,
one primary and rest secondary DIDs. For example an user can have university
account, and a job account as secondary DIDs. In such cases, the secondary DIDs
shall be linked the primary one according to the linking mechanisms given in
section 4.10. Similarly, the user can also add personal identities, such as passport,
university diplomas, driving licences and so on as verified credentials, to the
wallet and link them to a DID of proper context.

When the user has primary (and optionally secondary) DIDs in place, and
are linked to various user identities in terms of verifiable credentials. The user
can use them to login to and access other services that support decentralized
identities, according to the mechanisms presented in section 4.7. While using
such services, the user presents identities to the verifier services in terms of
verifiable presentations, as described in in section 4.6. When the user logs in and
uses a particular service successfully, the corresponding services associated with
DID are updated in DID document, as represented in equation (9).

4.2 Architectural structure

The entire ecosystem consists of 3 main components, the wallet, the backend
orchestration server and the DLT.

The wallet is a software application, both mobile and web application, that al-
lows users to store variety of cryptographic data and credentials, including DIDs,
DID documents, VCs, VPs, authentication tokens, and other cryptographic keys
and metadata [15]. The wallet is essential to ensures secure, private, and verifi-
able digital identity management and interactions with various centralized and
decentralized systems.



8 Kathayat et al.

wallet = {DID,DIDD, SKU , PKU , V CI , V P, encryptionKeys, hashV alues,

nonces, seedPhrases, backupData,metadata :

{trustedEntities, connectionInfo, revocationInfo, preferences}} (4)

Where, SKu → GeneratePrivateKey(), are private (or secure) keys for the
users, PKu → DerivePublicKey(SKu) are the public keys for the users and are
derived from corresponding private keys. The encryptionKeys are used for data
privacy and security. The seedPhrases are used to back up and restore cryp-
tographic keys. The nonces ensure uniqueness and prevent replay attacks. The
hashV alues has various usages in wallets including data integrity, anonymity,
deduplication, etc. The trustedEntities, connectionInfo, revocationInfo con-
tain information about trusted entities like identity providers, issuers, registries,
etc. The preferences include variety of settings and configurations that the user
can customize for example default identity and settings for privacy, security,
backup, recovery, notifications and so on.

Fig. 1. Architectural components for a decentralized identity verification platform.



Designing a Decentralized Identity Verification Platform 9

The backend orchestration server (os) plays several critical roles to support
the overall system’s functionality and security. Ideally in a fully decentralized
system, such centralized backend servers should not be needed. But state of the
art is far from reality. Therefore we need such backend servers that provide essen-
tial services to facilitate decentralized operations, enhance usability, and ensure
compliance with standards. Our implementation of backend server consists of
the following components.

– The user agent (ua) is probably the most important component as it is the
interface for user interactions, especially when the user uses web wallet. It
helps users initiate requests, helps with handling cryptographic operations,
facilitating user data storage and sharing.

– The issuer agent plays a critical role in the issuance and management of VCs,
ensuring that the credentials are correctly created, signed, and delivered to
the user or their digital wallet. In our ecosystem this component is actually
used as VC issuer, and uses users and credentials information retrieved after
the authentication process.

– The verifier agent helps users especially assisting the authentication with
the existing identity providers such as BankID, google and so on. This is
required as most the the identity providers need, for security reasons, a
backend component during identity verification or authentication process.
This is even more relevant when user uses a web based wallet.

– The registry is vital when identities are used across multiple decentralised
systems and services. This indexes public part of identities and related meta-
data, and also offers functionalities like registration, resolution, revocation
of identities and related credentials.

– The DID resolver is a common component used by several other components
and mainly offers functionality to resolve the DID into into the associated
DID Document, which contains the necessary metadata and cryptographic
material required to interact with the DID owner.

– The DLT proxy is also a common middleware component that facilitates
communication between backend systems and a DLT network like blockchain.
This component abstracts the complexity of interacting with the DLT, pro-
viding a simplified and secure interface for operations like registering, updat-
ing, and querying DIDs, as well as managing Verifiable Credentials (VCs).

The DLT plays a central role offering functionalities such as immutable storage
for identity and related metadata, and therefore providing transparency and
trust through it. It also acts a verifiable data registry. These functionalities are
achieved via self-executing smart contracts deployed into the DLT.

4.3 Creation of DID and DID document

DID the unique ID of an entity and is represented as the encoded hash of the
its public key,



10 Kathayat et al.

DIDu = Encode(H(PKu)) (5)

DID document DIDD, contains additional information about an associated
DID and contains set of associated public keys PKu, authentication methods A
and services S.

DIDD −→ {DIDU
D = DIDu, PKu, A, S} (6)

Where A represents authentication methods that a subject or the entity
identified in DID can prove the control over it. If an authentication method is
Digital signature based,

A = {type : Ed25519, publicKey : PKu} (7)

If, in addition, a DID supports OAuth2.0 and BankID authentication meth-
ods, it can be represented as,

A = {{type : Ed25519, publicKey : PKu},
{type : OAuth2, AuthorizationEndpoint : Ae,

T okenEndpoint : Te,ClientID : Cid,RedicectURI : Ru},
{type : BankID,AuthorizationEndpoint : Ae, T okenEndpoint : Te,

ClientID : Cid,ClientSecret : Cs, RedicectURI : Ru}} (8)

Where S represents service(s) associated with DID providing contexts and
capabilities. For example, it can contain identity verification service to verify
identity of an DID, it can contain a payment server where an DID can be used
for payment, it can list a messaging service to send messages to the given DID.

S = {id, type, serviceEndpoint, description?} (9)

4.4 Representation of verifiable credentials

Verifiable credentials contain information about issuer I, the subject S, set of
claims about the subject C and the proof itself P . The issuer information con-
tains its identity idI and public keys PKI . The subject information contains
identities (for example DIDs) idS and set of attributes about the subject A. A
claim Ci is basically a key-value pair ki → vi. The proof contains the type of
the proof tP , generated timestamp cP , methods for verification of the proof mP ,
and the signature value σP → SignI(H(C)).



Designing a Decentralized Identity Verification Platform 11

V C = {I, S, C, P} → {(idI , PKI), (idS , A), (K,V ), (typep, timep,mp, σp)}
(10)

Note that verifiable credentials are not part of DID directly but DIDs are
referred from them in the subject. VCs are stored in users wallet, side-by-side
with DID documents! Verifiable credentials are usually valid for a limited time
period.

Ideally, the issuer of the VCs is the service itself. In cases where it is not
supported, the issuer could be could be a trusted third party as well!

4.5 Issuance of VC after OAuth2.0 authetication with Google and
BankID

After successful authentication, we get idToken and accessToken from Google.
The idToken contains userInfo among other things. Then VC can be issues from
the userInfo among other information.

idToken, accessToken... = AuthWithGoogle(cid, csecret, redirectUri) (11)
claims = ExtractClaims(idToken) (12)

userInfo = {email, name, authProvider, authT ime} ∈ claims (13)

V C = {type[”OAuth2, Google”], issuer = DIDI ,

subject = {id = DIDS , email = userInfo.email,

name = userInfo.name, authProvider = userInfo.authProvider,

authT ime = userInfo.authT ime, accessToken = accessToken},
proof = Sign(V C, privateKeyI)} (14)

4.6 Representation of verifiable presentations

Verifiable Presentations (VP) are used to present Verifiable Credentials to veri-
fiers in a secure manner. There are at least three ways of doing such. First, the
verifiable credentials from the issuer V CI can be presented directly. Second, se-
lective claims from one or more issuers V Cselective

I can be presented. Lastly, only
the proof can be presented that demonstrate the possession of certain informa-
tion without revelaing the actual information itself. Such proof is also called zero-
knowledge-proof (ZKP) represented as π = Prove(predicate, witness), where
predicate is the statement about the claims that the prover wants to prove, and
witness is the actual data that satisfies the predicate which is not revealed. So,
VP can be represented as below.



12 Kathayat et al.

V P = {V CI , V Cselective
I , π, proof

V P
} (15)

V Cselective
I = {issuer : DIDI , subject = {id = DIDS , selectiveClaimsI} (16)

proof = Sign(V C, privateKeyI)} (17)

4.7 Verifying a verifiable presentation

Verification of a VP is basically verifying digital signature of the given VP. That
means verification of all the the V C , V Cselective

I and ZKP (π).

∀V Ci ∧ V Cselective
i ∈ V P, V erifyPKI

(Proof,H(Claims)) = true

∧ V erify(π) = true (18)

Verifying V C and V Cselective
I is straightforward, as it is the verification of

the signature using issuers public key PKI . However, the verification of ZKP
(π) is a bit tricky as it requires multiple steps.

– First, the prover sends a commitment (hash of the secret information or
witness ω, for example date-of-birth in a age verification scenario) to the
verifier, commitment = H(ω, nonce)

– The verifier generates a challenge based on the commitment, c = Challenge(commitment, nonce)
– The prover then generates a response to the challenge. The response R(x, c, r)

is not a hash function but a function specific to the ZKP protocol that
combines the secret ω, the challenge c, and the random value r.

– The verifier then verifies the response V erify(commitment, c, response) =
true.

4.8 Operations with verifiable data registry

A Verifiable Data Registry (VDR) in the context of Self-Sovereign Identity (SSI)
can be either centralized or decentralized, depending on the requirements, design
and implementation decisions! Centralized VDR are more succeptible to attacks
and faces issues like trust, scalabiity and single point of failure. Decentralized
VDR are transparent and resilience to attacks, however they are performance
issues like slower transaction speeds. The VDR, in any case, offers the func-
tionalities like registration and resolution of DIDs and their public keys, keep
track of issued and revoked credentials, verify the authenticity and integrity of
credentials and so on.

txid = V DR.registertx(DIDD) (19)
DIDD = V DR.resolve(DID) (20)

publicKey = V DR.getPublicKey(DID) (21)
status = V DR.getCredentialStatus(V Cid) (22)

isV alid = verifySignature(data, signature, publicKey) (23)



Designing a Decentralized Identity Verification Platform 13

4.9 DID Update

DID is constant as long as it is active, however DID document is evolutionary.
A DID document can change when keys, authentication methods, services, and
metadata associated with a DID changes. If DIDδ

D is the changes in DID, then
updated document is represented as DID

′

D. When the changes in DID document
are to be propagated to the registry, one gets new transaction id. And, depending
on the registry implementation, the updated document either will replace the
existing one, or keep the history but the latest version should always be used (as
in blockchain).

DID
′

D = DIDD ∪DIDδ
D (24)

tx
′

id = V DR.updatetx(DID,DIDδ
D, SignPKU

(DIDδ
D)) (25)

4.10 DID linking

In some cases, an user can have multiple DIDs, each representing ID for defferent
domains or contexts. For example one for job and the one for private usage. In
such case, one should be considered as primary DIDP and other successive one as
secondary DIDS . Corresponding DID documents are represented as DIDP

D and
DIDS

D and defined as following. Note also that when DIDs are linked, individual
DIDs are updated. That means, registry has to be informed about it if they are
previously registered.

LA = {sub : DIDP , obj : DIDS , SignPKP
(LA)} (26)

DIDP
′

D → DID
′

D = DIDD ∪ LA → {DIDP , linkedDIDs : [LA]} (27)

tx
′

id = V DR.updatetx(DID,DIDP
′

D , SignPKP
(LA)) (28)

4.11 Identity revocation

A DID or verifiable credential (VC) can be revoked for various grounds. In
these cases, these should not be trusted! The revocation of DID usually involves
makking or removing from the Verifiable Data Registry (VDR). While revoking
a VC involves updating the status of the VC in a revocation registry. Note that
revocation commands are critical, and should be checked if are coming for a
trusted issuer.

revokeDID(DID) → V DR.revoketx(DID,Sign(PKI)) (29)
revokeV C(V Cid) → V DR.updateStatus(V Cid, revoked, Sign(PKI)) (30)



14 Kathayat et al.

4.12 VC refresh

Refreshing or updating a VC involves reissuing a new VC with updated infor-
mation! While doing so the old one may or may not be revoked. This process
is crucial to maintain the accuracy and reliability of the credentials over time.
The process of VC refresh involves re-issuance of new VC and linking it to the
existing VC id and its subject. If the registry contains information about the
VC, then it needs to be updated there too.

newV C = Issuer.issue(subjectDID, newAttributes) (31)
revokeV C(V Cid) → V DR.updateCredentialStatus(V Cid, ”revoked”) (32)

5 Concluding remarks

This paper outlines key architectural guidelines and essential operations for cre-
ating a robust decentralized identity ecosystem. Central to this system is the
identity wallet, which securely stores crucial user data, including identities, keys,
and hashes. While a centralized backend is not mandatory, it can play a pivotal
role in facilitating broader adoption and managing key security concerns.

Agreements between issuers and users are recorded on the blockchain, ensur-
ing transparency and verifiability. However, the system must address potential
security vulnerabilities, such as unauthorized parties adding counterfeit agree-
ments. Implementing authorization mechanisms or using digital signatures from
registered issuers could significantly enhance security and trust.

Despite the secure storage of IDs and agreements, risks such as tampering
with public keys and agreements persist, potentially leading to identity forgery
or malicious redirections. A centralized backend server is crucial for managing
these risks and ensuring the integrity of the system. Additionally, improvements
in protocols and endpoint management are necessary to address security issues
related to the ID refresh feature and WebSocket-based VC transfers.

The implementation process revealed challenges with existing tools, such as
performance issues with QR code generation and security risks associated with
the Veramo library’s use of JWTs [7]. Proposed solutions include signing JWTs
with a DID’s private key and addressing the limitations in cryptographic oper-
ations needed for features like Selective Disclosure.

Finally, expanding the system to allow websites and apps to request identi-
fication from the Digital ID Wallet presents a promising opportunity for wider
adoption, akin to how payment methods like Vipps are used online. This would
position this new paradigm as a versatile tool for digital identification across
various platforms.

References

1. Sedlmeir, J., Smethurst, R., Rieger, A.: Digital Identities and Verifiable Credentials.
Bus Inf Syst Eng 63, 603–613 (2021).



Designing a Decentralized Identity Verification Platform 15

2. Avellaneda, O., Bachmann, A., Barbir, A., Brenan, J., Dingle, P., Duffy, K., Hamil-
ton, M., Reed, D., Sporny, M.: Decentralized Identity: Where Did It Come From
and Where Is It Going?. In IEEE Communications Standards Magazine (2019).

3. More, S., Patel, N., Parab, S., Maurya, S.: Blockchain based Tamper Proof Certifi-
cates. In the International Conference on Smart Data Intelligence (2021).

4. Verifiable Credentials, https://www.w3.org/TR/vc-data-model-2.0/, Accessed 2024
5. Shirodkar, S., Kulkarni, K., R., Khanjode, S., Kohle, P. D., Patil, P.: Layer 2 Solu-

tions to Improve the Scalability of Blockchain. In: 5th International Conference on
Advances in Science and Technology (ICAST 2022).

6. Abuhashim, A., Tan, C.: Smart Contract Designs on Blockchain Applications. In:
IEEE Symposium on Computers and Communications (ISCC 2020).

7. Veramo Agent, https://veramo.io/docs, Accessed 2022/05
8. Gabriella L., Taija K., Mengcheng L., Markus H., Antti K., Pekka A.: Towards

a trustful digital world: exploring self-sovereign identity ecosystems. ArXiv Labs.
https://arxiv.org/abs/2105.15131. 2021

9. Bliudzius, R., Hagen, M.S., Kramer, D.: Decentralized Identity - a mobile wallet
and verification platform. Bachelors Thesis. NTNU, Norway (2022)

10. Liu, Y., Lu, Q., Paik, H., Xu, X.: Design Patterns for Blockchain-based Self-
Sovereign Identity. In Proceedings of the European Conference on Pattern Lan-
guages of Programs 2020, pp. 1–14.

11. Feulner, S., Sedlmeir, J., Schlatt, V. et al.: Exploring the use of self-sovereign
identity for event ticketing systems. Electron Markets 32, 1759–1777 (2022).

12. Hustad, J., Fredrik, J.: Evaluation and implementation of Digital Identity Ledger
for blockchain systems. Bachelors Thesis. NTNU, Norway (2021)

13. Bendvold, J.F., Allison, M.L., Cardona, P.: TokenTrivia: A multiplayer Web3-based
Triviaspill game. Bachelors Project. NTNU, Norway (2023)

14. European Digital Identity, https://ec.europa.eu/digital-building-
blocks/sites/display/EUDIGITALIDENTITYWALLET/EU+Digital+Identity+
Wallet+Home, Accessed 2024

15. Kersic, V., Vidovic, U., Vrecko, A., Domajnko, M., Turkanovic, M.: Orchestrating
Digital Wallets for On- and Off-Chain Decentralized Identity Management. In: IEEE
Access, vol. 11, pp. 78135-78151, 2023.

16. Soltani, R., Trang Nguyen, U., An, A.: A New Approach to Client Onboarding Us-
ing Self-Sovereign Identity and Distributed Ledger. 2018 IEEE International Con-
ference on Internet of Things (iThings 2018), pp. 1129-1136.

17. Nauta, J., Joosten, R.: Self-Sovereign Identity: A Comparison of IRMA and Sovrin.
(2019)


