
Understanding Federated Learning from IID to
Non-IID dataset: An Experimental Study

Jungwon Seo, Ferhat Ozgur Catak and Chunming Rong

University of Stavanger, Norway
{jungwon.seo, f.ozgur.catak, chunming.rong}@uis.no

Abstract. As privacy concerns and data regulations grow, federated
learning (FL) has emerged as a promising approach for training ma-
chine learning models across decentralized data sources without shar-
ing raw data. However, a significant challenge in FL is that client data
are often non-IID (non-independent and identically distributed), lead-
ing to reduced performance compared to centralized learning. While
many methods have been proposed to address this issue, their under-
lying mechanisms are often viewed from different perspectives. Through
a comprehensive investigation from gradient descent to FL, and from
IID to non-IID data settings, we find that inconsistencies in client loss
landscapes primarily cause performance degradation in non-IID scenar-
ios. From this understanding, we observe that existing methods can be
grouped into two main strategies: (i) adjusting parameter update paths
and (ii) modifying client loss landscapes. These findings offer a clear per-
spective on addressing non-IID challenges in FL and help guide future
research in the field.

Keywords: Federated Learning· Gradient Descent· Optimization.

1 Introduction

Federated Learning (FL) is a distributed machine learning framework that pri-
oritizes privacy preservation [14]. Unlike traditional centralized methods, where
client data is aggregated on a central server for model training, FL allows clients
to keep their data locally. Clients collaborate by sharing only their locally trained
models with a central server, which aggregates these models to build a global
model. This approach enables learning from diverse, distributed datasets without
exposing data, making FL especially valuable for privacy-sensitive applications.

Although similar distributed learning frameworks have existed before [3,23,4],
the term "Federated Learning" was officially coined by McMahan et al. in
2016 [14]. Since then, particularly in deep learning, FL has gained significant
attention in both research and industry [6]. One of the primary challenges in FL
is the heterogeneity of data across clients [22]. When client data distributions are
non-IID (not Independent and Identically Distributed), the learning direction of
individual clients may diverge from that of the global model. This divergence,
often referred to as "client drift", can degrade the overall performance of the

2 Seo et al.

global model and, in extreme cases, may even hinder convergence [7]. Numerous
studies have addressed this issue, primarily from an optimization perspective,
proposing both theoretical and empirical methods [13,7,1].

As the field has matured, a variety of new perspectives have emerged. Some
researchers argue that FL’s challenges resemble those found in catastrophic for-
getting, similar to continual learning [10,9], while others suggest that the smooth-
ness of the loss function, inspired by sharpness-aware training, plays a crucial
role [15,20]. Additionally, some point to differences in learned representations,
relating to concepts from contrastive learning [12].

Initially, the FL problem was perceived as a straightforward optimization
task. However, the incorporation of new perspectives has introduced additional
layers of complexity, making it challenging to identify the critical areas of focus.
Moreover, most existing studies primarily investigate FL under non-IID settings,
leaving a gap in our understanding of how FL behaves from scratch. As a result,
FL has become a "black box within a black box," exacerbating the opacity
already present in deep learning models. This multitude of perspectives has
made it difficult for researchers to interpret proposed methods and to determine
the most promising research directions.

To address this, we propose a systematic investigation of FL, starting with
IID settings and gradually exploring its behavior across various hyperparameters
and conditions. By grounding our analysis in gradient descent and extending it to
FL, we aim to uncover the mechanisms driving its performance and explain the
unexpected phenomena observed in complex, non-IID environments. Through
this approach, we hope to clarify FL’s core challenges and offer direction for
future research.

The contributions of this study are as follows:
– Optimization Algorithm Review: We provide a clear review of optimiza-

tion algorithms, from gradient descent to FedAvg.
– Experiments in IID Settings: We conduct extensive experiments on Fe-

dAvg under IID conditions, exploring various hyperparameters and FL set-
tings to gain insights into its behavior.

– Non-IID Analysis: Using insights from the IID experiments, we analyze
FL performance in non-IID settings, interpreting the observed phenomena.

– Categorizing Approaches for Non-IID Challenges: We classify exist-
ing and future methods into two strategies: (a) update path adjustment and
(b) loss landscape modification, addressing non-IID data in FL.

2 From Gradient Descent to FedAvg

Gradient Descent (GD) is one of the most fundamental algorithms in machine
learning for optimizing model parameters, such as those in neural networks [17].
Consider an objective function F (θ) that we seek to minimize, where θ repre-
sents the model parameters, with θ ∈ Rd, and d is the dimensionality of θ. The
parameter update rule in GD is given by:

θt+1 = θt − η∇F (θt;D) (1)

Title Suppressed Due to Excessive Length 3

Here, t denotes the iteration step, and ∇F (θt;D) represents the gradient
of the objective function with respect to θt, evaluated on the dataset D. By
updating the parameters in the negative direction of the gradient with a learning
rate η, the parameters move towards a more optimal solution. This iterative
process is repeated until the gradient ∇F (θt) converges to zero, indicating that
the model has reached a local or global minimum.

A major limitation of GD lies in its dependence on a static dataset D. This
becomes problematic when the dataset is too large to fit into a single device’s
memory or when full-batch training becomes computationally expensive. GD
requires computing the gradient over all data points and using the averaged
gradient for each update at iteration t. Expanding the update rule in Eq. 1, we
obtain:

θt+1 = θt − η
1

|D|
∑
i∈D

∇F (θt;xi, yi) (2)

Here, xi and yi represent the feature and label pairs from the dataset D in a
supervised learning scenario. Eq. 2 highlights that, before each update, the gra-
dient must be computed and averaged across all data points. Each data point
contributes a distinct gradient, and the average of these gradients determines the
final update direction. This gradient averaging is fundamental to optimization
and closely relates to the parameter averaging concept in Federated Averaging
(FedAvg). FedAvg can thus be viewed as a generalization of traditional optimiza-
tion methods, a connection that will be elaborated upon.

To address GD’s inefficiencies, SGD was introduced. Unlike GD, which up-
dates after computing the gradient over the entire dataset, SGD updates the
parameters after each individual data sample. This leads to faster updates and
reduced memory usage, making it suitable for large-scale problems. However,
this method can be unstable, as computing gradients from a single data point
may introduce bias and slow convergence in terms of model performance, despite
the higher computational efficiency.

Gradient Descent Stochastic Gradient Descent (SGD) Mini-Batch SGD

Fig. 1: Illustration of how different GD methods navigate the loss landscape

To balance the trade-offs between GD and SGD, mini-batch SGD was devel-
oped. It computes gradients using a batch of size B for each update, reducing
SGD’s instability while improving GD’s efficiency. GD, SGD, and mini-batch
SGD can be seen as special cases within a broader framework, where the batch
size B ranges from 1 (SGD) to the entire dataset (GD), as shown in Algorithm
1, with their respective optimization paths illustrated in Fig. 1.

4 Seo et al.

Algorithm 1 Stochastic Gradient Descent (SGD)

1: Input: Learning rate η, Batch size B, Number of epochs E
2: for n = 1 to E do
3: for each random mini-batch B of size B with data (xi, yi) do
4: Compute gradient g = 1

B

∑
i∈B∇θF (θ; xi, yi)

5: Update parameters: θ ← θ − η · g

The concept of gradient averaging for training extends naturally to dis-
tributed and parallel computing, as gradient calculations are independent until
aggregation. Scaling SGD process across multiple devices (e.g., GPUs or dis-
tributed systems) accelerates training and mitigates the limitations of central-
ized hardware. While there are various approaches to parallel SGD [3,23,4], in
this work, we focus on aggregating gradients from each device per batch of each
client, as described in Algorithm 2. In this distributed learning approach, we
introduce a parameter, K, representing the number of devices. Gradients are
computed on each device, followed by averaging locally and then globally.

Algorithm 2 Parallel Stochastic Gradient Descent (Parallel SGD)

1: Input: η, B, E, Number of devices K
2: for n = 1 to E do
3: for each device k = 1 to K in parallel do
4: Uniformly select a random mini-batch Bk from Dk

5: Compute gradient on device k: gk = 1
|Bk|

∑
i∈Bk

∇θℓ(θ; xi, yi)

6: Aggregate gradients: g = 1
K

∑K
k=1 gk

7: Update parameters: θ ← θ − η · g

Despite the potential benefits of distributed and parallel processing, commu-
nication bottlenecks can arise, particularly during gradient aggregation. While
intra-device parallelism (e.g., multi-GPU operations) tends to be efficient, fre-
quent gradient communication between devices introduces overhead, offsetting
the advantages of parallelization [18].

A natural approach to mitigate this issue is to reduce the communication
frequency. Several studies have investigated methods where each device updates
parameters independently for a set duration, merging gradients less frequently.
In LocalSGD [19], each device performs training for I local epochs, followed by
gradient merging every I + 1 epochs. The globally updated model is then used
as the starting point for subsequent training, as described in Algorithm 3.

Algorithm 3 Local Stochastic Gradient Descent (Local SGD)

1: Input: η, B, E, K, Synchronization period I
2: for n = 1 to E do
3: for each device k = 1 to K in parallel do
4: Initialize local parameters: θk ← θ
5: for t = 1 to I do
6: Uniformly select a random mini-batch Bt

k from Dk

7: Compute gradient on device k: gk = 1
|Bt

k
|

∑
i∈Bt

k
∇θℓ(θk; xi, yi)

8: Update local parameters: θk ← θk − η · gk
9: Synchronize: Aggregate parameters across devices: θ ← 1

K

∑K
k=1 θk

Title Suppressed Due to Excessive Length 5

LocalSGD can be viewed as a special case of FedAvg, more aligned with dis-
tributed learning. It uses centrally managed, evenly partitioned IID data across
all devices, reducing gradient variance and closely approximating centralized
training performance. While sharing FedAvg’s core mechanics, LocalSGD as-
sumes balanced IID data, making it more suited for distributed learning.

In contrast, FedAvg (Algorithm. 4) assumes partial participation of client
(Line 3) and non-IID data across clients, requiring adjustments in gradient ag-
gregation. Client updates are weighted by dataset size, with larger datasets con-
tributing more to the global model, as noted in line 12.

Algorithm 4 Federated Averaging (FedAvg)

1: Input: Global ηg , Local ηl, B, E, K, Communication rounds R, Fraction of clients C
2: for each round r = 1 to R do
3: Randomly select a subset S of max(C ·K, 1) clients

4: for each client k ∈ S in parallel do
5: Initialize local model: θk ← θ
6: for each local epoch n = 1 to E do
7: for each mini-batch Bk from local dataset Dk do
8: Compute gradient: gk = 1

|Bk|
∑

(xi,yi)∈Bk
∇θℓ(θk; xi, yi)

9: Update local model: θk ← θk − ηl · gk
10: Send back to server: (Option I) ∆θk = θk − θ or (Option II) θk
11: Aggregate the total number of data points: M =

∑
k∈S |Dk|

12: Update global model: (I) θ ← θ + ηg ·
∑

k∈S
|Dk|
M ·∆θk or (II) θ ←

∑
k∈S

|Dk|
M · θk

Originally, FedAvg exchanges local model parameters (Option II) instead of
updates (Option I), which are mathematically equivalent. However, sending up-
dates allows for more flexibility in modifying the aggregation process, enabling
techniques such as global learning rate adjustments and optimizers [7,16]. More-
over, this formulation provides a clearer conceptual framework for understanding
FL. From the perspective of Option I in line 12, the updates from each client
resemble gradients from individual data samples in GD. Therefore, FL is not
merely parameter mixing but remains a structured optimization process. The
following sections provide an empirical analysis of how FL works in practice.

3 Experimental Setup

3.1 Basic Configuration

We conduct our experiments using the CIFAR-10 dataset (50,000 instances in
the training set and 10,000 in the test set), a standard benchmark in FL research.
The model architecture is a convolutional neural network (CNN) with two con-
volutional layers followed by ReLU activations and max-pooling. It includes two
fully connected layers, leading to a 10-class output, as described in [14]. The task
is a classification problem, with cross-entropy loss serving as the objective func-
tion. To ensure a controlled experimental environment, we deliberately exclude
additional techniques such as weight decay, data augmentation, and advanced
optimizers (e.g., momentum or adaptive techniques). This approach allows us to
isolate the impact of the hyperparameters B, E, and η on the SGD process.

6 Seo et al.

3.2 FL Setup

Evaluation We evaluate model performance by analyzing both convergence
speed and generalization quality. While rapid convergence is desirable, it does
not inherently guarantee strong generalization, making it crucial to track both
aspects throughout training. In our setup, global model accuracy (Top-1) is
measured server-side using a dedicated test set. Test loss is also computed server-
side to assess generalization, while training loss is computed locally by clients.
The server averages client-side training losses to monitor overall optimization
progress.

Transition from Centralized to Federated Learning To set initial hyper-
parameters, we first establish reasonable baseline performance in a centralized
learning (CL) setup, corresponding to K = 1. We use B = 500, η = 0.005,
and E = 1, yielding a final accuracy of around 68%. These hyperparameters are
not fine-tuned for peak performance in CL; rather, the aim is to observe how
performance evolves as we transition from CL to FL.

When K changes, the dataset is proportionally divided among K clients. For
K = 1 (CL), a single client holds the entire training dataset of 50,000 samples,
while for K = 10, each client is allocated 5,000 unique training samples. We
initialize with a balanced IID dataset, ensuring that all clients have an equal
distribution of labels and an identical number of samples. The effect of varying
the number of clients on FL training dynamics is shown in Fig. 2.

0 100 200 300
Round

0

20

40

60

Ac
cu

ra
cy

0 100 200 300
Round

1.0

1.5

2.0

Te
st

 L
os

s

0 100 200 300
Round

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

K:1, B:500, :0.005, E:1
K:2, B:500, :0.005, E:1

K:5, B:500, :0.005, E:1
K:10, B:500, :0.005, E:1

K:20, B:500, :0.005, E:1
K:50, B:500, :0.005, E:1

Fig. 2: Impact of varying K with consistent hyperparameters.

In this setup, as K increases, there is a noticeable decline in performance
within a fixed number of communication rounds, highlighting a common over-
sight. When transitioning from CL to FL with a limited dataset, the critical
factor that must be consistently controlled for a fair comparison is the amount
of effective updates per round, u, rather than the number, due to the influence
of η. It is defined as:

u = η · E · |D|
B ·K

(3)

Therefore, local epoch E, batch size B, and learning rate η must be adjusted
based on each client’s dataset size |D|K to ensure all scenarios achieve an equal u.

In Fig. 3, we present three accuracy charts corresponding to adjustments in
B, E, and η. Unlike the previous fixed hyperparameter setting, these adjustments

Title Suppressed Due to Excessive Length 7

0 100 200 300
Round

20

40

60
Ac

cu
ra

cy

Different Batch Size

K:1, B:500, :0.005, E:1
K:2, B:250, :0.005, E:1
K:5, B:100, :0.005, E:1
K:10, B:50, :0.005, E:1
K:20, B:25, :0.005, E:1
K:50, B:10, :0.005, E:1

0 100 200 300
Round

20

40

60

Ac
cu

ra
cy

Different Number of Epochs

K:1, B:500, :0.005, E:1
K:2, B:500, :0.005, E:2
K:5, B:500, :0.005, E:5
K:10, B:500, :0.005, E:10
K:20, B:500, :0.005, E:20
K:50, B:500, :0.005, E:50

0 100 200 300
Round

0

25

50

Ac
cu

ra
cy

Different Learning Rate

K:1, B:500, :0.005, E:1
K:2, B:500, :0.01, E:1
K:5, B:500, :0.025, E:1
K:10, B:500, :0.05, E:1
K:20, B:500, :0.1, E:1
K:50, B:500, :0.25, E:1

Fig. 3: Impact of matched B, E, and η on performance with different K.

align performance and convergence rates across different client counts. When E
is increased to 50 and η is set to 0.25, it results in an extreme case, which
we disregard in our analysis. Unless specified otherwise, the base setting for all
experiments is K = 10, E = 1, B = 50, and η = 0.005, with variations applied
to a single parameter in each experiment.

4 Experimental Results
4.1 Impact of Hyperparameters under IID Condition

0 100 200 300

40

60

Ac
cu

ra
cy

0 100 200 300

1

2

Te
st

 L
os

s

0.950.970.99
1.00

1.02

0 100 200 3000

1

2
Tr

ai
ni

ng
 L

os
s E: 1

E: 2
E: 3

E: 4
E: 5

0 100 200 300

40

60

Ac
cu

ra
cy

0 100 200 300

1

2

Te
st

 L
os

s

0.870.90 0.93 0.95 0.96

0 100 200 3000

1

2

Tr
ai

ni
ng

 L
os

s B: 5
B: 10
B: 25

B: 50
B: 100

0 100 200 300
Round

40

60

Ac
cu

ra
cy

0 100 200 300
Round

1

2

Te
st

 L
os

s

1.06
0.970.950.930.88

0 100 200 300
Round

0

1

2

Tr
ai

ni
ng

 L
os

s : 0.001
: 0.002
: 0.005

: 0.01
: 0.05

290 295

67.5

70.0 Last 10 Rounds

290 295
67.5
70.0

Last 10 Rounds

290 29560

70
Last 10 Rounds

Fig. 4: Training dynamics when K = 10. The first row shows results for varying
E, the second for different B, and the third for various η.

We first assess how three hyperparameters—E, η, and B—affect test accu-
racy, test loss, and training loss. As illustrated in Fig. 4, increasing E or η, or
decreasing B, speeds up convergence. This is evident from the curvature of the
accuracy plots and the more rapid decline in training loss, which is consistent
with our update amount equation u (Eq. 3). Notably, the point of overfitting
occurs earlier with faster convergence, as marked by the minimum test loss (in-
dicated by the circle).

However, some notable observations can be made. While higher E values
result in faster convergence, they lead to suboptimal minimum test loss and

8 Seo et al.

final accuracy, with lower epochs (e.g., E = 1) providing better performance
(first row in Fig. 4). In contrast, the smallest batch size (B = 5) achieves the
highest final accuracy and the lowest test loss (second row in Fig. 4). Similarly,
higher η produce the best final accuracy and the lowest test loss (third row in
Fig. 4) while both of them provide faster convergence. Although the differences
are not substantial under IID conditions, they become more pronounced in non-
IID settings, which we will discuss later.

4.2 Partial Participation and Imbalanced Data under IID Condition
This section explores the effects of partial client participation and imbalanced
data in the context of FL under IID conditions. While these are not hyperparam-
eters, they are key aspects of the experimental setup. In FL, the server cannot
always ensure that all clients participate in every training round. As a result,
the server either waits for all clients or proceeds with only those that respond
in time, leading to partial participation (PP), where only a subset of clients
contribute to model updates in each round.

Even under IID conditions, where each client has an equal proportion of
labels, the number of data samples per client can vary, creating imbalanced
datasets. Some clients may have significantly more data than others.

We now examine how partial participation and data imbalance influence
training dynamics, particularly with regard to convergence and model perfor-
mance.

Impact of Partial Participation To evaluate the impact of partial participa-
tion (PP), we vary the number of clients involved in each communication round,
randomly selecting 1, 2, 5, or 10 out of a total of 10 clients. While one might as-
sume that involving more clients per round would result in better performance,
our experiments under IID conditions reveal minimal performance differences
across varying levels of participation, as shown in Fig. 5.

0 100 200 300
Round

40

60

Ac
cu

ra
cy

0 100 200 300
Round

1.0

1.5

Te
st

 L
os

s

0 100 200 300
Round

1

2

Tr
ai

ni
ng

 L
os

s PP: 1
PP: 2

PP: 5
PP: 10

Fig. 5: Training Dynamics under Partial Participation with IID Condition

This result suggests that in the IID setting, an update from a single client
remains valid for others, allowing them to resume training locally from that state
without significant performance degradation. Although fewer clients participat-
ing per round introduce more fluctuations, the final accuracy still converges to
nearly the same level.

Impact of Imbalanced Data. In our experiments with imbalanced datasets,
we construct the environment using a Standard Gaussian Mixture (SGM) model.
Here, an SGM value of 0 corresponds to a balanced dataset, while higher SGM
values indicate increasing levels of data imbalance, as illustrated in Fig. 6.

Title Suppressed Due to Excessive Length 9

0 2000 4000
Sample num

0
1
2
3
4
5
6
7
8
9

Cl
ie

nt

SGM=0.0

0 2000 4000
Sample num

SGM=0.1

0 2500 5000
Sample num

SGM=0.3

0 5000 10000
Sample num

SGM=0.7

0 5000 10000
Sample num

SGM=0.9
class0
class1
class2
class3
class4
class5
class6
class7
class8
class9

Fig. 6: Data partitioning with IID labels across different levels of SGM

For imbalanced datasets, we explore two aggregation strategies: weighted
aggregation, used in FedAvg, where the contribution of each client is propor-
tional to its dataset size, and naive aggregation, where updates from all clients
are averaged equally, regardless of dataset size.

0 100 200 300

40

60

Ac
cu

ra
cy

0 100 200 300
1

2

Te
st

 L
os

s SGM: 0.1
SGM: 0.3
SGM: 0.5

SGM: 0.7
SGM: 0.9

0 100 200 3000

1

2

Tr
ai

ni
ng

 L
os

s
0 100 200 300

Round

40

60

Ac
cu

ra
cy

0 100 200 300
Round

1

2

Te
st

 L
os

s SGM: 0.1
SGM: 0.3
SGM: 0.5

SGM: 0.7
SGM: 0.9

0 100 200 300
Round

0

1

2

Tr
ai

ni
ng

 L
os

s

40 50 60 70
60

65
Rounds 40-70

40 50 60 70
0.9
1.0
1.1

Rounds 40-70

40 50 60 70
60.0
62.5

Rounds 40-70

40 50 60 70

1.0
1.1

Rounds 40-70

Fig. 7: Performance under varying levels of data imbalance. The first row shows
results using weighted aggregation, while the second row uses naive averaging.

Contrary to intuitive expectations that increased imbalance would degrade
performance, our experiments reveal that weighted aggregation actually ac-
celerates convergence in IID settings. As shown in the first row of Fig. 7, models
converge faster as imbalance increases, especially for SGM 0.9 (purple), which
shows higher accuracy, earlier overfitting, and lower training loss between rounds
40-70. This is because, in weighted aggregation, clients with larger datasets exert
more influence, effectively increasing the total number of updates. For instance,
when Client A has 10 data points and Client B has 90, the weighted average of
updates is 10×10+90×90

100 = 82. In contrast, with balanced datasets (50 data points
each), the average number of updates is 50×50+50×50

100 = 50. Thus, in imbalanced
scenarios, the total number of updates per round is higher, leading to faster
convergence. Furthermore, when data is IID, the imbalance does not negatively
impact performance—in fact, it can be advantageous.

We also conducted experiments using naive aggregation, which showed
minimal performance differences across varying levels of imbalance, as shown
in the second row of Fig. 7. This outcome can be understood by considering
the number of updates: whether the dataset sizes are imbalanced (10 and 90)
or balanced (50 and 50), naive averaging still results in an equal average of
50 updates per round. Interpreting updates as vectors, we can infer that when
data is IID, the update vectors are aligned in direction, meaning that as long

10 Seo et al.

as the magnitudes are adjusted appropriately, the combined update remains the
same. This suggests that in IID settings, updates from individual clients are
consistently aligned in direction.

4.3 Training Dynamics Under Non-IID Setting

Non-IID with Dirichlet Distribution Next, we experiment non-IID label
distribution with a Dirichlet distribution for data partitioning across clients,
which introduces varying degrees of non-IID behavior. In this setup, the degree
of non-IID distribution is controlled by the Dirichlet α: a lower α leads to more
distinct distributions across clients, while a higher α results in more similar
distributions. The resulting distributions are visualized in Fig. 8.

0 5000 10000
Sample num

0
1
2
3
4
5
6
7
8
9

Cl
ie

nt

=0.05

0 5000
Sample num

=0.1

0 5000
Sample num

=0.2

0 5000
Sample num

=0.5

0 2000 4000
Sample num

=1000
class0
class1
class2
class3
class4
class5
class6
class7
class8
class9

Fig. 8: Data partitioning with varying Dirichlet parameter α.

In Fig. 9, each line represents the average of three independent runs, with the
shaded region indicating the min-max range across these runs. This approach ac-
counts for the randomness introduced by the non-IID distribution of the dataset.
Additionally, in the case of PP, the selection of clients in each round can have a
significant impact on the results.

0 50 100 150 200 250 300
20

40

60

Ac
cu

ra
cy

0 50 100 150 200 250 300
1.0

1.5

2.0

2.5

Te
st

 L
os

s

0 50 100 150 200 250 3000

1

2

3

Tr
ai

ni
ng

 L
os

s K:10, : 0.05
K:10, : 0.1
K:10, : 0.2

K:10, : 0.5
K:10, : 1000

0 50 100 150 200 250 300
Round

20

40

60

Ac
cu

ra
cy

0 50 100 150 200 250 300
Round

2
4
6
8

Te
st

 L
os

s

0 50 100 150 200 250 300
Round

0.0

0.5

1.0

Tr
ai

ni
ng

 L
os

s : 0.1, PP: 1
: 0.1, PP: 2

: 0.1, PP: 5
: 0.1, PP: 10

Fig. 9: Performance across varying α (Top) and PP (Bottom).

We observe that as the data distribution becomes more non-IID (i.e., as α
decreases), model performance degrades (from 69% to 55%) and convergence
slows. While lower α values do eventually converge within the limited communi-
cation rounds, the resulting solutions are highly suboptimal. Furthermore, unlike
in IID settings, the level of PP plays a critical role in FL performance. When
α is fixed at 0.1, lower levels of PP lead to significantly lower final accuracy,
higher test loss, and increased fluctuations compared to full participation. This
indicates that updates from different clients are not valid for others.

Title Suppressed Due to Excessive Length 11

Impact of Hyperparameters under Non-IID Condition We investigate
the effects of varying hyperparameters, as shown in Fig. 10.

0 100 200 300
20

40

60

Ac
cu

ra
cy

0 100 200 300
1

2

Te
st

 L
os

s

1.371.471.52
1.57

1.61

0 100 200 300
0.0

0.5

Tr
ai

ni
ng

 L
os

s E: 1
E: 2
E: 3

E: 4
E: 5

0 100 200 300
20

40

60

Ac
cu

ra
cy

0 100 200 300
1

2

Te
st

 L
os

s

1.40
1.44 1.42 1.37 1.33

0 100 200 300
0.0

0.5

Tr
ai

ni
ng

 L
os

s B: 5
B: 10
B: 25

B: 50
B: 100

0 100 200 300
Round

20

40

60

Ac
cu

ra
cy

0 100 200 300
Round

1

2

Te
st

 L
os

s

1.54
1.431.371.351.28

0 100 200 300
Round

0.0

0.5

1.0

Tr
ai

ni
ng

 L
os

s : 0.001
: 0.002
: 0.005

: 0.01
: 0.05

290 295
56

58 Last 10 Rounds

290 295
55

60
Last 10 Rounds

Fig. 10: Test accuracy, test loss, and training loss for K = 10. The first row shows
results for varying E, the second for different B, and the third for various η.

First, increasing E results in faster convergence, and unlike the IID setting, a
higher number of epochs leads to improved final performance. The difference in
accuracy between the smallest and largest E is +1.7% (from 56.16% to 57.86%),
whereas in the IID setting, this difference is −1.55% (from 68.75% to 67.2%).
Second, lower values of B result in both higher final accuracy and faster conver-
gence. The accuracy gap between the smallest and largest B is +6.45% (from
53.74% to 60.19%), compared to +3.57% (from 67.77% to 71.34%) in the IID
case. Finally, η plays a crucial role in the non-IID scenario. The accuracy differ-
ence between the smallest and largest η is +15.48% (from 46.43% to 61.91%),
compared to +7.79% (from 63.22% to 71.01%) in the IID setting. Notably, lowest
test loss decreases as η increases.

5 Understanding FL from a Loss Landscape Perspective
We have performed a series of experiments across datasets ranging from IID
to non-IID, incorporating both partial participation and imbalanced data. As
expected, the performance of the global model declines as the level of non-IIDness
increases. The most commonly cited explanation for this behavior is client drift.
But what drives this phenomenon?

To uncover the underlying causes, we examine the problem through the lens
of the loss landscape [11]. The loss landscape is shaped by the interaction between
the loss function, dataset, and model parameters. It provides valuable insights
into how the loss changes as model parameters are updated for a fixed dataset.

12 Seo et al.

Global optima

Local point

Averaged point

IID Non-IID

Local optima

Local update
Aggregation

Fig. 11: Toy example illustrating the loss landscape and update paths for two
clients with IID and Non-IID datasets.

In FL, each client operates on a distinct dataset, meaning each experiences
a unique loss landscape [2,21]. Even though all clients use the same model and
loss function, the variations in datasets lead to different optimization paths. As
a result, updates from different clients are often misaligned, causing client drift.
As each client optimizes locally, their models may converge to different local
optima. When these locally optimized models are aggregated, the result may fail
to reach the global optimum, as illustrated in Fig. 11.

In contrast, under IID conditions, these differences are minimized as the
clients’ loss landscapes are more similar, leading to better-aligned update di-
rections. Since directly visualizing the loss landscape in FL is difficult due to
the high dimensionality and variability in client data, we instead performed two
additional experiments to substantiate this observation.

First, we selected 5 clients from both IID and non-IID settings when K is
10 and traced their individual training loss. As shown in Fig. 12, under non-IID
conditions, individual loss values decrease at different rates, while in the IID
setting, the loss values for each client decrease more uniformly. This suggests
that the local optimization processes in non-IID settings follow different loss
landscapes, leading to varying loss values across clients.

0 100 200 3000.0

0.5

1.0

1.5

Tr
ai

n
Lo

ss IID Client1

0 100 200 3000.0

0.5

1.0

1.5
IID Client2

0 100 200 3000.0

0.5

1.0

1.5
IID Client3

0 100 200 3000.0

0.5

1.0

1.5
IID Client4

0 100 200 3000.0

0.5

1.0

1.5
IID Client5

0 100 200 300
Round

0.0

0.5

1.0

1.5

Tr
ai

n
Lo

ss Non-IID Client1

0 100 200 300
Round

0.0

0.5

1.0

1.5
Non-IID Client2

0 100 200 300
Round

0.0

0.5

1.0

1.5
Non-IID Client3

0 100 200 300
Round

0.0

0.5

1.0

1.5
Non-IID Client4

0 100 200 300
Round

0.0

0.5

1.0

1.5
Non-IID Client5

Fig. 12: Client training loss: Top row - IID, Bottom row - Non-IID.

Secondly, in Fig. 13, we measure the layer-wise (conv1, conv2, fc1, and fc2)
cosine similarity of local updates (∆θ) between pairs of clients, averaged across
all combinations from 10 clients. As expected, in the IID setting, the updates
across layers are well aligned (with cosine values close to 0), while in the non-IID
setting, there is consistent misalignment between updates.

Title Suppressed Due to Excessive Length 13

0 100 200 300
Round

0.25

0.50

0.75
E[

|C
os

(
i,

j)|
] Conv1

0 100 200 300
Round

0.00

0.25

0.50

0.75
Conv2

0 100 200 300
Round

0.00

0.25

0.50

0.75

FC1

0 100 200 300
Round

0.00
0.25
0.50
0.75

FC2
: 0.1
: 1000 (IID)

Fig. 13: Cosine similarity of local updates from different clients for each layer

These findings show that non-IID conditions lead to more diverse loss land-
scapes and less aligned client updates, while IID settings promote better align-
ment through consistent loss landscapes.

To guide the global model toward optimal performance in non-IID settings,
two main strategies emerge:
1. Adjusting the update path, where optimization steps are tailored to

direct the model toward the global optimum without altering the underlying
loss landscape.

2. Modifying the loss landscape, which aims to increase the overlap be-
tween local optima of individual clients, thus promoting more consistent
convergence across clients.

For example, methods like SCAFFOLD [7], which employs control variates, and
FedOpt [16], which uses server-side optimizers (e.g., Adam, Yogi) or weight per-
turbation [15,9], focus on refining update directions. In contrast, strategies that
modify the loss landscape add terms to the objective function [13,12,10]. Hy-
brid approaches like FedDyn [5] address both aspects simultaneously. However,
a deeper analysis of these methods is necessary to fully understand their impact.

6 Discussion and Conclusion
Our experiments consistently show that a higher η and lower B improve perfor-
mance in both IID and non-IID settings. According to our categorization, these
hyperparameters are part of adjusting the update path. A larger η leads to
bigger steps in gradient descent, which can skip sharp minima and converge on
flatter ones, although too large of a step risks divergence. Similarly, a smaller
B aids in escaping sharp minima and encourages convergence to flatter min-
ima [11], improving generalization [8] and potentially increasing the likelihood
of finding overlapping local optima, a topic that requires further investigation.

In conclusion, our exploration of optimization algorithms, from GD to FL,
reveals that client drift stems from inconsistencies in loss landscapes. Based on
these findings, we suggest that methods addressing performance degradation
in non-IID settings can be categorized into two main strategies: adjusting the
update path or modifying the loss landscape. While the motivations behind
these methods may vary, they generally align with these categories. We hope
this analysis provides valuable insights for new FL researchers and contributes
to ongoing discussions in the field.
Acknowledgments. The authors acknowledge the Research Council of Norway and
the industry partners of NCS2030 – RCN project number 331644 – for their support.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

14 Seo et al.

References
1. Acar, D.A.E., Zhao, Y., Matas, R., Mattina, M., Whatmough, P., Saligrama, V.:

Federated learning based on dynamic regularization. In: ICLR (2021)
2. Al-Shedivat, M., Gillenwater, J., Xing, E., Rostamizadeh, A.: Federated learning

via posterior averaging: A new perspective and practical algorithms. In: ICLR
(2021)

3. Chu, C.T., Kim, S., Lin, Y.A., Yu, Y., Bradski, G., Olukotun, K., Ng, A.: Map-
reduce for machine learning on multicore. NeurIPS (2006)

4. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M.,
Senior, A., Tucker, P., Yang, K., et al.: Large scale distributed deep networks.
NeurIPS (2012)

5. Durmus, A.E., Yue, Z., Ramon, M., Matthew, M., Paul, W., Venkatesh, S.: Fed-
erated learning based on dynamic regularization. In: ICLR (2021)

6. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N.,
Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open
problems in federated learning. Foundations and trends in machine learning (2021)

7. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold:
Stochastic controlled averaging for federated learning. In: ICML. PMLR (2020)

8. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: Generalization gap and sharp minima. In: ICLR
(2017)

9. Lee, G., Jeong, M., Kim, S., Oh, J., Yun, S.Y.: Fedsol: Stabilized orthogonal learn-
ing with proximal restrictions in federated learning. In: CVPR (2024)

10. Lee, G., Jeong, M., Shin, Y., Bae, S., Yun, S.Y.: Preservation of the global knowl-
edge by not-true distillation in federated learning. NeurIPS (2022)

11. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape
of neural nets. NeurIPS (2018)

12. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: CVPR (2021)
13. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated

optimization in heterogeneous networks. MLSys (2020)
14. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:

Communication-efficient learning of deep networks from decentralized data. In:
AISTATS. PMLR (2017)

15. Qu, Z., Li, X., Duan, R., Liu, Y., Tang, B., Lu, Z.: Generalized federated learning
via sharpness aware minimization. In: ICML. PMLR (2022)

16. Reddi, S.J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečný, J., Kumar,
S., McMahan, H.B.: Adaptive federated optimization. In: ICLR (2021)

17. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016)

18. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799 (2018)

19. Stich, S.U.: Local SGD converges fast and communicates little. In: ICLR (2019)
20. Sun, Y., Shen, L., Chen, S., Ding, L., Tao, D.: Dynamic regularized sharpness aware

minimization in federated learning: Approaching global consistency and smooth
landscape. In: ICML. PMLR (2023)

21. Zhang, J., Li, Z., Li, B., Xu, J., Wu, S., Ding, S., Wu, C.: Federated learning with
label distribution skew via logits calibration. In: ICML. PMLR (2022)

22. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

23. Zinkevich, M., Weimer, M., Li, L., Smola, A.: Parallelized stochastic gradient de-
scent. NeurIPS (2010)

	Understanding Federated Learning from IID to Non-IID dataset: An Experimental Study

