
Students’ Visualisations of Programming
Concepts: An Exploratory Analysis

Rolando Gonzalez1, Trond Klevgaard1, and Kjetil Raaen1

Kristiania University College, Oslo, Norway

Abstract. This study explores the intuitive visualisations of code cre-
ated by novice programming students with the aim of uncovering how
these reflect their understanding of fundamental programming concepts.
Through a thematic analysis of student drawings, this exploratory re-
search identifies common themes and categorises different modes of vi-
sual expression. The findings reveal great variations in how students can
visualise code, and suggest that drawings can serve as an effective tool
for both diagnosing student misconceptions and supporting their learn-
ing of programming. This study highlights the potential of incorporating
visual exercises into programming education to improve concept compre-
hension.

Keywords: Programming visualisation · Drawing · Introductory pro-
gramming · Exploratory research

1 Introduction

When teaching introductory programming, educators may wonder how well stu-
dents grasp the fundamental concepts being introduced. What does a variable,
loop, or array represent in the mind of a novice programmer? Furthermore, how
do students develop a coherent understanding of complex code processes that
integrate multiple techniques?

Programming is a challenging subject for many students. Worldwide, the
failure rate is around 30% [5]. Educators use different tools and methods to make
programming more concrete and to help students understand. Examples of tools
include Scratch for children and young adults and BlueJ in higher education.
Examples and analogies are commonly used in the classroom or lecture theatre
to contextualise and explain code.

The study explores how novice programming students understand code through
a thematic analysis of their intuitive visualisations. The research objective of this
study is to explore the understanding of code by new students through their in-
tuitive visualisation of code. Further, we aim to gather insight that can help
educators understand how students think, such as what misconceptions the stu-
dents may have and a broader set of alternatives to explain code, both orally
and through visualisation.



2 R. Gonzalez, T. Klevgaard and K. Raaen

2 Background

Although some literature reports on drawing as a learning method, it has been
challenging to find sources that examine this topic within programming. How-
ever, here also there is a tradition of using visualisation. The following therefore
accounts for how students may have encountered programming-related visuali-
sation methods in addition to providing a review of academic studies on drawing
as a learning tool in this field.

2.1 The background of the students

In recent years, as computer technology conquers more of society, programming
knowledge has become increasingly important to all citizens. This is not only
because programming is a useful skill, but because it is considered an effec-
tive way to train logic, reasoning, and problem-solving abilities. Consequently,
programming is becoming increasingly common in primary and secondary edu-
cation curricula[15]. We expect this to lead to better basic programming skills
from our first-term students in the coming years, and we cannot assume that
our first-term students have not learnt some programming before.

Some of this teaching also uses visualisation techniques, further complicating
the pictures of the participants’ prior knowledge of programming visualisation.
One of the most popular tools for teaching young learners programming is the
Visual Programming Language (VPL) Scratch [13]. It is text-based, but the
text is embedded in a graphical format, blocks, making it easier to understand.
A similar VPL called App Inventor by MIT gave good results in learning basic
programming concepts among students at a university in Taiwan. Some of the
advantages found were not having to worry about syntax or code errors that can
be frustrating, and the motivation of the students is also positively affected [16].

Professional programmers use standardised formal and semi-formal languages
to express ideas visually throughout the design process. The most important fam-
ily of such diagrams is the Unified Modelling Language, UML[10]. Participants in
this study were not introduced to UML or other modelling languages as part of
the course. However, given their ubiquity, participants may have come in contact
with them previously.

Educators sometimes use metaphors and analogies to create a bridge between
abstract and real-life objects and situations to make it easier to grasp. For ex-
ample, a variable may be talked about as a box or container in which we can put
the values inside; although this may cause false beliefs such as that since a box
in real life may contain multiple things, students may conclude that variables
contain multiple values [7].

2.2 Using student visualisation for learning programming

Drawing has traditionally been considered a core competency in the visual arts.
It has also been extensively used in primary education as a learning and com-
munication tool for children [4]. Recent years have seen increased interest in



Students’ Visualisations of Programming Concepts 3

academic investigation of pedagogical uses of drawing in a wide range of uni-
versity courses [2], including the sciences [1]. Whilst rare, some authors have
also focused specifically on how drawing can be used to improve or illuminate
the process of learning programming. One study [11] focused on emotions and
thoughts about programming, rather than the task itself. The researchers asked
the students to produce a drawing answering the question What does program-
ming mean to you?. They used a relatively straightforward analysis that looked
at the following attributes: actors, activities, aspirations, and affect. This anal-
ysis is partly quantitative; for example, they mention that positive emotions are
present in 38% of the drawings, negative emotions in 28%, and mixed emotions
in 15%. They also see a marked move from positive to negative emotions from
first- to second-year students. The authors suggest using drawing to help educa-
tors understand the emotional state of the students and maybe adjust teaching
to keep the challenge appropriate.

Although this approach is informative, it is not a direct part of teaching. An-
other study [8] attempts a more direct approach: Task students with visualising
algorithms without limiting style or content. Visualisations of algorithms often
focus on the movement and flow of data, rather than the actions themselves, so
these visualisations are not directly visualising the code. Participants were asked
to give peer feedback to other students’ visualisations. Later, the learning for all
participants was tested. The goal here is improved learning, and the form and
content of the visualisations are given less importance. They found that, in gen-
eral, these exercises improved learning. Although this was not the primary focus,
the authors commented that the students produced more diverse visualisations
than those in standard learning materials.

3 Method

In this study, we used a qualitative analysis approach to analyse drawings col-
lected from novice programmers.

3.1 Data collection

Data collection was conducted in 2020 at a Norwegian university college in a
first-year introductory programming course. The course included students from
five different Bachelor’s in IT specialisations and Bachelor’s in Digital Marketing.
The programming language used was JavaScript. Midway through the 12-week
semester, students received a two-week assignment. They were asked to draw
their interpretation of three descriptions of functionality, completed as one of
five types of tasks in groups of 2-5 students. The students were informed that
the drawings could be used as part of a research project, ensuring anonymity,
and that the assignment would be accepted without the drawing. The descrip-
tions to be drawn included techniques like loops, arrays, conditional statements,
functions, click events, and output to HTML. The students were instructed to
draw with pen, pencil and paper, photograph the drawings with their phones,



4 R. Gonzalez, T. Klevgaard and K. Raaen

and write a short text describing them. The wording of the instruction was
(translated from Norwegian):

In this task, you should create your personal interpretation of
the code through drawing. There is no right solution

For this research, we chose not to focus on the short text descriptions; however,
we look through them to see if they were of significance. We found that the great
majority of the students’ text descriptions were very short and did not add more
understanding to the drawings. We received between 400 and 450 submissions.
For the analysis of this paper, 30 of the drawings were selected. We experienced
saturation; that is, few new codes appeared after this number.

3.2 Data analysis

Our qualitative study is based on the process and analysis of thematic analysis
presented by Braun and Clarke [6]. Furthermore, we have chosen the approach
Braun and Clarke refer to as inductive, or bottom up, as this was highly explo-
rative. The process consists of six main steps, beginning with researchers getting
to know the data through notes, reflections, and discussion, then creating codes
and themes at different levels of refinement, and finally producing a report. Al-
though Braun and Clarke mainly refer to speech or text, their process can also
be applied to visual materials, as Rose’s highly similar content analysis method
shows[14].

Thematic analysis of this research was performed mainly by two of the three
researchers working in parallel. Throughout the process, the two researchers
would meet to discuss and write down their thoughts and reflections in a sep-
arate document that is especially used as a preparation for the next discussion
part of the paper. Analysing the drawings took considerable time, comparable
to analysis of longer in-depth interviews. The third researcher was included at
critical points in the process to provide general quality control and general feed-
back. When the two researchers came to their second version of refined codes,
they started working more closely to group codes and identify themes, before
the findings chapter was written, laying the foundation for the process of writing
the discussion chapter.

3.3 Limitations

We reviewed 30 drawings, so there may be details that were not captured. We do
not have data on how many students did not submit drawings, and the students
had varying levels of drawing experience, which may have affected their output.
Some students’ drawings could have been influenced by external influences, such
as UML, or by their peers during group work. The task was assigned midway
through the semester; giving the task at other points would likely lead to different
results. Furthermore, this research is exploratory and we did not use a predefined
theoretical framework to interpret the drawings. Lastly, we do not know whether
the drawings submitted were initial attempts or revised versions, nor do we have
information on the time spent on the task.



Students’ Visualisations of Programming Concepts 5

4 Findings

This chapter presents the findings of our research study. It is divided into several
sections, each detailing one theme. We identified the following themes:

1. Explanatory modes
2. Structure
3. Level of detail
4. Ways of drawing the for-loop
5. Flow, time and ordering
6. Transfer of information
7. Active versus passive elements
8. Figurative drawings and elements
9. Relationship between process and results

4.1 Explanatory modes

(a) An image-
based response.

(b) Text and image inte-
grated in a diagram.

(c) A textual drawing, executed as
bullet-points.

Fig. 1: Examples of the various explanatory models.

The students’ responses can be categorised into different explanatory modes.
These can be divided into two broad categories, text and image, which in turn
can be broken down into subcategories. Text can be written as code, partial
code, descriptive prose, short prompts, or keywords. Images range from abstract
diagrams to metaphorical representations using figurative elements. Although
some students submitted entirely image-based (Fig.1a) or purely textual (Fig.1c)
responses, most combined the two. For example, a figurative drawing accompa-
nied by descriptive text, or code can be integrated into a diagram (Fig.1b).
Although diagrammatic drawings may contain elements recognisable as block
diagrams, flow charts, or network diagrams, these tend not to be executed us-
ing UML or other formal drawing techniques. Similarly, it can be observed that
although some students use graphic conventions from borrowed from cartoons
like speech/thought bubbles or visual onomatopoeia (like jagged lines expressing
energy, as in Fig.1a) their drawings are not conceptualised as comics per se.



6 R. Gonzalez, T. Klevgaard and K. Raaen

4.2 Structure

Most drawings contain three main components representing the for-loop, the
array, and the webpage. Some students break these into smaller units, resulting
in a more detailed and/or fragmented representation. Others chose to omit a
component, usually the for-loop or the array. Diagrammatic drawings commonly
use rectangles to group and isolate content. These rectangles, or “containers”,
can hold a variety of content, from pieces of code to simple labels like “for-
loop”. Although containers are most commonly rectangular, other shapes can
be used. Some drawings use a variety of shapes, possibly to indicate differences
in the functions contained. In other drawings, shapes are joined together to
create more complex forms capable of grouping different types of content whilst
simultaneously maintaining their distinction.

4.3 Level of detail

(a) Drawing showing a
low level of detail.

(b) A drawing showing a
more detailed representa-
tion of the array.

(c) A drawing detailing the
relationship between pro-
gramming languages.

Fig. 2: Examples of the various levels of detail.

The drawings can be categorised by level of detail. Detail can refer to the
extent to which the workings of the for-loop, array, or web page are visually
explained. Most drawings, like Fig.2a, barely attempt such a visual explanation.
Instead, they only show connections between a series of ’black boxes’, containers
named for their function. In such drawings, the inner workings of the components
are hidden. Detail may also refer to process. In low-detail drawings, arrows can be
used as black boxes, representing not only direction or connection, but changes
in content or the passing of time.

Higher levels of detail can be shown in different ways. The for-loop or array
may be divided into smaller parts, as in Fig.2b. These parts can be combined,
viewed as modules that build on each other, or connected by lines or arrows.
Students might add code or descriptive text to serve as explanations or, in the
case of diagrams, as content within containers. Text-based drawings may feature



Students’ Visualisations of Programming Concepts 7

bullet point lists that explain the process step by step, as in Fig.1c. Instead of
visualising how the process works in principle, some students chose to create
examples, often by inventing a list of names to populate the array.

4.4 Ways of drawing the for-loop

The for-loop is one of the three main components in the drawings, and the
students can be broadly put into one of the three main categories based on how
they handle the loop. The first group, which comprises a bit less than half of the
students, has chosen to draw the loop and loop process explicitly. The second
group, a bit more than half of the students, has not drawn the loop figuratively,
but rather used other ways to conceptualise it. The third group seems to have
omitted the loop completely.

(a) The for-loop in-
terpreted literally
as a looping form.

(b) The for-loop drawn as scenario. (c) The for-loop repre-
sented only as a ‘black
box’ with arrow.

Fig. 3: Examples of ways to draw the for-loop.

Students who have figuratively included the for-loop draw elements symbol-
ising repetition, movement, and direction. Examples include arrow lines forming
a circle, spirals, interconnected loops, incomplete circles with start and stop
points, lemniscate (infinity symbols), and wavy lines. Some represent the re-
quired number of operations by drawing multiple lines or arrows. Additionally,
some drawings indicate incrementation with details like ’i++’ or ’+1’, or note
the number of repetitions.

In the case of students who indirectly include repetition and process, we see
drawings of scenarios. One scenario is a drawing of an empty truck on the left
side of a box representing a storage building, and the same truck on the right
loaded with names (Fig. 3b). This drawing does not directly show the process,
but we infer that the products are loaded inside the building. Another scenario
shows a shopping list and store shelves with products. Here, we must imagine
the buyer picking products off the shelves one by one.

The third group of students has not shown any direct indication of repetition
(Fig. 3c). Some students have included loop code alongside other code snippets
or drawings. Others go directly from the array to the web page using an arrow.



8 R. Gonzalez, T. Klevgaard and K. Raaen

In another example, the drawings show information bits in a row, with arrows,
commas, or lines pointing to the web page, resembling an information caravan.

4.5 Flow, time and ordering

The drawings show different orderings of the three main components: for-loop,
array, and output. By ordering, we mean that the process is initiated by one
component and continues to the next. With most drawings going from left to
right or top to bottom, equal numbers of students draw the for-loop first, then
the array, and vice versa, with the output at the end. Among students who
omit the output, it is more common to draw the array before the for-loop. A
minority start with something other than a for-loop or array, such as a button
that initiates the process. In some cases, the drawing has no identifiable order.

Most students draw the process as linear and stepwise, with a (more or
less) clear start and end. However, students also created nonlinear depictions,
some resembling network diagrams (Fig.2b) and others containing free-floating
elements without connections. A loop element may, for instance, simply begin in
thin air and disappear into nothingness. In very few cases, one has what appears
as a circular process (Fig.2c), and in one drawing the flow direction is ambiguous
(Fig.1a). In the case of a drawing using comic strip elements, with parts of the
code represented by stick figures, the logic could be said to follow the logic of the
cartoon, the conversation between characters. Another dimension connected to
flow is time. A drawing such as in Figs.1a and 2c in a way depicts a moment in
time where the process is happening in front of our eyes; we are in the middle of
it happening. However, other drawings, such as Figs.1b and 2b, show the start
and end; you choose the time of the process when you look at them.

4.6 Transfer of information

The transfer of information between components occurs in a variety of sequences,
travelling between the loop and the array, between the array and the output
representation, or between the loop and the web page.

Connections enabling information transfer is illustrated in various ways. Lines
are commonly used to connect components (Fig.2b). Arrows can be used to indi-
cate direction as well as action (Figs.1b and 3c). Students draw lines and arrows
that stretch from component to component, stop before reaching a component,
or extend into components to suggest different levels of connection.

Whether students draw each array value that is being handled or if they
depict it as a repetitive black-box process varies. We have drawings showing a
line representing the for-loop entering the array and exiting on the other side
carrying information. We also have examples of a loop pattern entering and
leaving the same array box (Fig.3a). A drawing of the array repeated as a series
of horizontal units shows a line representing the for-loop entering each unit,
causing names to fall down.



Students’ Visualisations of Programming Concepts 9

Some of the more esoteric and scenario-based drawings use more complex or
very different means of expressing the transfer of information such as the jagged
lines of energy shown in Fig.1a.

4.7 Active versus passive elements

The drawings typically show elements as either active or passive; they do some-
thing or have something done to them. Placing an element at the beginning of
the process suggests that it is the active part, interacting with the others. De-
pending on whether the for-loop or the array is placed first, the drawings show
the for-loop accessing the array (Fig.2a) or the array providing information to
the loop (Fig.3c).

In rare instances, the drawing indicates that the website or HTML initiates
the process. Usually, the website or output is simply the result of a prior process.
Sometimes, no main active element is clear; there might just be an arrow from
an array leading to an output without specifying an active element.

An element in the drawing can be both passive and active depending on the
step in the drawing. For example, an array might first send information to a
loop, making the array active and the loop passive. In the next step, the loop
could become active in generating the output.

4.8 Figurative drawings and elements

A minority of drawings are figurative, rather than diagrammatic, using everyday
metaphors to explain the functionality. Examples of figurative, metaphorical
drawings include one showing personifications of the for-loop, array, and website
having a conversation, a scenario in the grocery store where the shopping list is
the for-loop and a shelf full of products is the array, a printer literally printing
out the names on a piece of paper (Fig.2a), and trucks representing the for-loop
driving through a warehouse representing the array, collecting names as if they
were goods (Fig.3c).

Figurative elements can also be used as part of diagrams, typically at the
start or end of the process. Sometimes, they book-end an otherwise abstract dig-
ital process. Showing output on real-world objects like a laptop, printer, folder,
browser window, and document or paper is common (Figs. .2a. and .3b). Real-
world objects can also serve as a starting point for the process. For example, a
figurative button can indicate that the functionality requires input to be initi-
ated.

Figurative elements in the form of ideograms serve as visual shorthand, rep-
resenting a certain content without directly showing it. For example, straight or
wavy lines can be used to signify text. Even near-abstract elements, like lines
connecting components, can add narrative to the diagram when interpreted figu-
ratively. For example, such lines may double as wires or roads. One student drew
a physical wall symbolising a barrier between programming languages which the
for-loop was required to forcefully break through (Fig.2c).



10 R. Gonzalez, T. Klevgaard and K. Raaen

Some drawings include human figures. These can form part of a metaphoric
scenario in which personifications of the for-loop, array, and web page are having
a conversation or in which the transfer of information occurs by a person walking
down a path which also doubles as a line connecting two parts of the functionality
(Fig.2a). Several drawings contain smiling faces, as part of the human form, as
freestanding symbols, or as integrated into drawings of technological equipment,
such as printers (Fig.1a).

4.9 Relationship between process and results

In several drawings, we observe a divide between the ’internal’ workings of the
code and its ’external’ output. This separation manifests itself in various ways.
One way is a tendency to show the output displayed on elements related to
the material world, contrasting with abstract depiction of internal processes.
Examples of such elements include laptops, screens, folders, or sheets of paper.
Real-world associations may be reinforced through contrasting drawing styles,
where the material object is drawn in a three rather than two dimensions. An-
other way in which drawings show the divide between internal and external is
by separation. In such drawings, a space can be seen between the parts showing
the code and the parts showing the output. This space can be further accen-
tuated with elements like arrows, indicating a “jump” between the process and
the website, or a ticked checkbox showing a successful data transfer (Fig.2b). In
some drawings, the output is shown falling down, as if affected by gravity, unlike
the internal processes unaffected by such real-life factors.

5 Discussion

In this research, the students illustrate their understanding of a small program
by drawing. This study focusses on visualising programming concepts on paper.
Due to the exploratory nature of this work, direct comparisons in the literature
are scarce. Therefore, the findings are discussed on their own merits, where we
have no direct comparison.

5.1 Drawings as a communication tool

Drawing is a communication tool that can be actively used to build knowledge
[3]. One of the main challenges in learning programming is that its abstract and
dynamic nature makes it difficult to grasp [9]. By drawing, the students make
the invisible visible in a double sense. They are forced to conceptualise how they
think a program works. At the same time, they create visual artefacts that can
be interpreted by others.

Reflecting on the students’ drawings, we see commonalities. First, they choose
and draw components they perceive as involved. Second, they illustrate the con-
nections and order of the processes. The drawings also detail information process-
ing, differentiate between active and passive components, and show the process



Students’ Visualisations of Programming Concepts 11

flow. Emotions are sometimes communicated through elements such as smiling
faces. Students use different styles and categories for drawing. An interesting
question arises whether the drawing category influences thinking or vice versa.
Flow charts, for example, encourage stepwise thinking.

Reading the drawings is an act of interpretation that necessarily relies on the
reader’s personal background and professional training. As Andrade’s research [3]
shows, meanings can be read in a drawing which were not intended by the person
who created it. However, the potential for misunderstanding can be reduced if
the drawing is accompanied by an oral explanation.

Not all students included the three main parts indicated by the task. This can
be seen, for instance, in drawings lacking a representation of the loop. One reason
behind such omissions may be that the student in question has felt a particular
technique, or interaction between techniques, to be outside their understanding.
We also note that an almost equal number of students draw the array before the
loop as the opposite. Such drawings give the appearance of an ”active” array
delivering information to the loop. From the educator’s perspective, one may ask
if this shows a misunderstanding of the process. Does the student believe that the
array is doing the work rather than the loop? Some students show concretely
with lines and arrows how the loop ”injects” values into the web page, while
others completely abstract the transfer of information. The concreteness of may
lead us to conclude on a clearer mental model of what the for-loop is doing.

Based on the findings in this work, we see several possibilities in different
contexts as to how the use of drawings, including intuitive drawings, can po-
tentially improve teaching and learning. A first output of this exploration is the
discovery of many different manners of drawing programming, which one may
also understand as discovering that there are several ways in which students un-
derstand programming. An educator may have their approach to teaching based
on their personal understanding and preferences, and we hope that this research
will reveal that we may be more different when it comes to our mental models
regarding programming than we first expected. A lecturer may visualise con-
cepts through drawings while explaining, not only in one category of drawing,
but multiple categories on different levels of detail to reach students that have
different backgrounds and are on different levels of understanding. In addition,
a drawing may be a tool in a supervision situation between a student and a
student assistant or teacher, or in discussions between peers in coconstructing
understanding and knowledge.

Creating a drawing is an active and iterative process that can improve un-
derstanding and correct misconceptions. Unlike abstract discussions, drawings
provide concrete entities, reducing cognitive[3] load and simplifying discussions
by enabling easy reference to parts. Quillin and Thomas [12] identify different
pedagogical motivations for using drawings in education. The motivations may,
for example, be fostering active learning, foster memorisation, make it easier for a
teacher to evaluate the student’s understanding, and better be able to give feed-
back. In supervision, asking students to draw can start discussions, letting the
student set the premise for further knowledge construction - you as a supervisor



12 R. Gonzalez, T. Klevgaard and K. Raaen

let the student reveal their mental model and understanding. This is particularly
useful when vocabulary is limited, as drawings can intuitively represent issues
and concepts. Drawing, discussing, and using gestures can be combined to de-
scribe, analyse, and add movement and direction when needed. In addition, the
concreteness of the drawing can become something that the student can use to
connect and build their academic language on.

5.2 Code, output and the material world

As described in the findings, we have observed that several drawings emphasise
a separation between the “internal” workings of the code and its “external”
output. By internal we here refer to those processes that are hidden from view
in daily life, and by external we mean the visible or otherwise perceptible results
of these processes. Moreover, we have noted a tendency to show the output (and
in some cases input) drawn figuratively, as an object from the material world,
whilst the code has been rendered in an abstract manner.

When asked to draw the internal workings of the code, students are implic-
itly asked to visualise the invisible. Unless they choose to reproduce the code
as text, mirroring the way programmers usually experience code, this neces-
sarily involves a degree of invention. As shown in the findings, such inventions
can be more or less fantastical. Some students chose to illustrate code using
figurative drawings and imagined scenarios, whilst others conceptualised it as
information flows represented diagrammatically using geometric forms such as
rectangles (containers), lines, and arrows (connections). When it comes to the
output created by code, the situation is different. The students have all seen the
results of code displayed on their computer screens or on other devices.

On a basic level, the gap between an ’abstract inside’ and ’figurative outside’
can be interpreted as the confluence of two different types of drawing. The first
concern itself with visualising the invisible, and the second with representing
objects the students have abundant visual references and memories of. However,
it may also point towards difficulties in conceptualizing how code and output are
connected. Students may not previously have been required to think carefully
about how the relationship between hardware and software plays out in practice.

Most of the students chose to represent the functionality in a diagrammatic
way. However, as explained in the findings, some also created figurative drawings.
These use metaphors taken from daily life to explain the workings of the code. As
noted in the background chapter, metaphors can be used to describe something
unfamiliar in familiar terms. Metaphorical explanations may therefore be inter-
preted, not only as a student’s effort to represent something unfamiliar using
references they already possess but also as a way of lessening the threatening
aspects of the unknown. The use of human forms, smiling faces, and anthro-
pomorphised machines may be seen as further evidence of a desire to imbue
technological processes with relatable human qualities and positive emotions.



Students’ Visualisations of Programming Concepts 13

5.3 Choice of visual language

When describing the visual language used, it is important to keep in mind the
limitations of the method. Although not measured, it is safe to assume that
few students have formal training in art or visualisation and probably did not
invest much time or effort. This may explain the schematic representations or
simple figurative elements. Despite these limitations, there is variety in the data.
Many diagrams are improvised using arrows, rectangles, or circles to represent
processes. The term ’loop’ suggests circles or spirals, logical ways to illustrate
the function of a loop. Some drawings omit repetition, indicating potential mis-
understandings that educators can address to aid comprehension.

Some diagrams show similarities to formal modelling languages such as UML
state diagrams. This might be due to previous exposure to UML or similar
languages, or it might indicate that the designers of UML and the students work
from the same intuitive principles. Either way, these intuitive drawings are a
good tool to start exploring more formalised methods for mapping programming
patterns. However, it should be noted that the task here is too simple to break
down into multiple units in most visual languages, so students would have to
improvise even if they had a good understanding of UML.

In contrast to, but often combined with, the diagrams, some students use
more figurative elements in the form of humans and physical objects. Some
think in terms of a human doing a job, others represent the various elements
as physical objects. If the array is drawn as a warehouse that stores numbers,
that is a metaphor we could use in future conversations with this student. When
humans are present, they are mostly stick figures but show clear expressions.
Do these expressions reveal some feeling of the students? Or are they drawing
happy faces to comfort themselves?

6 Conclusion

Our thematic analysis reveals significant potential for drawing as a teaching tool
in introductory programming. Through a structured but open-ended analysis,
we see that drawings provide insight into the thought process of the students. We
conclude that drawings can be developed as a technique to facilitate the learning
of fundamental programming concepts. For instance, students’ drawings can help
identify areas of misunderstanding, such as incorrect representations of loops or
arrays. By choosing an appropriate visual language, educators can align their
teaching methods with the diverse cognitive styles of students, whether they
favour abstract concepts or need more concrete and practical examples. Used as
a basis for discussion between peers, student assistants, or teachers, drawings
can provide information on the knowledge construction process.

To be useful in the development of future teaching tools, this work must be
followed by a more concrete design and evaluation. Can we design a teaching
scenario where we instruct students to draw, and then use the drawings to give
feedback, either from teachers, TAs, or peers. This scenario can also be quanti-



14 R. Gonzalez, T. Klevgaard and K. Raaen

tatively evaluated for improved learning. Similar experiments can be conducted
to determine which exact concepts are best taught in this way.

References

1. Ainsworth, S., Prain, V., Tytler, R.: Drawing to learn in science. Science 333(6046),
1096–1097 (Aug 2011). https://doi.org/10.1126/science.1204153

2. Ainsworth, S.E., Scheiter, K.: Learning by drawing visual representations: Po-
tential, purposes, and practical implications. Current Directions in Psychological
Science 30(1) (2021). https://doi.org/10.1177/0963721420979582

3. de Andrade, V., Freire, S., Baptista, M., Shwartz, Y.: Drawing as a
space for social-cognitive interaction. Education Sciences 12, 45 (01 2022).
https://doi.org/10.3390/educsci12010045

4. Anning, A.: Drawing out ideas: Graphicacy and young children. International Jour-
nal of Technology and Design Education 7, 219–239 (1997)

5. Bennedsen, J., Caspersen, M.E.: Failure rates in introductory pro-
gramming: 12 years later. ACM Inroads 10(2), 30–36 (apr 2019).
https://doi.org/10.1145/3324888

6. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Research
in Psychology 3, 77–101 (01 2006)

7. Hermans, F., Swidan, A., Aivaloglou, E., Smit, M.: Thinking out of the box: com-
paring metaphors for variables in programming education. In: WiPSCE ’18. ACM
(2018). https://doi.org/10.1145/3265757.3265765

8. Hübscher-Younger, T., Narayanan, N.H.: Dancing hamsters and marble statues:
characterizing student visualizations of algorithms. p. 95–104. SoftVis ’03, ACM
(2003). https://doi.org/10.1145/774833.774847

9. Medeiros, R., Ramalho, G., Pontual Falcão, T.: A systematic liter-
ature review on teaching and learning introductory programming in
higher education. IEEE Transactions on Education PP, 1–14 (08 2018).
https://doi.org/10.1109/TE.2018.2864133

10. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., Robbins, J.E.: Modeling soft-
ware architectures in the unified modeling language. ACM Trans. Softw. Eng.
Methodol. 11(1), 2–57 (jan 2002). https://doi.org/10.1145/504087.504088

11. Moskal, A.C.M., Gasson, J., Parsons, D.: The ’art’ of programming: Exploring
student conceptions of programming through the use of drawing methodology. p.
39–46. ICER ’17, ACM (2017). https://doi.org/10.1145/3105726.3106170

12. Quillin, K., Thomas, S.: Drawing-to-learn: A framework for using drawings to
promote model-based reasoning in biology. CBE—Life Sciences Education 14(1),
es2 (2015). https://doi.org/10.1187/cbe.14-08-0128, pMID: 25713094

13. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai,
Y.: Scratch: Programming for all. Commun. ACM 52(11), 60–67 (nov 2009).
https://doi.org/10.1145/1592761.1592779

14. Rose, G.: Visual methodologies. Sage Publications (2001)
15. Szabo, C., Sheard, J., Luxton-Reilly, A., Simon, Becker, B.A., Ott, L.: Fifteen years

of introductory programming in schools: A global overview of k-12 initiatives. Koli
Calling ’19, ACM (2019). https://doi.org/10.1145/3364510.3364513

16. Tsai, C.Y.: Improving students’ understanding of basic programming concepts
through visual programming language: The role of self-efficacy. Computers in Hu-
man Behavior 95, 224–232 (2019). https://doi.org/10.1016/j.chb.2018.11.038


