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Abstract. Precise segmentation of the hepatic and portal veins plays
a vital role in planning and guiding liver surgeries. This paper presents
a novel approach using multi-task learning(MTL) within SwinUNETR
architecture to segment both the hepatic and portal veins at the same
time. The MTL framework is trained using Dice-Focal loss and designed
with two decoder branches each for segmenting the hepatic and portal
vein branches. The results from the clinical CT data have shown sig-
nificant performance for both the hepatic and portal veins compared to
the base model (SwinUNETR), especially at the early stages of training.
Notably, the MTL model achieved statistically significant results for the
portal vein segmentation compared to the base model after 100 epochs.
Our proposed MTL model (SwinUNETR MTL) achieved a dice similar-
ity coefficient (DSC) of 0.8404 for the hepatic vein and a DSC of 0.8120
for the portal vein segmentation. Our findings suggest that the MTL
model attains faster convergence and increased segmentation accuracy,
making it a promising approach for segmenting complex structures in
the clinical setup.

Keywords: Hepatic Veins · Portal Veins · Segmentation · Transformer
· Multi-Task Learning.

1 Introduction

Primary liver cancer, which consists predominantly of hepatic cellular carcinoma
(HCC), is the fifth most prevalent cancer worldwide, and colorectal cancer (CRC)
is the third most common type of cancer[3]. Approximately 25% of CRC patients
also have liver cancer at the time of initial diagnosis due to metastasis[8]. Precise
segmentation of hepatic and portal veins and their relationship to a tumor is a
critical task in treatment planning, making surgical decisions, and postoperative
outcomes. Hepatic vessels aid in better visualization and serve as a landmark for
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the multi-modal registration and liver segment approximation[23]. Traditional
segmentation approaches, including manual delineation and classical image pro-
cessing techniques, are often time-consuming and prone to variability. Hepatic
vessel segmentation becomes more tedious due to image-related challenges such
as signal-to-noise ratio, limited contrast between the hepatic parenchyma and
the vessels, low resolution, inhomogeneous background, etc.

Convolutional neural network (CNN) architectures, especially U-Net and its
variants, have shown remarkable efficiency for segmentation tasks. However,
these models often struggle with the complexity and variability of vascular struc-
tures [21], particularly in regions with minimal contrast. The U-Net architectures
depend mainly on local context, limiting their ability to capture global context
[21], an essential aspect for precisely segmentating vessel structures. The Swin-
Transformer architecture has shown prominent success in overcoming some of
the limitations of CNNs by leveraging attention mechanisms that capture both
the local and the global contextual information [29]. SwinUNETR [11] integrates
the SwinTransformer with the U-Net architecture and has significantly advanced
medical image segmentation. Despite its potential, there is limited research ex-
ploring the application of SwinUNETR to hepatic and portal vein segmentation.
This paper presents a novel approach to hepatic and portal vein segmentation
using SwinUNETR in combination with a multi-task learning(MTL) framework.
Our MTL framework is designed to simultaneously segment the hepatic and por-
tal veins, using separate decoders for each task. The design enables the model
to capture task-specific features by using the shared encoder representations,
potentially enhancing the overall segmentation performance.

Our key contributions are as follows: 1. We introduce a SwinUNETR-based
MTL framework for the hepatic and portal veins segmentation using separate
decoders for each task to capture the unique features of each vascular structure.
2. We demonstrate the effectiveness of the MTL setup in improving the seg-
mentation efficiency by allowing shared learning between the two closely related
tasks. 3. We conducted an extensive evaluation of the proposed setup on in-
house and public datasets, which showed its superiority over the state-of-the-art
single-task segmentation approaches.

The structure of the paper is as follows: Section 2 reviews related work on DL-
based hepatic vessel segmentation and the use of a Transformer in combination
with a MTL based framework for medical image segmentation. Section 3 details
the clinical dataset and proposed methodology, including the MTL framework
and separate decoder design. The experiments and results are briefed in Section
4, proceeding to discussion in Section 5. The conclusion and directions for future
studies are presented in Section 6.

2 Related Work

2.1 DL-based hepatic vessel segmentation methods

Ibragimov et al.[14] extracted the intensity patterns of the portal vein using 3D
CNNs to enhance the vein in the target image, followed by a Markov random
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field for segmentation refinement. In Kitrungrotsakul et al.[16], three CNNs were
trained on sagittal, coronal, and axial slices, and the results were ensembled. In
Survarachakan et al.[24], different vessel-enhanced images were used as input
to the 3D U-Net, and the outputs were ensembled. Kazami et al.[15] followed
a CNN-based MTL approach for vessel extraction, center voxel detection, and
vessel-tree reconstruction, which resulted in better extraction of hepatic and
portal veins. Yan et al.[31] used U-Net as the base model, replaced the encoder-
decoder layers with multi-scale attention blocks, and introduced the attention-
guided concatenation module between them. Yu et al.[33] proposed introducing
residual blocks to all convolutional layers to propagate global and local infor-
mation across the network. Hao et al.[10] proposed a hierarchical progressive
multi-scale learning approach to learn semantic information about the vessels
and a dual branch progressive 3D U-Net using downsampling and DS. In Gao
et al. [7], the model utilized a laplacian salience filter to highlight the vessel-
like regions coupled with pyramid DL architecture to capture different levels of
features. Affane et al.[1] integrated a vessel enhancement filter into 3D U-Net
variants to enhance the segmentation results. Kuang et al.[17] proposed a two-
stage unsupervised domain adaptive framework to segment arterial and venous
vessels from the liver CT. In Alirr et al.[2], a U-Net with a modified residual
block to include skip connections was used. Wu et al.[27] extended a 2D Swin-
Transformer to 3D with an inductive bias multi-head self-attention mechanism.
Li et al.[18] proposed a multi-stage hierarchical framework with uncertainty-
aware semi-supervised learning. Xu et al.[30] proposed a dual-stream encoder
combining the convolutional and transformer blocks to extract the local features
and spatial information. The majority of the works presented here focussed on
segmenting the hepatic and portal veins as a single vessel class but segmenting
them as two separate classes is of high clinical relevance.

2.2 Transformer and MTL frameworks for medical image
segmentation

Tang et al.[26] proposed a transformer-based MTL network for the classification
and segmentation of gastrointestinal tract lesions from endoscopic images. Yang
et al.[32] emphasized the potential of a transformer-based MTL method for si-
multaneous segmentation and T-staging of nasopharyngeal carcinoma. For the
concurrent survival prediction and semi-supervised segmentation of gliomas in
brain MRI, Wu et al.[28] proposed a multi-modal fusion transformer with MTL.
Li et al.[19] proposed a spacial dependence multi-task transformer for 3D knee
segmentation and landmark localization from MRI. For simultaneous infiltrated
brain area classification and segmentation of gliomas, a MTL transformer is pro-
posed in Li et al.[20], where the model emphasized the shaped location and the
boundary information to improve the tasks. Tagnamas et al.[25] proposed an
efficient MTL framework by leveraging the strengths of both EffientNetV2 and
adapted vision transformers for breast ultrasound (US) image segmentation and
classification. Hao et al.[9] proposed MTL based on UNETR for complete organ
segmentation as a primary task and partial organ segmentation as an auxiliary



S. Survarachakan et al.

task. The proposed MTL architecture in Huang et al.[13] utilizes the combina-
tion of U-Net and transformers to finely segment retinal vessels and continuous
prediction of diameter values. The use of transformer-based MTL frameworks
for tubular structure segmentation has hardly been explored. Inspired by these
works, the authors propose to use a SwinUNETR-based MTL framework, which
has never been explored for the task of hepatic and portal vein segmentation.

3 Methodology

This section presents the datasets, the developed network architecture, and the
evaluation metrics used in the experiments.

3.1 Dataset

This study uses data from the Oslo University Hospital’s OSLO-COMET trial
(Oslo Randomized Laparoscopic Versus Open Liver Resection for Colorectal
Metastases Trial) (ClinicalTrials.gov: NCT01516710), with approval from rel-
evant local and regional ethical committees. The dataset includes 57 contrast-
enhanced CT images of patients diagnosed with colorectal liver metastasis re-
ferred for liver resection. The images were obtained from 4 CT machine man-
ufacturers and 13 unique models. A medical doctor manually segmented these
volumes to annotate liver parenchyma and visible vessels. The dataset was di-
vided into three splits: 70% for training, 20% for validation, and 10% for testing.

3.2 Network Architecture

In this study we use SwinUNETR [11] as a baseline architecture which is among
the most effective Vision Transformer (ViT) architectures used for medical image
analysis. SwinUNETR integrates the key techniques, including the Hierarchical
Shifting Windows method [22], which enables the network to focus on smaller
objects while maintaining linear scalability. The Swin architecture is fused with
the widely recognized 3D U-Net framework by incorporating Swin multi-headed
attention blocks in the encoder and a CNN in the decoder. The SwinUNETR is
extended to MTL [5] where the encoder is shared between two separate decoders
(see Fig. 1), each dedicated to segmenting the specific veins (hepatic or portal).
Each decoder follows a standard U-Net like design with upsampling layers and
skip connections to reconstruct the high-resolution feature maps. Using separate
decoders allows the model to learn specialized features for each vessel type, while
the shared encoder facilitates knowledge transfer between the two segmentation
tasks. The output of the decoder indicating the presence of the corresponding
veins is concatenated channel-wise to provide the final segmentation with both
vessels.
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Fig. 1. Architecture of the SwinUNETR MTL model.Adapted from [11]

3.3 Evaluation Metrics

The performance of the proposed framework was evaluated using a range of
metrics to assess the quality of the segmentation. The Dice Similarity Coefficient
(DSC) primarily computes the overlap between the predicted segmentations and
ground truth, a key indicator of segmentation accuracy. It reflects how well the
prediction aligns with the true structures. Sensitivity, specificity, and accuracy
provide a balanced view of the model’s performance in correctly segmenting the
vessels vs non-vessel structures. These metrics were computed for both classes,
providing a comprehensive evaluation of the models’s accuracy, robustness, and
reliability in clinical applications.

4 Experiments and Results

This section presents the experiments conducted and their corresponding results.
We compare the performance of the base SwinUNETR model with the MTL

setup (SwinUNETR MTL), where the MTL model is designed to leverage shared
features across related tasks, enhancing learning efficiency. Several configurations
of training parameters were evaluated, and the optimal settings for the dataset
used are presented in Table 1. Specifically, increasing the spatial size from 96 to
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Table 1. Training and data augmentation parameters

Training Parameters Value Description

maximum epochs 600 Total training epochs
batch size 4 Number of samples per batch
loss fn DiceFocalLoss Loss function
lr 0.0001 Learning rate
lr scheduler cosine annealing Adjusts learning rate over epochs
spacing [1.0,1.0,1.0] Voxel spacing for resampling
spatial size [128,128,128] Target crop size

Augmentation Parameters Value Description

ScaleIntensityRanged min=-80, max=250 Scales image intensity
RandFlipd prob 0.5 Probability of random flip
RandRotate90d prob 0.5 Probability of 90° rotation
RandGaussianSmoothd prob 0.2 Probability of Gaussian smoothing
RandScaleIntensityd prob 0.5 Probability of intensity scaling
RandShiftIntensityd prob 0.5 Probability of intensity shifting
RandGaussianNoised prob 0.2 Probability of adding noise
RandAffined rotate range [0.15, 0.15, .15] Rotation range for affine transform
RandAffined scale range [0.2, 0.2, 0.2] Scaling range for affine transform
RandAffined prob 0.2 Probability of affine transform

128, combined with using the Dice-Focal loss function, resulted in better perfor-
mance. All models were trained and evaluated using the MONAI[4] framework,
following the same training parameters detailed in Table 1. To streamline the
workflow and reduce manual dependencies - a key benefit in clinical settings,
we avoided external preprocessing methods such as masking or cropping. In-
stead, the liver masks were used to determine the liver’s bounding box, guid-
ing the segmentation process within MONAI using a specific transform (trans-
forms.CropForegroundd(keys = self.all keys, source key=”liver”)).

Initially, we compared the convergence of the base model against our pro-
posed MTL model. Both models were trained for a maximum of 600 epochs. The
validation DSC (y-axis) plotted against the number of epochs (x-axis) for the
base model and the MTL model shows that the MTL model (brown) consistently
outperformed the base model (red) during the initial stages of training (see Fig
2). The plot shows that the curve from the MTL rises quickly and attains sta-
bility at a higher DSC sooner than the base model. Also, the convergence of the
MTL model appears more stable (i.e. less fluctuations between epochs), indi-
cating faster and more efficient learning. During training, the checkpoints were
saved at every 100 epochs, and the performance of the models was evaluated
on the test set at every 100 epochs using the saved checkpoints. Table 2 further
highlights that the MTL approach provides substantial benefits over the base
model, particularly in the early stages of training.

Early Epochs (100-300): At 100 epochs, the MTL model achieved a DSC
of 0.7895 for the hepatic vein and 0.7868 for the portal vein, marking a signifi-
cant improvement over the base model’s scores by 7% and 10.5%, respectively.
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Fig. 2. Validation dice plot

To assess the statistical significance of these observations, paired t-tests were
conducted. For the portal vein, the t-test at 100 epochs indicated a statistically
significant difference in mean DSC (p = 0.0438), confirming the advantage of
MTL during the early training phase. This indicates that MTL effectively cap-
tures the necessary features early in training. By 200 epochs, the gap narrows
for the hepatic veins, but MTL still maintains a higher DSC of 0.8216 compared
to the base model’s DSC of 0.8048. For portal vein segmentation, a 4.2% im-
provement in DSC demonstrates the sustained advantages of MTL as training
progresses. At 300 epochs, MTL reaches its peak performance for the hepatic
vein with a DSC of 0.8404, 3.1% higher than the base model’s 0.8151. For the
portal vein, MTL achieves a DSC of 0.8120, slightly surpassing the base model’s
DSC of 0.8093.

Later Epochs (400-600): At 400 epochs, the MTL model continues to out-
perform the base model, showing a 2.4% and 3.6% improvement in DSC for the
hepatic and portal veins, respectively. However, by 500 epochs, the base model
slightly surpasses the MTL approach in both classes. At 600 epochs, both mod-
els yield nearly identical results, with the base model marginally outperforming
MTL for the hepatic vein, while MTL slightly outperforms the base model for
the portal vein.

These findings suggest that the MTL framework offers a pronounced advan-
tage in the early stages of training, achieving optimal performance sooner and
potentially reducing the need for prolonged training. Consequently, we chose
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Table 2. Performance comparison between SwinUNETR and SwinUNETR MTL
based on Dice score on the test set at every 100 epochs

Epochs Hepatic Vein Portal Vein
SwinUNETR SwinUNETR MTL SwinUNETR SwinUNETR MTL

100 0.7383 0.7895 0.7121 0.7868

200 0.8048 0.8216 0.7804 0.8135

300 0.8151 0.8404 0.8093 0.8120

400 0.8161 0.8356 0.7897 0.8182

500 0.8303 0.8255 0.8213 0.8208

600 0.8303 0.8221 0.8144 0.8180

the model trained for 300 epochs as the optimal model for further comparisons.
Overall, the MTL approach effectively improves segmentation performance dur-
ing the early and mid stages of training. Although the benefits of MTL may
diminish with extended training, the early gains in DSC make it a valuable
strategy, particularly in applications where reducing training time without com-
promising performance is crucial. The visualization of the segmentation results
from both the models comparing the ground truth is shown in Fig. 3.

Table 3. Comparison of different methods for the hepatic and portal Vein segmentation
based on DSC, Accuracy, Sensitivity and Specificity.

Method Hepatic Vein Portal Vein

DSC
Acc
(%)

Sen
(%)

Sp
(%)

DSC
Acc
(%)

Sen
(%)

Sp
(%)

U-Net 0.7658 99.45 75.11 99.78 0.4237 98.71 87.84 98.77

UNETR 0.8109 99.59 75.89 99.89 0.7678 99.77 73.89 99.91

SwinUNETR 0.8151 99.56 81.79 99.79 0.8093 99.82 74.93 99.95

SwinUNETR MTL 0.8404 99.63 82.24 99.85 0.8120 99.82 76.82 99.94

We also compared the performance of the MTL model with the most popular
architectures used in medical image segmentation applications, such as U-Net[6]
and UNETR[12]. In addition to DSC, we used other metrics mentioned in Section
3.3 to evaluate performance. All models were evaluated on test data after 300
epochs of training. Table 3 shows that the MTL model achieves the highest
DSC and accuracy for both hepatic and portal veins, indicating superior overall
segmentation quality. It also performs best in terms of sensitivity for the hepatic
vein. However, U-Net has the highest sensitivity for the portal vein, suggesting
that U-Net detects more true positives but at the cost of over-segmentation
(lower DSC). Relative to other models, MTL balances sensitivity and specificity
well, leading to more precise and reliable segmentations. All the models perform
well in specificity ( 99.7%), with MTL being best in achieving a balance between
avoiding false positives and maintaining segmentation precision. To summarize,



Title Suppressed Due to Excessive Length

Fig. 3. Axial and 3D views of the hepatic and portal vein predictions overlayed on
ground truth. (1a) From the base model (SwinUNETR), (1b) From the MTL model
(SwinUNETR) viewed in ITK-Snap viewer[34]

MTL outperforms the other models by offering more accurate and balanced
segmentation across both veins.

Comparing the performance of the MTL model with recently published meth-
ods on hepatic vessel segmentation is challenging. As noted earlier, most of the
methods referenced in Section 2 were evaluated on complete vessel segmenta-
tion rather than distinguishing between hepatic and portal veins. Methods that
segment hepatic vessels into two classes either use in-house clinical datasets or
public datasets adapted to their workflow. For example, Xu et al.[30] used the
Medical Segmentation Decathlon (MSD) dataset, adapting the whole liver ves-
sel segmentation into two-class hepatic and portal vein segmentation, where the
adapted ground truth is not publicly available. We found that Li et al.[18] used
the 3DIRCAD dataset to evaluate their method. Therefore, the proposed MTL
model trained on the in-house dataset was further finetuned on the 3DIRCAD
dataset and compared with Li et al. Instead of training the model from scratch,
the new model was trained using the checkpoint trained on the in-house dataset.
This transfer learning approach reduces the time and resources required to train
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Table 4. Performance comparison on the 3DIRCAD dataset

Hepatic Vein Portal Vein
Method Acc(%) Sen(%) Sp(%) Acc(%) Sen(%) Sp(%)

Li et al. 98.9 61.5 98.3 99.7 62.4 99.4

SwinUNETR MTL 99.6 67.9 99.9 99.7 65.9 99.9

the model on a new dataset smaller than the original dataset. Table 4 shows
that our proposed method, using the MTL strategy, surpasses Li et al.’s method
in hepatic vein accuracy (99.6% vs. 98.9%) and maintains similar accuracy for
the portal vein (99.7%). MTL also outperforms Li et al. in sensitivity for both
veins, with an increase in hepatic vein sensitivity from 61.5% to 67.9% and portal
vein sensitivity from 62.4% to 65.9%. This indicates that the MTL model detects
more true positives and performs better at identifying the veins. MTL also shows
higher specificity for both hepatic and portal veins, which demonstrates better
avoidance of false positives, suggesting MTL delivers more precise segmentation
results. To summarize, the MTL model outperforms Li et al.’s method in all key
metrics and shows a significant boost in sensitivity for both veins.

5 Discussion

This study highlights the impact of using MTL, especially with SwinUNETR
architecture for the hepatic and portal vein segmentation. The results highlight
the critical insights of using MTL for complex medical image segmentation tasks,
particularly concerning training efficiency, segmentation accuracy, and potential
clinical relevance.

Impact on Training Efficiency and Early Convergence

The most significant advantage of using the MTL framework is the potential of
the MTL model to enhance training efficiency, especially by promoting early con-
vergence. The analysis of the results suggests that the MTL model consistently
outperformed the base SwinUNETR model, particularly in the early training
phase, as shown by the results at 100 epochs. For instance, the MTL achieved
an increased DSC of 0.7868 compared to 0.7383 from the base model for the
hepatic vein. A more pronounced improvement in DSC of 0.7868 was achieved
by the MTL compared to 0.7121 from the base model for portal vein. These
early gains are critical in scenarios where rapid model development is essential.
The MTL’s ability to utilize shared representations across tasks accelerates the
learning process, requiring fewer epochs to achieve higher accuracy. This is a sig-
nificant benefit, especially in clinical settings where the time and computational
resources are limited.
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Enhancing Segmentation Accuracy

In addition to accelerated training, MTL consistently improves segmentation
accuracy in complex tasks like portal vein segmentation. The DSC across multi-
ple epochs reveals that MTL persistently boosts accuracy over the base model,
especially in the early stages of training. Even at 300 epochs, MTL achieved a
DSC of 0.8404 for the hepatic vein, significantly higher than the base model’s
DSC of 0.8151. For the portal vein segmentation, MTL maintained a superior
performance, showing its potential to capture complex anatomical features. The
consistent performance advantage of MTL over the base model highlights its
role in enhancing reliability and precision in medical image segmentation tasks,
which is very crucial in clinical applications. Compared with other segmentation
architectures like U-Net and UNETR, the MTL approach showed superior per-
formance on most metrics, as shown in Table 3. Furthermore, when finetuned on
3DIRCAD datasets, MTL surpassed the method proposed in Li et al. [18]. This
implies MTL generalizes well across different datasets and offers a competitive
edge in accuracy.

Clinical Relevance and Implications

The potential clinical relevance of MTL is profound, especially in its ability to
accelerate model training and deliver accurate segmentation results. In clinical
procedures such as post-operative planning and intra-operative navigation, the
need for precise and timely segmentation is paramount. MTL’s ability to achieve
faster convergence and higher accuracy means it can produce high-quality seg-
mentations much more quickly than traditional methods. This efficiency can
streamline clinical workflows, and potentially enhance surgical outcomes. Addi-
tionally, improved segmentation of complex structures such as portal veins can
lead to more accurate diagnosis and better treatment decisions.

Challenges with Centerline Extraction

While this research highlighted the advantages of applying MTL for the ves-
sel segmentation tasks, specific challenges emerged while attempting centreline
extraction (CLE) and using Hausdorff Distance (HD) as a metric to assess the
quality of the segmentation accuracy. CLE was performed on the ground truth
and the segmented results, and HD was calculated. However, the ground truth
labels were annotated on a slice-by-slice basis and lacked 3D continuity, resulting
in fragmented centrelines in the ground truth. The fragmentation led to increased
HD values that did not reflect the actual segmentation accuracy. In this context,
using HD gives no insight into segmentation performance, so this part of the
analysis was omitted in the final evaluation. This highlights the importance of
ensuring that the metrics used for 3D segmentation assessments are appropriate
for the data and the labeling process. In future work, the labeling process has
to be improved to obtain more accurate segmentation and extensive evaluation.
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6 Conclusion

In this study, we studied the effect of using MTL with SwinUNETR architecture
to segment the hepatic and portal veins. The key findings suggest, that using
MTL significantly improves the segmentation of both the vessel branches, par-
ticularly in the early stages of training. This is evident by statistically significant
improvement in DSC at 100 epochs. In addition to the increased segmentation
accuracy, training with the MTL strategy leads to faster model convergence than
the base model. In clinical settings, the MTL approach could reduce the time
and computational resources required for model training, ultimately leading to
more timely and precise surgical interventions. Future research should focus on
applying MTL to other multi-structure segmentation tasks. Expanding the val-
idation to larger and more diverse datasets could ensure the generalizability of
the MTL model. To conclude, using MTL with SwinUNETR has shown promis-
ing results in complex medical segmentation tasks like hepatic and portal vein
segmentation. MTL offers promising results in terms of both time and accuracy
that could enhance clinical outcomes, particularly in liver surgery.
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