
Discovery of Endianness and Instruction Size
Characteristics in Binary Programs from
Unknown Instruction Set Architectures

Joachim Andreassen1[0009−0005−0398−3115] and Donn
Morrison2[0009−0001−6072−4081]

1 Norwegian University of Science and Technology
Trondheim, Norway

joachan@stud.ntnu.no
2 Norwegian University of Science and Technology

Trondheim, Norway
donn.morrison@ntnu.no

Abstract. We study the problem of streamlining reverse engineering
(RE) of binary programs from unknown instruction set architectures
(ISA). We focus on two fundamental ISA characteristics to beginning
the RE process: identification of endianness and whether the instruction
width is a fixed or variable. For ISAs with a fixed instruction width, we
also present methods for estimating the width. In addition to advancing
research in software RE, our work can also be seen as a first step in
hardware reverse engineering, because endianness and instruction format
describe intrinsic characteristics of the underlying ISA.
We detail our efforts at feature engineering and perform experiments
using a variety of machine learning models on two datasets of archi-
tectures using Leave-One-Group-Out-Cross-Validation to simulate con-
ditions where the tested ISA is unknown during model training. We use
bigram-based features for endianness detection and the autocorrelation
function, commonly used in signal processing applications, for differen-
tiation between fixed- and variable-width instruction sizes. A collection
of classifiers from the machine learning library scikit-learn are used in
the experiments to research these features. Initial results are promising,
with accuracy of endianness detection at 99.4%, fixed- versus variable-
width instruction size at 86.0%, and detection of fixed instruction sizes
at 88.0%.

Keywords: Reverse engineering · Unknown Instruction Set Architec-
ture · Machine learning · Signal processing.

1 Introduction

The emergence of IoT devices has increased the importance of understanding the
workings of compiled binary files through reverse engineering (RE). Reverse en-
gineering has applications in vulnerability research, extending support of legacy

2 J. Andreassen et al.

software and hardware, binary patching and translation, and digital forensics [5].

Identifying the targeted binary file’s instruction set architecture (ISA) is an
essential first step in reverse engineering because it permits the reverse engineer
to apply an appropriate disassembler to translate machine readable instructions
into an assembly representation, and subsequently apply a decompiler that can
yield high-level source code. Previous research has focused on this process by
providing methods that classify ISAs reliably from a set of known ISAs [2, 3, 5,
6]. However, identifying the ISA from binary files with an unknown or undocu-
mented ISA has not been thoroughly explored previously. Proprietary ISAs with
unavailable documentation and ISAs for custom virtual machines are common
examples in this group of ISAs.

This main aim of this work is to discover fundamental ISA characteristics from
binary files where the ISA specification is either unknown, proprietary, or un-
documented. This knowledge can be used to advance the reverse engineering
process and generate documentation for unknown ISAs. As the understanding
of the ISA becomes clearer, high-level program behavior such as control flow and
call graph structure can be discovered [7].

We study the following research questions:

RQ1: Can machine learning be used to detect intrinsic characteristics of un-
known ISAs from binary programs?

RQ2: Do the proposed approaches lead to reliable detection of ISA character-
istics across a wide range of ISAs?

The main contribution of this paper is methods for discovering the following ISA
characteristics:

1. endianness of the ISA,
2. fixed- versus variable-width instruction format of the ISA, and
3. for fixed instruction width ISAs, an estimation of the width

The paper is structured as follows: Section 2 presents background and related
work. Section 3 presents our methodology. Section 4 presents the experimental
setup and results. The results are then discussed in Section 5. A conclusion of
the paper is provided in Section 6.

2 Background

A binary executable file consists of a series of executable instructions in a format
understood by the CPU. When run by the CPU, a set of actions, primarily de-
fined by a programmer, is executed. Binary executable files are generated from
high-level code by a compiler that structures data into headers and segments.
The headers contain information about the binary’s properties and organization.
The two segments central in this paper are the code and data segments. These

Discovery of Endianness and Instruction Size Characteristics 3

include the executable code and global or static variables, respectively. The code
segment is particularly central, as it contains a series of instructions from which
the ISA characteristics of interest are detectable [9].

The instruction set architecture (ISA) is an abstraction that specifies how CPU
executes the instructions of binary programs. The specification of an ISA in-
cludes features such as endianness, instruction encoding and format, the number
of physical registers, etc. [1].

Endianness describes how multi-byte values and memory addresses are ordered.
This paper focuses on the two most common endianness encodings: big and lit-
tle. For big endianness, the most significant bit is stored in the lowest address
and the least significant bit in the greatest address. The opposite is true for little
endianness.

Instruction size is the number of consecutive bits that define an instruction.
The instruction size can be fixed or variable for a given ISA, and in some cases
an ISA can support both fixed and variable formats (an example is the RISC-V
ISA, which supports 32-bit width instructions with 16-bit extensions). Binary
programs compiled for ISAs with a fixed instruction width contain only instruc-
tions of the specified size [8].

2.1 Related Work

Existing research in the field of ISA detection focuses on detecting the ISA from a
predefined set of architectures. This differs from this paper’s goal, which focuses
on unknown ISAs that cannot be classified from a set of architectures, aiming to
streamline reverse engineering of such architectures. However, these differences
do not eliminate the relevance of previous research, where various approaches
are usable in this research.

A paper by Kairajärvi et al. [4] contributes in two ways. First, it provides the
comprehensive IsaDetect dataset with 66685 binary programs from 23 different
architectures scraped from the Debian repositories. This is a balanced dataset, as
each architecture contains a similar-sized sample. The dataset contains binary
programs exclusively of either complete or code-only binary programs. These
two versions of the dataset are in this paper referred to as IsaDetectFull and
IsaDetectCode, respectively.

Secondly, Kairajärvi et al. [4] explores state-of-the-art methods for detecting
ISAs using the IsaDetect datasets. This involves a series of features used with
machine learning. With this method, the paper can classify the ISA from a pre-
defined set with an accuracy of 98% with models trained and tested on the
IsaDetectCode dataset.

4 J. Andreassen et al.

The CpuRec project by Granboulan [3] contribute a dataset and command-line
tool for classifying ISAs. The tool computes the Kullback–Leibler divergence be-
tween a given binary executable file (the query) and each binary executable file
in the dataset, where each file represents a different ISA. The query file is then
classified as belonging to the ISA with the lowest Kullback–Leibler divergence.

The CpuRec [3] dataset is valuable for this research because it contains ex-
ecutable files from 77 different ISAs, each represented by a single code-only
binary program. Although smaller than the IsaDetect dataset from [4], it has
broad coverage of diverse ISAs.

Our use of endianness features builds on the work of Clemens [2], who found that
a histogram of bigrams yields information about endianness due to the contained
information on byte-adjacency. However, the space of all possible bigrams yields
a very large feature space (2562 = 65536), which introduces a problem known as
the curse of dimensionality. The authors handle this problem by using a limited
set of four bigrams: 0xfffe, 0xfeff, 0x0001 and 0x0100.

3 Methodology

This paper proposes machine learning to classify specific characteristics of ISAs
in binary programs. We achieve this by engineering features that extract rele-
vant information from the binary code. These features are then used to train and
test machine learning models, enabling the identification of key ISA characteris-
tics. To ensure unbiased testing, we use Leave-One-Group-Out Cross Validation
(LOGOCV). LOGOCV involves training a separate model for each ISA in the
dataset, where the specific ISA is left out of the training data and used only for
testing. This approach allows us to simulate the real-world scenario of encoun-
tering a previously unseen ISA.

This paper uses both the IsaDetectFull and CpuRec datasets. The IsaDetect-
Full dataset is used for endianness detection due to its large number of binary
files and balance across big and little endianness. This dataset is favorable over
the IsaDetectCode dataset as data affected by endianness also exists in parts
of the binary file other than the code section (e.g., header information). The
datasets and ISA characteristics are listed in Table 1.

CpuRec is used to detect fixed/variable instruction size and fixed instruction size, as
it is more balanced across the classes these ISA characteristics contain than the IsaDe-
tect datasets. However, CpuRec is still unbalanced for the fixed instruction size feature.
Fixed instruction sizes tend to be 128 bits or less, and common sizes can be but are
not limited to 8-, 16-, 24-, 32-, or 64-bits. This range of potential sizes makes it difficult
to create balanced datasets, as some fixed instruction sizes will be less common than
others.

Discovery of Endianness and Instruction Size Characteristics 5

Table 1: Architectures from the IsaDetectFull and CpuRec datasets with endian-
ness (E) and instruction size (IS) characteristics (in bits). Blank table elements
mean that particular characteristic was not available for the dataset and thus
was not used for model training.

IsaDetectFull CpuRec E IS IsaDetectFull CpuRec E IS
6502 LE 8-32 MMIX BE 32
68HC08 BE 8-16 MN10300 LE
68HC11 BE 8-40 MSP430 LE
8051 LE 8-128 Mico32 BE 32

arm64 ARM64 LE 32 MicroBlaze BI 32
ARMeb BE 32 Moxie BI 32-48

armel ARMel LE 32 NDS32 BI 16-32
armhf ARMhf LE 32 NIOS-II LE 32

ARcompact LE 16-32 PDP-11 LE 16
AVR LE 16-32 PIC10 LE

alpha Alpha LE 32 PIC16 LE
AxisCris LE 16 PIC18 LE
Blackfin LE 16-32 PIC24 LE 24
CLIPPER LE 2-8 ppc64 PPCeb BE
CUDA LE 32 ppc64el PPCel LE
Cell-SPU BE 32 riscv64 RISC-V LE 32
CompactRISC LE 16 RL78 LE
Epiphany LE 16-32 ROMP BE 8-32
FR30 BE 16 RX LE
H8-300 BE 8-16 s390x BE
H8S BE s390 S-390 BE

hppa HP-PA BE 32 sparc SPARC BE 32
ia64 IA-64 LE 128 sparc64 BE 32

IQ2000 BE Stormy16 LE
M32R BI 16-32 WASM LE

m68k M68K BE amd64 X86-64 LE 8-120
M88K BI 32 i386 X86 LE 8-120
MCore BE 16 Xtensa BI 16-24

mips64el LE 32 Z80 LE 8-32
MIPS16 BI 16 x32 LE

mips MIPSeb BE 32 powerpc BE 32
mipsel MIPSel LE 32 powerpcspe BE 32

6 J. Andreassen et al.

Experiments are conducted with the machine learning library scikit-learn. The se-
lected classifiers are chosen to match those based on the paper from Kairajärvi et al.
[4]. Using multiple classifiers allows for a more comprehensive evaluation of the data,
as different models may capture different aspects of the underlying patterns.

Choosing hyperparameters for classifiers and parameters for engineered features is
essential to producing well-performing models. These values are found using a grid
search for the classifiers to which this applies (LogisticRegression and Support Vector
Classifier). Following the approach from Kairajärvi et al. [4], various powers of ten are
used to find parameters for classifiers. Powers of two are used to find the parameters
for the engineered features, as the classes of the targeted ISA characteristics commonly
are powers of two.

Model performance is evaluated by calculating the model accuracy, which is defined
below in Equation 1.

model_accuracy =
correct_classifications

total_classifications
(1)

The model accuracy from Equation 1 above is used with every model created with
LOGOCV to calculate the accuracy of a feature. Feature accuracy depends on the
hyperparameters, specific classifier, and dataset. The equation for feature accuracy is
shown below in Equation 2.

feature_accuracy =

m∑
n=1

model_accuracyn
m

, (2)

where m is the number of ISAs (groups) used in the LOGOCV.

Feature accuracy is measured in comparison against a baseline. Generally, features
performing better than the baseline contain data that is helpful in classifying the tar-
geted ISA characteristic. These features perform better than a random guess, allowing
them to assist in documenting the ISA. The baseline is defined as the ratio resulting
from classifying all samples as the most frequent class. The formula for the baseline is
shown below in Equation 3.

baseline =
most frequent class count

all count
(3)

Detection of endianness focuses on differentiating binary files of big and little endi-
anness. Two features are used for endianness detection, both inspired by previous re-
search. The first of these is the Bigrams feature, which contains the frequency of every
bigram from 0x0000 to 0xffff. The second is the EndiannessSignatures feature, which
includes the four selected bigrams from Clemens’ [2] study (see Section 2): 0xfffe,
0xfeff, 0x0001 and 0x0100. Due to the large dimensionality resulting from the full
bigrams feature (2562), only 100 binary files are used per ISA from the IsaDetectFull
dataset when training and testing with this feature. This is to reduce the computa-
tional cost of training at the expense of the risk of overfitting data due to the curse of
dimensionality. In practice this should not be a problem because the LOGOCV ensures
an entire ISA is left out and used for testing. In contrast, all binary files are used with
the EndiannessSignatures feature.

Discovery of Endianness and Instruction Size Characteristics 7

A feature using autocorrelation has been engineered to detect fixed/variable instruction
size and fixed instruction size. This feature is named AutoCorrelation and is defined
in Equation 4 to 6 below.

The computation of the AutoCorrelation feature is based on the Pearson correlation
r(x, y), defined in Equation 4:

r(x, y) =
n
∑

xy − (
∑

x)(
∑

y)√
[n

∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

, (4)

where x and y are the variables (original and lag windows) and n refers to the number of
samples in x and y. The autocorrelation function is computed using the pandas.autocorr
function from the pandas library in Python. Its mathematical formulation is shown in
Equation 5, where s represents the series of bytes in a given binary file, and k represents
the given lag:

f(k) = r({si | 1 ≤ i ≤ (|s| − k)}, {sj | k ≤ j ≤ |s|}) (5)

The autocorrelation values, f(k), are used to calculate the AutoCorrelation feature,
as shown in Equation 6, where l is the lag parameter of the AutoCorrelation feature,
corresponding to the max lag used when calculating the autocorrelation values f(k):

AutoCorrelation = {f(k) | 1 ≤ k ≤ l} (6)

The AutoCorrelation feature shown above in Equation 6 calculates autocorrelation val-
ues by calculating the Pearson correlation r(x, y) for a binary file and a specified range
of lagged versions of itself. The aim is to discover periodicity resulting from repetitions
of full or partial instructions at regular intervals corresponding to a multiple of the un-
derlying fixed instruction size. In other words, we would expect autocorrelation peaks
for lags that are an integer multiple of the fixed instruction size. For ISAs with fixed
instruction sizes, this would result in a series with a general periodicity equal to the
instruction size in bytes. The same would not be true for ISAs with variable instruction
sizes, allowing for discrimination between these two classes.

Specifically, the AutoCorrelation feature is first used to determine whether the ISA has
a fixed or variable instruction size. If the ISA is classified as having fixed-size instruc-
tions, the AutoCorrelation feature is then used to determine the specific instruction
size by analyzing the periodicity in the autocorrelation values.

4 Results

4.1 Experimental Setup

All experiments were run on an AMD EPYC 7742 64-Core server with 128GB RAM
running Debian Linux 11 (bullseye) and Linux kernel 5.10.0-22-amd64. Versions of the
software libraries were Python 3.9.2, scikit-learn 1.3.2, SciPy 1.6.0, and pandas 1.1.5.
The source code used in the experiments is publicly available on GitHub3.

3 https://github.com/joffe97/isa_detection (commit de355e0)

8 J. Andreassen et al.

LogisticRegression and Support Vector Classifier (SVC) have a regularization param-
eter C which we tuned via grid search. The results of the hyperparameter tuning are
presented in Table 2.

Table 2: Hyperparameter values of C for LogisticRegression (LR) and Support
Vector Classifier (SVC) discovered via grid search.

ISA characteristic Data feature LR C SVC C

Endianness
EndiannessSignatures 10∧10 10∧11

Bigrams 10∧5 10∧3

Fixed/variable instruction size AutoCorrelation 10∧0 10∧0

Fixed instruction size AutoCorrelation 10∧1 10∧1

The tuned lag parameters of the AutoCorrelation feature for every configuration of
classifier and ISA characteristic are shown below in Table 3. Each row in the table
consists of lags tuned for configurations of classifiers and ISA characteristics, where
the first column is the classifier, and the second and third columns show the tuned lags
of the ISA characteristic.

Table 3: Tuned lag parameters for the AutoCorrelation feature.

Classifier Lag for Lag for
fixed/variable instruction size fixed instruction size

1NeighborsClassifier 256 32
3NeighborsClassifier 256 128
5NeighborsClassifier 512 512

DecisionTreeClassifier 128 128
GaussianNB 32 256

LogisticRegression 128 128
MLPClassifier 1024 32

RandomForestClassifier 256 256
SVC 128 64

The baselines for the three targeted ISA characteristics are shown below in Table 4.
Note that the baselines for the EndiannessSignatures and Bigrams features targeting
endianness differ; Bigrams uses the same number of files per ISA (100), in contrast to
EndiannessSignatures (full dataset). The first two columns contain ISA characteristics
and classifier data features, respectively, where each row represents a configuration
used in the experiments, while the third column contains the baseline result accuracy
for each configuration.

Discovery of Endianness and Instruction Size Characteristics 9

Table 4: Feature baselines.
ISA characteristic Data feature Baseline accuracy

Endianness EndiannessSignatures 0.556
Bigrams 0.545

Fixed/variable instruction size AutoCorrelation 0.581
Fixed instruction size AutoCorrelation 0.680

4.2 Experiments

Endianness results are presented below in Figure 1. As mentioned in Section 3, these
models are trained on the IsaDetectFull dataset, where EndiannessSignatures uses all
files, and Bigrams uses 100 per ISA.

The results show that the EndiannessSignatures feature generally performs better than
the Bigrams feature when detecting endianness. All models perform better than the
baselines presented in Table 4 of 0.556 for EndiannessSignatures and 0.545 for Bigrams.
The best-performing models for EndiannessSignatures and Bigrams achieve an accu-
racy of 0.994 and 0.986, respectively.

1N
eig
hb
ors
Cla
ssi
fie
r

3N
eig
hb
ors
Cla
ssi
fie
r

5N
eig
hb
ors
Cla
ssi
fie
r

De
cis
ion
Tre
eC
las
sifi
er

Ga
uss
ian
NB

Log
isti
cRe

gre
ssi
on

ML
PC
las
sifi
er

Ra
nd
om
For
est
Cla
ssi
fie
r

SV
C,
ker
ne
l=l
ine
ar

Classifier

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

0.
78

7

0.
79

2

0.
77

0

0.
97

1

0.
66

8

0.
96

2

0.
93

5 0.
98

6

0.
95

5

0.
92

8

0.
91

9

0.
91

2 0.
99

0

0.
91

8 0.
97

6

0.
97

8

0.
99

4

0.
97

4

Classifiers with features, accuracy

Bigrams
EndiannessSignatures

Fig. 1: EndiannessSignatures and Bigrams models targeting endianness (IsaDe-
tectFull dataset).

10 J. Andreassen et al.

Fixed/variable instruction size results are presented below in Figure 2. The
plot in this figure is generated by calculating the average accuracy of the ISAs from
the CpuRec dataset, grouped by fixed and variable instruction sizes. Lags in the x-axis
represent numbers of bytes.

The plot shows that the AutoCorrelation feature can differentiate between ISAs of
fixed and variable instruction sizes, as the plotted values show a clear difference be-
tween the two classes. ISAs of fixed instruction sizes are shown to have greater peaks
than ISAs of variable instruction sizes at every fourth byte lag. This observed difference
indicates that the AutoCorrelation feature is suitable for differentiation between fixed
and variable instruction sizes.

0 4 8 12 16 20 24 28 32
Lag

−0.05

0.00

0.05

0.10

0.15

0.20

Au
to

co
rre

la
tio

n

CpuRec - Type means

Fixed Variable

Fig. 2: AutoCorrelation mean values for fixed and variable instruction sizes
(CpuRec dataset).

Figure 3 below shows that the AutoCorrelation feature can classify fixed/variable in-
struction size with an accuracy of 0.860, which is significantly greater than the baseline
of 0.581.

Discovery of Endianness and Instruction Size Characteristics 11

1N
eig
hb
ors
Cla
ssi
fie
r

3N
eig
hb
ors
Cla
ssi
fie
r

5N
eig
hb
ors
Cla
ssi
fie
r

De
cis
ion
Tre
eC
las
sifi
er

Ga
uss
ian
NB

Log
isti
cRe

gre
ssi
on

ML
PC
las
sifi
er

Ra
nd
om
For
est
Cla
ssi
fie
r

SV
C,
ker
ne
l=l
ine
ar

Classifier

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

0.
79

1

0.
81

4 0.
86

0

0.
67

4

0.
86

0

0.
83

7

0.
86

0

0.
83

7

0.
86

0

Classifiers with features, accuracy

AutoCorrelation

Fig. 3: AutoCorrelation models targeting fixed/variable instruction size (CpuRec
dataset).

Fixed instruction size results are presented below in Figure 4. The values in this
plot are generated similarly to the plot for fixed/variable instruction size in Figure
2. The average values calculated from the AutoCorrelation feature are grouped and
plotted for a range of lags.

The plot shows there are generally peaks on lags equal to an integer multiple of classes’
instruction sizes in bytes. This implies that the AutoCorrelation feature might also be
suitable for fixed instruction size detection. The exception to this pattern is the data
for 24-bit instruction size. It should be noted that only one file from a single ISA in the
CpuRec dataset has an instruction size of 24 bits. This means the irregularity could
result from a unique property of the specific binary file or ISA unrelated to instruction
size.

12 J. Andreassen et al.

0 4 8 12 16 20 24 28 32
Lag

−0.1

0.0

0.1

0.2

0.3

Au
to
co

rre
la
tio

n

CpuRec - Size means

16 bits 24 bits 32 bits 128 bits

Fig. 4: AutoCorrelation mean values for fixed instruction sizes (CpuRec dataset).

Accuracies of the classifiers using the AutoCorrelation features in fixed instruction size
detection are shown below in Figure 5. This Figure shows that the models can detect
fixed instruction size with an accuracy of 0.880. This is significantly greater than the
baseline of 0.680, meaning that the AutoCorrelation feature is suitable for classifying
fixed instruction size.

It should be noted that the CpuRec dataset contains only one ISA each of 24 and
128 bits. Due to the use of LOGOCV, fixed instruction sizes belonging to only one ISA
will not be able to be detected when generating results. Specifically, models testing
one of these ISAs will not be trained on any instruction size of the same ISA, leading
to the models being unable to classify it. This means that 2 of 77 ISAs will always be
classified incorrectly. This should be considered in the analysis of resulting accuracies
when targeting fixed instruction size.

Discovery of Endianness and Instruction Size Characteristics 13

1N
eig

hb
ors

Cla
ssi

fie
r

3N
eig

hb
ors

Cla
ssi

fie
r

5N
eig

hb
ors

Cla
ssi

fie
r

Deci
sio

nTr
ee

Cla
ssi

fie
r

Gau
ssi

an
NB

Log
isti

cRe
gre

ssi
on

MLPC
las

sifi
er

Ra
nd

om
For

est
Cla

ssi
fie

r

SV
C,

ker
ne

l=line
ar

Classifier

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.
72

0

0.
76

0

0.
80

0

0.
72

0

0.
76

0

0.
88

0

0.
88

0

0.
76

0

0.
88

0

Classifiers with features, accuracy

AutoCorrelation

Fig. 5: AutoCorrelation models targeting fixed instruction size (CpuRec dataset).

5 Discussion

Regarding RQ1, the results from Section 4 show that machine learning can reliably de-
tect ISA characteristics from binary programs by using features containing information
related to the targeted ISA characteristics. The results show this to be true for the ISA
characteristics targeted in this research, showing that models consistently achieve ac-
curacies well above the baseline. The experiments show that the classifiers’ accuracies
vary based on the targeted ISA characteristic. For example, classifiers that perform
well in detecting endianness, such as the Decision Tree Classifier, do not necessarily
achieve high accuracy in detecting fixed/variable instruction size or fixed instruction
size. This difference in performance highlights the benefit of running experiments with
multiple classifiers.

Answering RQ2 requires analyzing the results presented in Section 4 to determine
whether the ISA characteristics are detected reliably across a wide range of ISAs. The
results show that we are able to detect endianness, fixed/variable instruction size, and
fixed instruction size consistently with an accuracy greater than the baseline. Since the
experiments use datasets with broad ranges of ISAs, we can conclude that the proposed
approaches do lead to reliable detection of ISA characteristics across a wide range of
ISAs.

The results from endianness detection show that bigrams can detect endianness from
binary programs with any arbitrary ISA, with a greater accuracy than the baseline.

14 J. Andreassen et al.

The experiments also demonstrate that the four bigrams included in the EndiannessSig-
natures feature further improve the accuracy, inferring that excluding non-descriptive
bigrams increases accuracy. Although the curse of dimensionality cannot be ruled out
as a factor, LOGOCV ensures that any overfitting means the results are conservative
(tending towards poorer accuracy than better because the target ISA has not been
seen during training).

The experiments show that features using autocorrelation can differentiate ISAs of
fixed and variable instruction sizes and classify specific fixed instruction sizes with
greater accuracy than the baseline. This demonstrates that signal processing is appli-
cable in the field of reverse engineering for ISA classification.

If we presume that correctly classifying a binary program into one of a set of known
ISAs also yields the endianness or instruction size, then our results are comparable to
those of Kairajärvi et al. [4]. Kairajärvi et al. can correctly assign a known ISA to a
binary program with an accuracy of 98%. The results from this paper show that the
proposed methods are not able to retrieve ISA characteristics with the same accuracy,
as the chance of false classifications accumulates for every ISA characteristic detection.
This shows that the methods proposed by Kairajärvi et al. are more suited for detecting
ISA characteristics when the ISA is known. As mentioned, the method of Kairajärvi
et al. cannot detect ISA characteristics for unknown ISAs. The results presented in
Section 4 show that the methods utilized in this paper can do so with great accuracy.
These methods are, therefore, more suitable for detecting ISA characteristics where
the ISA is unknown.

6 Conclusion

This work presents various features and methods for detecting endianness and instruc-
tion size characteristics in binary programs with unknown ISAs. Experiments with
features using bigrams are performed, demonstrating that they are well suited for en-
dianness detection of binary programs with unknown ISAs. Fixed/variable instruction
size and fixed instruction size are also shown to be accurately predicted for such binary
programs using a feature that use autocorrelation.

Conducting experiments using a range of classifiers from the scikit-learn library
in Python has proven valuable, as results demonstrate that classifier choice signifi-
cantly impacts accuracy, enabling the application of models best suited for specific
classifications.

The use of Leave-One-Group-Out Cross-Validation trains a model without any di-
rect knowledge of the targeted binary program’s ISA. This ensures experiments that
simulate the detection of ISA characteristics for truly unknown ISAs.

Several possibilities exist for future work. One involves creating a more extensive bal-
anced dataset, which would lead to more robust experiments. More training data also
allows models to discover more detailed patterns related to the various target classes.
Balancing this dataset leads to models being more equally influenced by all classes
instead of favoring their ability to detect the most frequently occurring class.

Discovery of Endianness and Instruction Size Characteristics 15

The disadvantage of unbalanced datasets could be mitigated for code-only binary files
by splitting them into smaller chunks and training the models on an equal number of
chunks from each target class. Future work could explore whether this approach im-
proves accuracy for under-represented classes. However, care should be taken to avoid
splitting instructions at non-boundary locations, which could negatively impact results.

Extending the research by developing additional methods for discovering other ISA
characteristics would further streamline the reverse engineering of binary files with un-
known or undocumented ISAs. Suggested ISA characteristics include word size, register
count, instruction format, opcode encoding, and subroutine boundaries (e.g., isolation
of CALL/RET opcodes as in [7]).

References

1. Arm: Glossary - instruction set architecture (isa) (2024),
https://www.arm.com/glossary/isa

2. Clemens, J.: Automatic classification of object code using machine learning (2015)
3. Granboulan, L.: cpu_rec (6 2024), https://github.com/airbus-seclab/cpu_rec
4. Kairajärvi, S., Costin, A., Hämäläinen, T.: Isadetect: Usable automated detection of

cpu architecture and endianness for executable binary files and object code (2020),
https://doi.org/10.1145/3374664.3375742

5. Kairajärvi, S., Costin, A., Hämäläinen, T.: Towards usable automated detection of
cpu architecture and endianness for arbitrary binary files and object code sequences
(2019)

6. Nicolao, P.D., Pogliani, M., Polino, M., Carminati, M., Quarta, D., Zanero, S.: Elisa:
Eliciting isa of raw binaries for fine-grained code and data separation (2018)

7. Pettersen, H., Morrison, D.: Call graph discovery in binary programs from unknown
instruction set architectures (2024), https://arxiv.org/abs/2401.07565

8. Sahabandu, D., Mertoguno, S., Poovendran, R.: A natural language processing ap-
proach for instruction set architecture identification (2022)

9. TIS Committee: Executable and linking format (elf) (1995),
https://refspecs.linuxfoundation.org/elf/elf.pdf

