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Abstract. Cell detection and classification are important tasks in aiding
patient prognosis and treatment planning in Computational Pathology
(CPATH). Pathologists usually consider different levels of magnification
when making diagnoses. Inspired by this, recent methods in Machine
Learning (ML) have been proposed to utilize the cell-tissue relationship
with different levels of magnification when detecting and classifying cells.
In particular, a new dataset named OCELOT was released, containing
overlapping cell and tissue annotations based on Hematoxylin and Eosin
(H&E) stained Whole Slide Images (WSIs) of multiple organs. Although
good results were reached on the OCELOT dataset initially, they were
all limited to models based on Convolutional Neural Networks (CNNs)
that were years behind the state-of-the-art in Computer Vision (CV)
today. The OCELOT dataset was posted as a challenge online, yielding
submissions with newer architectures. In this work, we explore the use
of transformer-based architecture on the OCELOT dataset and propose
a new model architecture specifically made to leverage the added tissue
context, which reaches state-of-the-art performance with an F1 score of
72.62% on the official OCELOT test set. Additionally, we explore how
the tissue context is used by the models.

Keywords: Computational Pathology · Machine Learning · Computer
Vision.

1 Introduction

Computational Pathology (CPATH) is a branch of digital pathology that deals
with the development of methods for the analysis of digitized patient specimens,
such as Whole Slide Images (WSIs) [6]. A WSI is a digital representation of
an entire histopathological glass slide, which is digitized at the resolution of
a microscope and produced using slide scanners [1]. The use of WSIs offers
⋆ These authors contributed equally to this work
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considerable advantages to the workflow of pathologists as they are immune
to physical deterioration and cannot be physically damaged. They are stored
digitally and therefore open immense opportunities for computational methods
[6].

Cell detection and classification in histology images is an important task in
CPATH for aiding patient prognosis and treatment planning [13]. In particular,
it can be used for cell counting of breast cancer specimen [3]. Cell counting
requires specialized skills and is time-consuming for pathologists, making it a
critical task for automation.

Pathologists usually consider different levels of magnification when making
diagnoses, considering a wide range of textures in a large Field of View (FoV)
and cell morphology in a small FoV [16], but former research in cell detection and
classification in histology images has mostly focused on small FoV patches [13].
In this context, Ryu et al. [13] released OCELOT, a dataset with overlapping
cell and tissue annotations, together with several model architectures that serve
as a baseline. The OCELOT task concerns detecting and classifying cells and
is framed as a semantic segmentation task. It was also released as a Grand
Challenge [12].

In this work, we explore how transformer-based architectures can be utilized
to increase performance on the OCELOT task. We regard our main contribution
as two-fold. First, we propose the Additive joint pred-to-decoder architecture, a
novel architecture using a two-fold loss, a U-Net-like architecture, and overlapped
patch merging of the tissue predictions. Second, we take inspiration from recent
techniques within XAI to find the situations where the extra tissue information
is useful and provide further evidence that it contributes to the classification of
cells in the OCELOT task.

2 Related Work

The OCELOT grand challenge contained numerous submissions with different
approaches for solving the OCELOT task [12]. Most entries used CNN-based
approaches [5, 7, 9, 14], while some entries explored the use of transformer-based
architectures [8, 11]. In particular, Millward et al. [11] used the SegFormer, a
transformer-based architecture made for semantic segmentation [17], and Li et al.
[8] utilized a Vision Transformer (ViT)-based U-Net approach.

Some of the entries changed the labels to better facilitate the learning pro-
cess, either adapting them to the cell morphology [5] or by experimenting with
softening the boundaries [14]. Additionally, a technique called Test-Time Aug-
mentation (TTA), which entails performing augmentations at test-time and aver-
aging the results for better results, was used by Lo and Yang [9] and Schoenpflug
and Koelzer [14], both increasing their performance. Finally, Millward et al. [11]
found that some of the images were of poor quality and thus omitted them,
yielding an increase in performance.

Outside of the OCELOT grand challenge, Gildenblat et al. [4] pointed out
that earlier methods did not utilize the information within each cell. They pro-
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posed to combine cell-level and tile-level embedding summaries. They demon-
strated that their method could boost Human Epidermal Growth Factor Recep-
tor 2 (HER2) and Estrogen Receptor (ER) prediction tasks for breast cancer by
up to 8% in Area Under The Curve (AUC).

3 Methodology

All the code used in this work can be found on GitHub1.

3.1 OCELOT Dataset

The OCELOT dataset, see Ryu et al. [13], comprises 400 WSI samples with two
levels of magnification, a smaller "cell" FoV and a larger "tissue" FoV, showing
a smaller and larger tissue area, respectively. The images are taken with a digital
microscope from multiple organs. Each sample contains six components,

D =
{
(xs, y

c
s, xl, y

t
l , cx, cy)i

}N

i=1
, (1)

where xs and xl are the small and large FoVs respectively, ycs and ytl are the
corresponding cell and tissue annotations, and cx and cy are the relative center
coordinates of the center of xs in xl.

In the annotations for the tissue patches, each pixel belongs to one of three
categories: background, cancer area, and unknown. The annotations for the cell
patches, however, are given as a list of coordinates, where each coordinate corre-
sponds to a cell nucleus. Each cell falls into one of two categories: background cell
and tumor cell. To overcome the problem of inconsistent color values in histology
slides, we normalize the images using Macenko normalization [10].

3.2 Information Flows

In this work, we use different ways of passing the information to the models, i.e.
different information flows, as done by Ryu et al. [13]. The cell-only information
flow is used as a baseline to understand the effect of the added context from
the tissue patches. This method only uses the cell image and thus disregards the
tissue patch. The pred-to-input flow, however, makes use of the extra information
by passing a predicted segmentation mask to the input of the model, hence the
name "pred-to-input".

We first train a neural network, the tissue-branch, and then store the pre-
dictions to file. These predictions are then concatenated channel-wise to the cell
images and used to train the second neural network, the cell-branch. This does
incur some degree of data leakage, as the validation set is used to choose the
best model for the tissue-branch before training the cell-branch.

To deal with the data leakage and to better facilitate tissue predictions that
are suitable for the cell task, we used the joint pred-to-input flow where the loss
1 Link: https://github.com/bendikgh/histopathology_segmentation/
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from both tasks are considered jointly. The loss function is calculated as the
sum of the loss of each branch, meaning that the tissue-branch gets penalized
both for poor tissue predictions and for tissue predictions leading to poor cell
predictions.

Finally, we use a naive model, which consists of a cell-only model and a
tissue-branch, both trained separately on their respective tasks. Then, the cell-
only model predicts the location and class of the cells, and then the classifications
are overwritten using the predictions from the tissue-branch in the corresponding
coordinates. This serves as a naive combination of the two branches.

3.3 Additive Joint Pred-to-decoder Architecture

Building upon the joint pred-to-input architecture, and inspired by Xie et al.
[17] and Li et al. [8], we propose an architecture that leverages the SegFormer’s
hierarchical structure by adding the tissue outputs to different levels of the cell
encodings. Thus, instead of feeding the tissue outputs to the cell encoder, we
feed them to the decoder together with the cell encodings. An overview of this
architecture can be seen in Figure 1.

Fig. 1. Visualization of the additive joint pred-to-decoder architecture. The outputs
from the tissue model are passed to the cell decoder together with the outputs from the
cell encoder and the cell image itself. The inputs to the cell decoder are transformed in
various ways, using additions and convolutions. A convolutional layer produces the final
output of the cell decoder, yc

s. Vector addition, i.e. element-wise addition, is denoted
using the ⊕ operator, and channel-wise concatenation is denoted using a small + inside
the white circle.
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In this architecture, the predictions from the tissue model, ytl , are soft-
maxed and then passed to the cell decoder. There, they are transformed four
times, yielding four results, y1, y2, y3 and y4. This transformation is done us-
ing convolutional layers, with y1 = Conv2D1(y

t
l ) and yi = Conv2Di(yi−1) for

i ∈ {2, 3, 4}. Conv2D1 has a kernel size of 7, a padding of 3 and a stride of 4,
and Conv2Di, i ∈ {2, 3, 4} has a kernel size of 3, padding of 1, and a stride of 2.
These sizes are chosen so that they match those used in the overlapped patch
merging procedure in Xie et al. [17]. These transformed versions of the tissue
output are then added element-wise to the outputs from the cell encoder, giving
us the inputs to the SegFormer decoder, hi = zi ⊕ yi for i ∈ {1, 2, 3, 4}, where zi
is the ith output from the cell encoder.

In addition to this, the tissue segmentation mask is added element-wise to the
cell image and then passed through a convolutional layer, h0 = Conv2D0(xs⊕ytl ),
which is then concatenated channel-wise with the outputs from the SegFormer
decoder.

We choose to add the tissue segmentation mask to the cell image directly to
give the model spatial understanding between the cell image and tissue mask.
Finally, the concatenated outputs are passed through a 1×1 convolutional layer,
like by Li et al. [8], serving as a weighting mechanism for each channel when
outputting the final class logits. When performing backpropagation, we use the
joint loss of both models. That is, we run backpropagation both with regard to
the loss from the tissue target mask and the cell target mask.

3.4 Layer Weight Analysis

When calculating the output of a CNN, a single filter with six channels will
create a single output scalar as a weighted sum. Thus, using the associativity of
addition, we can split this into a sum of the first and last three channels. Let
X be the part of the input being considered at this step of the computation, let
W be the weights of the filter and let m and n be the height and width of the
filter, respectively. For simplicity, we will disregard the bias in this computation.
Then, we can express the single scalar output of the current step as:

y =

n∑
i=1

m∑
j=1

6∑
k=1

Xijk ·Wijk (2)

=

 n∑
i=1

m∑
j=1

3∑
k=1

Xijk ·Wijk

+

 n∑
i=1

m∑
j=1

6∑
k=4

Xijk ·Wijk

 (3)

where y is the scalar output. If we name the first term ycell and the second term
ytissue, we can use a simple proxy where we consider the sum of the amplitude
of each weight in the filters. That is, we can express an approximation of the
emphasis on the cell image, which corresponds to the emphasis on the first three
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channels, as:

ŷcell =

n∑
i=1

m∑
j=1

3∑
k=1

|Wijk| (4)

ŷtissue =

n∑
i=1

m∑
j=1

6∑
k=4

|Wijk| (5)

ẑ =
ŷcell

ŷcell + ŷtissue
, (6)

where ẑ is the proxy for the cell contribution fraction, ŷcell and ŷtissue are the
proxies for the cell and tissue contributions, respectively. Notably, this proxy
suffers from the very implausible assumption that Xijk = sgn(Wijk) ∀i, j, k,
where sgn(·) is the sign function, and that the input image is the same size as
the filter itself, thus requiring only a single step for calculation. ẑ only represents
a single filter, so if the current layer has multiple filters we must aggregate these
values somehow. We have chosen to do this by calculating the mean. The final
cell contribution score, ranging from 0 to 1, can thus be calculated as the average
over all the filters in the layer. We also keep track of each individual filter value,
allowing us to visualize a histogram of the filter contributions for further analysis.
This yields some insight into how much weight is put on the cell image versus
the tissue image.

3.5 Input-Corrected Analysis

Due to the implausible assumption of the previous method, we extend our
method to include actual input images. It is worth noting, however, that it
is quite unlikely that the chosen input image effectively represents the entire
dataset.

Using an actual input image for X, we no longer require the assumption that
Xijk = sgn(Wijk) ∀i, j, k or that the input image is the same size as the filter.
Thus, we end up with multiple scalar outputs for each filter, i.e. the elements
that make up the corresponding channel in the output tensor after convolving
the whole input image. To create a single number for each filter, we sum up the
absolute values of each element in the output tensor. Similar to the previous
section, we calculate the mean and also keep track of the individual filter values,
allowing us to create a histogram.

4 Results

When evaluating the cell model’s outputs in the experiments, we used the cell-
wise mF1 score as done by Ryu et al. [13]. During training, we calculated the
Dice Score in a pixel-wise manner, to make it differentiable.

The performance of the different models can be seen in Table 1, where we
can see an increase in performance when adding the tissue context. Additionally,



Transformer-Based Cell Detection in Multi-Level Pathology 7

we notice that the SegFormer performs particularly well on the cell only task on
the test set, compared to the CNN-based models.

Model Val Score (%) Test score (%)
Cell Only
DeepLabv3+ (Ours) 68.96± 1.84 65.91± 2.42
DeepLabv3+ (Ryu et al. [13]) 68.87± 1.76 64.44± 1.82
SegFormer 71.67 69.39

Using Cell and Tissue
DeepLabv3+ (Ours) 70.92± 0.35 69.41± 0.30
DeepLabv3+ (Ryu et al. [13]) 73.36± 0.59 69.65± 3.93
SegFormer (short) 71.00 69.26
SegFormer (long) 73.53 69.47
SegFormer Joint Pred-to-input 72.96 70.16
Joint Additive Pred-to-decoder 73.06 70.66

Table 1. The results of the different models when using only the cell information and
the cell information together with the tissue information. The "long" and "short" in
the parenthesis signifies the training duration for the tissue branch. The scores are
reported as mean cell-wise F1 scores, where the models that were recreated from Ryu
et al. [13] also include a 95% standard deviation from five trials. The best scores are
written in bold.

In Table 2, we present the result of using different performance enhancing
techniques on the joint additive pred-to-decoder model. Notably, we see that
both changing the emphasis of the loss function towards the cell training and
that utilizing TTA increases the validation and test scores. In particular, the
test scores are better than any other results seen on the challenge, to the best
of our knowledge.

Method Val F1 Score (%) Test F1 Score (%)
Exclusion 73.37 71.66
Exclusion + Cell Emphasis 73.91 72.20
Exclusion + Cell Emphasis + TTA 74.63 72.62

Table 2. Mean cell-wise F1 scores for the joint additive pred-to-decoder with different
performance-enhancing techniques. The best scores are written in bold.

In Table 3, we can see the empirical results of the naive model. We can see
that naively adding the tissue class to the cell-only locations yields a negative
impact on the performance, while adding the actual labels increase the perfor-
mance, but only slightly. We also notice that the cell-only model has a higher
recall and lower precision on background cells, while the inverse is true for the
tumor cells.
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Model mF1 Background Cells Tumor Cells
Prec. Rec. F1 Prec. Rec. F1

Cell-only 71.67 63.47 67.07 65.22 84.82 72.39 78.12
Tissue + Cell 69.91 65.77 58.37 61.85 80.43 75.66 77.97
Labels + Cell 72.54 71.62 60.38 65.52 81.08 78.12 79.57

Table 3. Different statistics on the validation set for the cell-only model and the
naive models using tissue predictions and tissue labels to classify cells. "Prec." refers
to precision, "Rec." refers to recall and "mF1" refers to the mean cell-wise F1 Score.
With the exception of the model using leaked labels, the best scores are written in
bold.

We also include qualitative results from the tissue + cell configuration: In
Figure 2, we can see that the cell-only model is mostly correct in its predictions.
However, during the adjustment of labels with the tissue predictions, we see that
many of the cells in the bottom left corner, that were correctly predicted as back-
ground cells, were changed to tumor cells as a result of the tissue classification
of the tissue model. This tissue classification is indeed correct, but it does not
immediately follow that the encompassed cells are cancerous.

In Figure 3, we can see the results of the weight analysis of the SegFormer
trained for a short duration and a long duration. We can see that most of the
weights are centered around the mean, with a couple of outliers. Additionally,
we can see that the means of the two models are quite close, but with the mode
of scores slightly left of the mean for the long tissue training, while directly on
the mean for the short tissue training.

In Figure 5, we can see the results of the input-corrected analysis of the same
models. The input images are shown in 4. We see that the corrected histograms
are much flatter than in Figure 3, and that the model with long training has
slightly more values on the left side of the histogram, indicating a higher empha-
sis on the tissue weights. Additionally, we see that the mean is now considerably
lower for the model with long training.

5 Discussion

As seen in Table 1 and Table 2, we achieve the highest performance with our
joint additive pred-to-decoder model with TTA and exclusion. We note that the
SegFormer model indeed achieved a higher validation score in Table 1, but this
is both with slight data leakage and the inability to train using the joint loss.
Our best score is better than any we have seen in any of the submissions to
the challenge and suggests that our novel architecture is successful at effectively
combining the cell and tissue images in a useful way.

We believe that the high performance of the additive joint pred-to-decoder
model could be due to several reasons. First, due to the joint loss, we believe
it has a better ability to tailor the tissue probits specifically towards the cell
task and take advantage of the uncertainty reflected by the probits compared to
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(a) Cell-only (b) Tissue + Cell (c) Cell Label

(d) Input Image (e) Tissue Pred.

Fig. 2. Illustration of predictions from the different models. (a) shows the predictions
of the cell-only model, (b) shows the predictions of the tissue + cell model and (c)
shows the target values. Red pixels signify background tissue, i.e. no cell present, blue
pixels signify that there is a cell classified as a background cell and green pixels signify
that there is a cell classified as cancerous. (d) shows the input image that the models
received and (e) shows the tissue predictions on the input image.

earlier models. Also, the joint loss may push the model to generalize more, as
it has to optimize multiple tasks at once, possibly making it harder to overfit
towards one.

Second, the model has a U-Net-like structure between the encoder and the
decoder that adds a spatial bias at all intermediate steps of the model. We do
this by matching the receptive fields of each convolutional layer with those of
the SegFormer model. This structure also utilizes the overlapping patch merging
mechanism of the SegFormer [17], which we believe allows it to make use of
the tissue predictions more effectively, as each patch also considers parts of
surrounding patches.

From the results in Table 3 we see that the naive model using the tissue
predictions performed worse than the cell-only model. In particular, we notice
that the naive model has a higher precision and lower recall for the background
cells, but lower precision and higher recall for the tumor cells. This tells us that
a potential deficiency of the cell-only model is that it misclassified tumor cells
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(a) SegFormer, Short (mean: 53.69%) (b) SegFormer, Long (mean: 53.27%)

Fig. 3. Histograms of the cell proportions for the SegFormer with a tissue-branch
trained (a) for a short time and (b) for a long time, using the layer weight analysis.
The vertical axis show the number of filters and the horizontal axis shows the proportion
of weights belonging to the cell image, as a score from 0 to 1.

(a) Cell Input Image (b) Tissue Input Image

Fig. 4. The (a) cell input image and (b) tissue input image for the input-corrected
analysis. In (b), red means background tissue and green means cancerous tissue.

as background cells, while the naive model fails as the prevalence of background
cells in cancerous areas is large.

When considering the weight analysis, we see from Figure 3 and Figure 5 that
although the results between the models are quite similar with the naive weight
analysis, they start differing considerably when performing the input correction.
The latter substantiates our thought that the better models are able to more
effectively use the tissue information, as this shows that the better performing
models put more emphasis on the tissue images.

6 Conclusion

In this work, we propose the additive joint pred-to-decoder, a U-Net-like structure
utilizing a joint loss. We show that the new architecture is competitive with
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(a) SegFormer, Short (mean: 53.85) (b) SegFormer, Long (mean: 50.63)

Fig. 5. Histograms of the cell proportions for the SegFormer with a tissue-branch
trained (a) for a short time and (b) for a long time, using the input-corrected analysis.
The vertical axis show the number of filters and the horizontal axis shows the proportion
of weights belonging to the cell image, as a score from 0 to 1.

recent architectures, and by optimizing the training procedure, we show that
it outperforms the current SOTA on the OCELOT task. Inspired by recent
developments in the field of XAI, we develop a method to approximate the
importance of the surrounding tissue classifications. We find that the models
emphasizing tissue structures perform better.

7 Shortcomings and Future Work

We had a case of data leakage in some of the earlier experiments. In particular,
we trained the tissue branch separately and then chose the model based on the
performance of the validation set. This meant that the weights of the cell branch
were influenced indirectly by the validation set, which means that the scores
attained on the validation set with these models are not entirely valid. Still, this
is not the case for the additive joint pred-to-decoder.

We consider model explainability to be an interesting area for future work.
Although there exists frameworks for LRP [2] and GradCAM [15], these are
not compatible with the dual-input modality of this dataset. Our approach is
quite rudimentary, so focusing on adapting more complex techniques to this task
could yield even better understandability and thus more trust in the techniques,
facilitating clinical use.
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