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Abstract. Ternary logic is gaining popularity since it enables realization
of complex electronic circuits with fewer active elements than with binary
logic. In this short paper we draw the contours of a framework for finding
nonlinear combining switching functions for cryptographic applications
realized on ternary IoT hardware platforms. We review the theoretical
results and criteria related to ternary switching function adequacy for use
in cryptography. Our framework computes the Algebraic Normal Form
(ANF) of such functions and uses the Vilenkin-Chrestenson spectrum to
test their non-linearity and correlation immunity.
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1 Introduction

In cryptographic applications, it is of interest to implement complex algorithms
on IoT hardware platforms. This is often difficult, since the requirements for se-
curity level are strict and complexity of the algorithms steadily increases. There-
fore, switching to non-binary hardware platforms (in particular ternary) could
help in improving security even on tiny devices, whose resources are severely lim-
ited. One of the essential primitives contained in many cryptographic algorithms
is a switching function with adequate properties, such as balancedness, good cor-
relation immunity, high non-linearity, and high algebraic degree. The theoretical
results needed to determine these parameters for the given non-binary switching
function have been obtained by generalizing the results that hold for binary (i.e.,
Boolean) functions. In this short paper, we sketch the contours of a framework
for searching for the best switching functions for cryptographic applications on
ternary hardware platforms. We review the relevant theoretical results that are
valid in a field with the characteristic p and apply them in the ternary environ-
ment. We explain how to search for a balanced, m-resilient, non-linear ternary
switching combiner of high algebraic degree.

The paper is organized as follows: In Section 2, we review the relevant the-
oretical results that can be used in a non-binary environment to search for the
convenient switching functions. In Section 3, we give an example of searching
for a ternary switching combiner acceptable for use in a stream cipher for IoT.
Section 4 concludes the paper.
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2 Theoretical background

For a switching function in a Galois field with the characteristic p, p > 2, bal-
ancedness is easily checked by inspecting the table of values. To determine the
algebraic degree d of such a function, we have to compute its Algebraic Normal
Form (ANF). It can be obtained by generalizing the algorithm used for comput-
ing ANF of Boolean functions (see for example [1]). We start with a function of
1 variable and form a matrix, whose columns are j-th powers of all the possible
values (0, 1, . . . , p− 1) of this variable, j = 0, 1, . . . , p− 1. The obtained matrix
is

A1 =















1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 mod p · · · 2p−1 mod p
... · · ·
1 p− 1 (p− 1)2 mod p · · · (p− 1)p−1 mod p















.

Let F be the value vector of the given switching function f . Let B1 = A
−1

1

and let Bn =
⊗n−1

j=1
B1, where

⊗

is the Kronecker product of matrices. Then
S = Bn ·F is the vector of coefficients of the ANF. All the operations are taken
modulo p. Let su be a component of the vector S, u = 0, . . . , pn − 1, and let
(u1, . . . , un) be the representation of u in the form of a vector of digits modulo
p. Then the ANF of the switching function f of n variables, whose value vector

is F is f(x1, . . . , xn) =
∑pn−1

u=0
su

∏n
j=1

x
uj

j , where the sum is taken modulo p.
To study the non-linearity (i.e., the distance of the given function to the

affine functions) and correlation immunity of non-binary switching functions,
we can use the Vilenkin-Chrestenson transform [4, 5], which is a generalization
of the Walsh transform used in the binary environment for this purpose1. The
transform matrix of the Vilenkin-Chrestenson transform is a matrix of complex
numbers. In a Galois field with the characteristic p, to obtain the Vilenkin-
Chrestenson transform matrix, we start with the complex primitive p-th roots of
unity ak = e2kπi/p, k = 0, . . . , p−1, where i =

√
−1. We map the function values

0, 1, . . . , p− 1 to the complex numbers a0, a1, . . . , ap−1, respectively. Then, from
the Vandermonde matrix of dimension p× p

V =















a0 a0 a2
0

. . . a
p−1

0

a0 a1 a2
1

. . . a
p−1

1

a0 a2 a2
2

. . . a
p−1

2

...

a0 ap−1 a2p−1
. . . a

p−1

p−1















,

we obtain the basis matrix V1 of the Vilenkin-Chrestenson transform, which is
the conjugate transpose (the Hermitian) of the matrix V. From the basis matrix,

1 Sometimes, for example in [2, 6], the generalization of the Walsh transform is also
called the Walsh/Walsh-Hadamard transform.
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the Vilenkin-Chrestenson transform matrix for a function f of n variables is
obtained by computing Vn =

⊗n−1

j=1
V1. By multiplying the obtained matrix

Vn by the value vector F of the function f we get the vector W of the Vilenkin-
Chrestenson transform coefficients of f .

The maximally non-linear switching functions in a Galois field of character-
istic p are bent functions, whose Vilenkin-Chrestenson spectrum has the compo-
nents, whose absolute values are all equal to pn/2. Unfortunately, bent functions
are never balanced. Since we need balanced functions in most cases, we have
to find switching functions with small absolute values of the components of
the Vilenkin-Chrestenson transform. These functions possess non-linearity lower
than bent functions, but they are balanced, which increases the possibility of
their application in cryptography. In many cases, the search for such functions
starts from bent functions.

In the binary environment, the following theorem (see for example [3]) is used
for studying the correlation immunity of functions:

Theorem 1. A Boolean function f in n variables is correlation immune of order

m if and only if W(j) = 0, 1 ≤ wt(j) ≤ m

where wt(j) is the Hamming weight of the binary representation of j.
A generalization of Theorem 1 to a Galois field with the characteristic p was

proved in [7] using perfect 2-colorings of hypercubes. Thus, as in a binary envi-
ronment, a switching function in a Galois field of characteristic p is correlation
immune of order m if and only if W(j) = 0, 1 ≤ wt(j) ≤ m, where wt(j) is the
Hamming weight of the representation of j in the base p.

By applying the theoretical results exposed above, we can compute the values
of the corresponding properties of a given switching function in a Galois field
with the characteristic p. In such a way, we can search for a balanced switching
function that is adequate for use as a combiner in cryptography since it possesses
the best compromise between non-linearity, correlation immunity, and algebraic
degree.

3 Searching for an adequate ternary switching combiner

The theoretical background exposed in the Section 2 has served as a fundament
of our software framework for search for adequate stream cipher combiners in the

ternary environment. For computing ANF, in ternary, we have A1 =





1 0 0
1 1 1
1 2 1





and B1 = A
−1

1
=





1 0 0
0 2 1
2 2 2



 . Thus, for a ternary switching function f of n = 2

variables, we have B2 =
⊗

1

j=1
B1, which is a matrix of dimension 9 × 9. As

an example, for the balanced function f , whose vector of function values is F =
(1, 2, 0, 0, 1, 2, 0, 2, 1), we obtain the ANF f(x1, x2) = 1+x2+x1x2+2x2

1
+2x2

1
x2.

The algebraic degree of this function is d = 3.
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To study the non-linearity and correlation properties of the given ternary
switching function, we use the Vilenkin-Chrestenson transform. In ternary, a0 =

1, a1 = − 1

2
+ i

√
3

2
, a2 = − 1

2
− i

√
3

2
, and the following identities hold: a∗

0
=

a0, a
∗
1
= a2, a

∗
2
= a1, a0 + a1 + a2 = 0, where ∗ denotes conjugate complex.

Thus, we get the Hermitian of the Vandermonde matrix V1 =





a0 a0 a0
a0 a2 a1
a0 a1 a2



 .

For example, for the same function, whose ANF we have computed above, the
coefficients of its Vilenkin-Chrestenson spectrum (divided by the real constant 3)
are (0,−a2, a0, 0,−a0, a1, 0, 2a1, a2). The absolute values of all the components of
the spectrum are ≤ 1, except the component 2a1. Consequently, the non-linearity
properties of this function can be acceptable in many cases. But this function is
not correlation immune even of order 1, since not all the necessary components
of the Vilenkin-Chrestenson spectrum are equal to zero (see Theorem 1).

Our framework can be used for search for the best ternary function for the
particular application. In practice, we can enumerate all the functions if the
number of variables is small (which is most often the case with IoT combiners)
and for each function, we can compute the ANF and the Vilenkin-Chrestenson
spectrum. Then we can choose the balanced function that offers the best trade-off
between non-linearity and correlation immunity.

4 Conclusion

In this paper, we have reviewed the theoretical background for computing the
relevant properties (algebraic degree, non-linearity, and correlation immunity) of
non-binary switching functions. We have given the contours of a software frame-
work for searching for adequate ternary switching functions possessing the best
trade-off between these properties. Then we can use such functions as combiners
in stream ciphers implemented on ternary IoT platforms.
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