
Fundamentals of Norwegian CS1

Sondre S. Bolland, Aleksandr Popov, Tyra F. Eide, Robert Kordts, and Torstein J. F. Strømme

University of Bergen

{sondre.bolland, aleksandr.popov, robert.kordts, torstein.stromme}@uib.no,
tyra.eide@student.uib.no

Abstract. The introductory programming course, known as CS1, has evolved considerably
since its inception, with diverse opinions on the essential concepts that should be included.
This study aims to identify the fundamental concepts taught in Norwegian CS1 courses
in order to develop a validated assessment tool: a concept inventory. This tool will be
utilized in the Nordic Prior Knowledge Test in Programming, which is designed to assess
the pre-existing programming knowledge of students entering higher education. This test
uses Python, the dominant programming language in K-12 and higher education in Norway.

To identify the fundamentals of CS1 we employed a triangulation approach that included
three perspectives: the intended curriculum, the assessed curriculum, and the experienced
curriculum. Our methodology involved a Delphi process with Norwegian CS1 educators, an
analysis of final exams from various Norwegian institutions, and surveys of computer science
students regarding the difficulty and importance of programming concepts.

Our findings reveal that concepts related to looping, functions, conditionals and error
interpreting are central to Norwegian CS1 courses, aligning with existing literature. However,
we also identified notable discrepancies compared to older CS1 concept studies developed in
other countries, particularly in concepts like recursion, data structures beyond arrays/lists
and maps, and test design. These results underscore both the dynamic nature of computer
science education and the enduring importance of foundational topics that students are
expected to master.

Keywords: Introduction to Programming · CS1 · Concept Identification · Concept In-
ventory

1 Introduction
The term CS1 originates from the ACMs 1978 Computing Curricula, where it was designated as the
label for the introductory programming course [5]. While the names and general principles of CS1
have remained consistent, the past 46 years have seen significant changes in the concepts covered
in these courses. Hertz [16] found a lack of consensus among U.S. computer science educators
regarding which concepts should be included in CS1 (and CS21) and the relative importance
of these concepts. Even when limiting the analysis to whether a concept was deemed essential
or whether students were expected to demonstrate any mastery of it, Hertz found persistent
disagreements among instructors.

Analogously, institutions in different countries and continents may also have divergent opinions
on the content of CS1. We hypothesize that this phenomenon is present in Norway, potentially
exacerbated by the recent expansion of CS1 courses at Norwegian institutions to include all STEM
students, beyond just computer science students. This broader audience may dilute the focus and
content of CS1 courses, as they now must appeal to geologists, chemists, biologists, and others.
Consequently, the curriculum might vary significantly from one CS1 course to another.

Despite these variations, there may be a foundational core of concepts that all CS1 students
must understand to succeed in their course. Mapping these concepts would be beneficial for re-
searchers and educators to better develop teaching strategies and educational materials, including
validated assessment.
1 CS2 is the course succeeding CS1, typically focusing on data structures and algorithms.

2 S. S. Bolland, A. Popov, T. F. Eide, R. Kordts, T. J. F. Strømme

This study aims to determine the most fundamental concepts of CS1, with the specific purpose
of developing a concept inventory (CI). A CI serves as a criterion-referenced assessment tool
designed to gauge students’ precise understanding of predefined concepts. Comprising meticulously
crafted multiple-choice questions, a CI exposes conceptual misconceptions and guides instructors
in refining teaching methodologies and curricula [7].

The envisioned CI addresses a novel challenge in Norwegian computer science education:
the integration of programming into the K-12 curriculum. With the latest curriculum update,
“Kunnskapsløftet 2020,” programming and computational thinking have been incorporated into
subjects such as mathematics, science, music, and arts and crafts [21]. To gauge students’ prior
knowledge as they enter higher education, the Nordic Prior Knowledge Test in Programming was
developed [1]. This assessment tool evaluates students’ proficiency in fundamental programming
concepts through tasks implemented in Python, the language emphasized in the K-12 curricu-
lum [29] and the dominating language in introductory higher education courses, as confirmed by
our survey of CS1 educators. The test’s purpose is to guide CS1 educators in allocating teaching
resources effectively by identifying which concepts students are already familiar with and which
require educational attention. Administered for the first time in 2023, the test is intended to be
issued every fall semester to track the longitudinal progression of programming knowledge in the
Nordics.

However, the programming tasks in the current test exhibit limitations. As of 2024, these tasks
have been collaboratively developed by CS1 educators from Norway and Sweden; however, the
design remains experimental, lacking a validated methodology. Our objective is to create a CI to
replace these programming tasks, offering a more standardized and reliable assessment method.

The proposed CI differs from existing CS1 CIs (such as the FCS1 [31] and the SCS1 [22])
by focusing on prior knowledge rather than knowledge developed throughout the CS1 learning
period. We aim to create a test that assesses CS1 curriculum objectives, but with the level of
knowledge developed during the K-12 period, before higher education instruction starts. Porter et
al. [25], and Webb and Becker [32] suggest that student misconceptions in computer science likely
originate from the instruction itself, rather than being pre-formed. As the content and structure of
programming education in the K-12 period is different from instruction given at higher education,
the misconceptions identified by those CIs may not align with the misconceptions held by incoming
students. This discrepancy highlights the need for a new CI that accurately reflects the prior
knowledge and potential misconceptions of incoming students.

1.1 Research Questions and Structure

This paper aims to address the first step in CI development [13]: determining the fundamental
concepts. To identify the core elements of Norwegian CS1 curricula, we aim to answer the following
research questions:

– RQ1: What concepts in Norwegian introductory programming courses are most important for
students to learn?

– RQ2: What concepts in Norwegian introductory programming courses are most difficult for
students to learn?

In this context, we define importance as the level of necessity to learn the concept before progressing
to more advanced computer science curricula in later courses, and difficulty as the level of cognitive
and practical challenge that students face when attempting to understand, apply, and master the
concept.

In the following sections, we outline existing research on CS1 content and methods used to
determine its core elements. We then describe our three-step approach to identifying the funda-
mental concepts of Norwegian CS1, followed by the results of these approaches. Finally, we provide
an interpretation of these results and conclude what the key elements of Norwegian CS1 are.

Fundamentals of Norwegian CS1 3

2 Related Work
2.1 Historical and Recent Studies on Fundamental CS1 Concepts
Schulte and Bennedsen’s 2006 study [27] provides a comprehensive survey of 349 CS1 educators
(with 242 completed responses) aimed at identifying the key concepts considered essential in a
CS1 course. The criteria for this identification included overall difficulty to learn, relevance to
the subject, and the level of mastery based on Bloom’s Taxonomy [6]. Their list of CS1 concepts,
as compiled by Dale [11] and Milne [20], prominently features topics related to object-oriented
programming (OOP). The survey revealed that 85% of the educators covered OOP in their courses,
and 60% reported using an objects-first approach. Interestingly, the concept list also included
topics emphasised in more advanced courses, such as advanced data structures (e.g., linked lists,
trees), algorithm design, algorithm efficiency (Big-O notation), recursion, generics, and divide and
conquer strategies. Notably, four of these advanced concepts ranked among the top five in terms of
overall difficulty to learn. However, these scored substantially lower in terms of perceived relevance.
The concepts ranked most relevant were Selection & Iteration, Simple Data structures, Parameters
and Scope of Variables.

Goldman et al. [14] conducted the first study on computer science CIs in 2008, identifying
fundamental concepts in introductory programming. By surveying experts in the field, they iden-
tified and rated 32 concept categories by their importance and difficulty. 11 of these concepts were
selected as the most fundamental based on an aggregate metric. These include:

1. Abstraction/Pattern recognition and use
2. Debugging, Exception Handling
3. Functional Decomposition, modularization
4. Conceptualizing problems, designing solutions
5. Designing tests
6. Inheritance
7. Memory model, references, pointers
8. Parameter scope, use in design
9. Procedure design

10. Recursion, tracing and designing
11. Issues of scope, local vs. global

The authors noted that reaching a consensus on the most important and difficult concepts for a
CS1 course is inherently challenging due to the diversity of approaches in programming languages
(e.g., Java, Python, C++), pedagogical paradigms (e.g., objects-first, objects-late, procedural),
and programming environments used. As highlighted by Taylor et al. [7], computer science is a
relatively young field where the content and underlying technology are significantly more fluid
than in other fields. Consequently, the concepts most relevant to CS1 in 2006 and 2008 may differ
from those relevant in 2024.

A more recent study by Luxton-Reilly et al. [19] in 2018 sought to establish which elements
of syntax and semantics are covered by CS1 courses and what instructors expect from students.
The study compiled concepts from nine prior sources [3, 9, 10, 16, 23, 26–28, 30], resulting in a
comprehensive list of 12 overarching concepts, most encompassing various sub-concepts. These
were used to analyze the CS1 learning outcomes from 103 courses at 101 universities across 12
countries (excluding Norway). The analysis aimed to determine which concepts are most frequently
addressed in global CS1 courses. Table 1 presents these 12 overarching concepts and their respective
frequencies of occurrence.

However, it is important to recognize that course learning objectives can often be vague and
nonspecific. As Luxton-Reilly et al. [19] noted:

“The stated objectives for CS1 are often fairly abstract. In some cases, we concluded that
they were too vague and generic to tag.”

This observation is echoed by practices at the Department of Informatics at the University of
Bergen, where course learning objectives are intentionally written in a broad manner to allow

4 S. S. Bolland, A. Popov, T. F. Eide, R. Kordts, T. J. F. Strømme

Concept Number (%) of courses
Programming Process 90 (87%)
Abstract Programming Thinking 65 (63%)
Data Structures 41 (40%)
Object-Oriented Concepts 37 (36%)
Control Structures 34 (33%)
Operations and Functions 27 (26%)
Data Types 24 (23%)
Input/Output 18 (17%)
Libraries 15 (15%)
Variables and Assignment 14 (14%)
Recursion 10 (10%)
Pointers & Memory Management 5 (5%)

Table 1: Number of courses whose objectives address each broad concept from the master list (with
percentage in parentheses).

for flexibility. Because these objectives can only be revised one year in advance, instructors tend
to draft them in a way that allows for content adjustments each semester without the need for
extensive pre-planning.

In Henry and Dumas’s 2020 study [18], the development of a CI for programming fundamentals
involved closely observing students during a 10,000-line coding project. The researchers identified
important concepts with frequent misconceptions by observing students both individually and
in groups, and by engaging in informal discussions with them throughout the semester. Weekly
meetings with the four instructors in charge of the course, along with a review of exam results and
consultations with other experts and educators, helped to refine the identification of problem areas.
Their findings highlighted three key concepts–conditionals, functions, and variables–as essential
for the CS1 course, which then became the focus of their CI development.

Norwegian CS1 Content. Research on CS1 content predominantly comes from outside Norway
and even beyond the Nordic countries. Anecdotal comparisons between the content typically found
in Norwegian CS1 curricula and the literature reveal notable differences in concept emphasis. For
instance, concepts such as recursion, memory management, references, pointers, and designing tests
are frequently absent in many Norwegian CS1 courses. Additionally, while international studies
often emphasize object-oriented concepts, these are not a major focus in many Norwegian CS1
curricula. Our survey of Norwegian CS1 educators indicates a predominant use of procedural
programming paradigms.

While these discrepancies may stem from the evolving nature of computer science and the
age of the studies, they nevertheless underscore the need to closely examine the fundamental
concepts in modern CS1 courses in Norway and how these align with those identified in the
broader international context.

2.2 Consulting CS1 Experts
The sources mentioned in the previous section employ a diverse range of methods to determine
which concepts in CS1 are considered fundamental for the course. However, the most prominent
methodology for determining fundamental concepts in the development of computer science CIs
is the Delphi process. A 2022 literature review by Ali et al. [2] identified 65 papers on computer
science CIs. Of these, 22 discussed the process of selecting concepts, with 17 utilizing the Delphi
process.

The Delphi process is a structured communication technique used to achieve consensus among
experts in a particular field. It employs a four-step approach (described in Section 3.1) to gather
and rank a collection of concepts within the selected field. These concepts are iteratively rated

Fundamentals of Norwegian CS1 5

with the goal of facilitating the sharing of opinions among the experts, ultimately aiming to reach
a consensus on the topic at hand [12]. In the development of computer science CIs, it is common
to define the fundamental concepts by their importance and difficulty to learn [2].

While the Delphi process is the favored method, we propose that it may have limitations
when applied to CI development. Although experts are generally knowledgeable about difficult
concepts, there can be a disconnect between the intended learning outcomes and the curriculum
that students actually experience [17]. Experts generally know what is difficult for students but
occasionally underestimate the difficulty of some topics [15]. Furthermore, self-report instruments
are often criticized regarding the extent to which they are related to actual behavior [4].

To address these potential shortcomings, we have augmented the Delphi process with two
additional approaches to obtain a more accurate representation of the curriculum as it is truly
implemented.

3 Methodology
To define the scope of CS1 in Norway, we employed a triangulation approach using three distinct
perspectives: the intended curriculum, the assessed curriculum, and the experienced curriculum.

The intended curriculum refers to the official, planned curriculum, encompassing the goals,
objectives, content, and learning outcomes that educators intend for students to achieve [17]. The
assessed curriculum focuses on the elements that are evaluated through formal assessments, such
as assignments and exams, thus highlighting what is actually measured in terms of student learn-
ing and performance [24]. The experienced curriculum, also known as the operational curriculum,
pertains to the curriculum as it is actually experienced by students in the classroom. This dimen-
sion is subjective, varying according to factors such as teaching methods, classroom dynamics,
individual student backgrounds, and the broader learning environment [17].

To capture the intended curriculum, we consulted experts using the Delphi process. The as-
sessed curriculum was examined through a mixed-methods analysis of CS1 exams administered
across various institutions in Norway. The experienced curriculum was explored by gathering in-
sights from students enrolled in computer science courses.

3.1 Intended Curriculum - Delphi Process
We engaged CS1 experts from universities and university colleges across Norway, including higher
education professionals involved in teaching CS1 or conducting CS1-related research, to participate
in a Delphi process. These experts took part in a series of online surveys designed to identify the
most important and challenging concepts within the Norwegian CS1 curriculum.

While the recommended number of participants for a Delphi process is typically between 15
and 30 [8], we only secured the participation of nine experts, reflecting the relatively small pool of
CS1 educators in Norway. By the final round of surveys, participation dropped to six, likely due
to the study’s timing during the exam period, which limited educators’ availability. Despite these
seemingly small numbers, the participating educators covers more than half of institutions affiliated
with the National Academic Council for ICT2 in Norway. Consequently, the views and perspectives
gathered likely provide a representative overview of the landscape of Norwegian computer science
higher education.

This Delphi process was modeled after the methodology outlined by Goldman et al. [14], who
conducted a similar process for CS1 in the US. In their paper they describe a number of possible
improvements on their work which we have employed in our methodology. The Delphi process
consisted of four surveys:

1. Concept identification
2. Initial rating
3. Negotiation
4. Final rating
2 Translated from Norwegian: Nasjonalt fagorgan for IKT.

6 S. S. Bolland, A. Popov, T. F. Eide, R. Kordts, T. J. F. Strømme

Initially, each expert was asked to list 10 to 15 programming concepts from their CS1 curriculum,
based on their importance and difficulty. Specifically, they were asked to name concepts which
they considered crucial for students to learn to succeed in CS1, and those most challenging for
students to grasp. These concepts were then categorized into general concept categories through
inductive coding conducted by the first two authors.

Subsequently, the same experts rated these coded concept categories in a second survey us-
ing the same two criteria. Each concept category was rated on a scale from 1 to 10, where 1
indicated the least importance/difficulty and 10 indicated the greatest importance/difficulty. An
eleventh option, “Not Relevant for CS1,” was available for concepts deemed unsuitable for the CS1
curriculum.

In the third survey, participants were presented with the same items, but with statistical data
about the ratings from the previous survey: the mean, standard deviation and the distribution in
form histograms. If a participant’s rating in the third survey fell outside the interquartile range
(middle 50%) of the ratings from the second survey, they were prompted to provide a justification
for their rating.

The fourth survey presented the same items again, along with the statistics and justifications
from the third survey, resulting in a final rating.

3.2 Assessed Curriculum - Exam analysis
The second approach involved analyzing the most recent exams from different institutions in
Norway. Final exams are designed to assess the extent to which students have mastered the
course objectives, and thus, they should include the concepts that lecturers deem most important.
To determine whether the concepts rated as important align with those assessed in exams, we
requested CS1 instructors in Norway to send us the exam tasks from a recent semester. We then
used the list of concept categories developed from the first Delphi survey to identify which concepts
were needed to solve these tasks. We used two metrics:

– Number of concept category occurrences
– Number of occurrences of what the authors interpreted as the main concept category(ies) being

assessed

As an example, one of the exam tasks asked the student to determine the output of this code
snippet:
t1 = 6
t2 = 0
resultat = 0
while resultat <= 9:

if t1 < t2:
resultat += t1

else:
resultat += t2

t1 -= 1
t2 += 2

print (resultat)

For this task, we identified the occurrence of the concept categories Conditional Execution, Loop-
ing, Primitive Datatypes - Mathematical Operators, Primitive Datatypes - Declaration, Boolean
Expressions, Variable Semantics, and Sequential Execution. We interpreted the main concepts
being assessed as both Looping and Conditional Execution.

For each exam task, we counted these two metrics and weighed them by the number of points
the tasks allocated.

The analysis was conducted by the first three authors. Initially, all three authors independently
analyzed the same exam and discussed which concept categories were present and which were
intended as the primary focus of assessment until a consensus was reached. After this calibration,
the remaining exams were divided among the authors for individual analysis.

Fundamentals of Norwegian CS1 7

3.3 Experienced Curriculum - Student Surveys

The third approach involved surveying the students about their experiences with the CS1 cur-
riculum. While lecturers may possess a general understanding of which concepts are difficult for
students to learn, there could be a misalignment between the perspectives of students and lecturers.

To gather the student’s perspective, we reused the second survey from the Delphi process,
asking students to rate each concept category based on importance and difficulty. This survey was
administered to two student groups: those who had recently completed their CS1 course and those
who had just finished their CS2 course, both at the Department of Informatics at the University of
Bergen. Surveying both these groups aimed to capture perspectives from those who had recently
acquired the material and from more experienced students who had the opportunity to apply
CS1 concepts in a CS2 context. The idea was that one might consider a concept more or less
difficult/important after having utilized the concept in a larger and more advanced context in
CS2.

4 Results
4.1 Delphi Process

In the first survey we collected a total of 94 concepts from the nine experts. Some of the given
concepts were excluded from the dataset due to the authors interpreting them as too broad or
vague for any one concept category. This included the concepts “translate mathematical, scientific
models to code” and “identifying how to interpret tasks and how to solve.” The concepts where
coded into 20 concepts categories. The categories and their description can be found in Appendix
A.

These 20 concept categories were evaluated iteratively over three surveys. Figure 1 presents
the final importance and difficulty ratings as a scatter plot. Each data point includes error bars
representing the standard deviation of each metric along their respective axes. Detailed mean
values and standard deviations are provided in Appendix A.

Fig. 1: Importance and difficulty ratings from the final survey (n=6). Each concept category has
error bars representing the standard deviation for the two metrics along the respective axes.

8 S. S. Bolland, A. Popov, T. F. Eide, R. Kordts, T. J. F. Strømme

4.2 Exam analysis
We collected six exams from various Norwegian institutions, each representing distinct CS1 courses.
Our analysis revealed that certain concept categories were present in nearly every exam task. These
categories included:

– Primitive Datatypes - Declaration (all subtasks)
– Variable Semantics (all subtasks)
– Sequential Execution (145 out of the total 150 subtasks)

Given that the use of primitive data types, variables, and sequential execution are fundamental
to almost all programming, their presence in the exam tasks does not provide us with much infor-
mation. Therefore, these categories have been excluded from the subsequent results and analysis.

Each exam allocated 100 points, summing up to a total of 600 points across all exams. Table
2 presents the occurrence percentages of various concept categories and the frequency with which
each category was identified as the main focus of assessment in the tasks. This is calculated as the
number of points each concept category received divided by the total points for all exams.

Concept Occurrences Main Concepts
Control Flow Syntax 58% 3%
Condtitional Execution 50% 30%
Looping 62% 22%
Function Semantics 64% 19%
Function Parameters and Arguments 65% 3%
Return Values 61% 1%
Primitive Datatypes - Mathematical Operators 47% 3%
Boolean Expressions 49% 2%
Sequential Datatypes 70% 34%
Variable Assignment and Mutability 16% 3%
Object-oriented Basics 24% 21%
Error Interpreting 5% 0%
External References 12% 0%
Debugger 2% 2%
AI Tools 0% 0%
External Data 16% 15%
Conventions 11% 6%

Table 2: Concept occurrences in exam tasks multiplied by the number of points the task allocated,
divided by the total number of points for all exams.

To analyze the variation in focus on different concept categories across CS1 exams, we calcu-
lated the mean and standard deviation of the occurrences for each category between the exams
(see table in Appendix B). The results show significant variability, with many concept categories
displaying high standard deviations, some even exceeding their respective means. This indicates
substantial inconsistency in how these concepts are assessed. Notable categories with a standard
deviation larger than their mean include Conventions, Debugger, External References, Error In-
terpreting, Object-Oriented Basics, and Variable Assignment and Mutability.

In contrast, the three categories with the highest consistency–indicated by the smallest relative
difference between mean and standard deviation–were Conditional Execution, Looping, and Sequen-
tial Datatypes, making them the most consistently assessed topics across exams. Interestingly, AI
Tools was not assessed even once.

4.3 Student Perceptions of Difficulty and Importance
The concept categories were rated by 55 CS1 and 88 CS2 students. Note that the concept category
Object-oriented Basics was excluded from these surveys because it was not covered in their respec-
tive CS1 courses, thereby preventing these students from evaluating its difficulty and importance.

Fundamentals of Norwegian CS1 9

Due to the non-normality of the distribution of these ratings, we utilized a non-parametric test
(Mann-Whitney U test) to assess differences in ratings between CS1 and CS2 students. Among the
19 concept categories evaluated, only three importance ratings and three difficulty ratings showed
statistically significant differences in means. The specific rating values of these student groups can
be found in Appendix C.

Given the similarity in their ratings, we combined both groups into a single total student rating
(n=143). Table 3 presents a comparison between the ratings of this combined student group and
those of the experts. Using the same non-parametric test, we found four importance ratings and
five difficulty ratings to be significantly different in their means, as indicated in the table.

Concept Category
Control Flow Syntax
Sequential Execution†‡
Conditional Execution
Looping
Function Semantics
Function Parameters and Arguments‡
Return Values‡
Primitive Datatypes - Declaration
Primitive Datatypes - Mathematical Operators
Boolean Expressions
Sequential Datatypes
Variable Semantics‡
Variable Assignment and Mutability‡
Error Interpreting
External References†
Debugger†
AI Tools†
External Data
Conventions

Importance
Students Experts
8.70 8.83
8.35 9.83
8.60 9.83
8.66 10.00
8.45 8.83
7.98 8.17
8.13 7.83
7.83 8.67
7.83 7.50
8.22 8.83
7.73 9.00
7.91 8.83
7.38 6.33
8.65 9.00
7.37 3.33
7.09 4.20
6.23 2.00
6.61 8.17
6.94 6.17

Difficulty
Students Experts
4.74 3.33
4.81 2.17
4.06 4.50
5.38 6.67
5.51 7.50
4.75 7.83
4.42 7.00
3.48 2.17
3.64 3.00
3.92 5.00
5.22 5.17
3.84 5.33
5.27 8.17
6.45 5.67
5.02 5.00
5.55 5.60
3.54 3.40
6.50 5.83
4.79 3.33

Table 3: The mean importance and difficulty ratings by all students (n=143) and experts (n=6). “†”
denotes significant difference of importance mean. “‡” denotes significant differences in difficulty
mean.

5 Discussion
5.1 Course Variation in Norway

Our findings reveal disparities in how experts perceive the importance and difficulty of various
concept categories in Norwegian CS1 courses. In the initial rating survey, 16 out of 20 topics
showed a standard deviation above 1.00 for importance ratings. The most contentious categories–
those with a standard deviation exceeding 2.00–included Primitive Datatypes - Declaration, Object-
oriented Basics, Debugger, AI Tools, and Conventions.

Several of these contentious categories are notable for their variability. For example, AI Tools
is an emerging technology, with applications like OpenAI’s ChatGPThaving been introduced only
recently. Its inclusion in curricula has been debated, particularly concerning issues of plagiarism,
which may explain its limited presence in established coursework. Conventions is often seen as a
concept that is implicitly learned throughout various courses, rather than explicitly taught. Object-
oriented programming topics, on the other hand, seem to be relegated to more advanced courses,
with two experts deeming them “Not relevant for CS1” in their final ratings. The majority of
experts indicated that they teach CS1 using a procedural paradigm.

Our analysis of final exams across different CS1 courses further highlights this variability. Many
concept categories exhibited a standard deviation greater than the mean. Object-oriented Basics
showed particularly high variability: out of the six exams analyzed, only two placed major emphasis

10 S. S. Bolland, A. Popov, T. F. Eide, R. Kordts, T. J. F. Strømme

on this topic. The remaining four either excluded it entirely or allocated at most 5% of the total
points to it.

Despite the variation across many topics, some concept categories exhibited consistently low
variability between exams, including Conditional Execution, Looping, and Sequential Datatypes.
These categories were also rated highly by experts, with importance ratings of nine or higher,
indicating strong alignment between expert priorities and the content emphasized in exams.

It is important to note that the exam analysis offers only a partial perspective on the concepts
assessed in these courses. In post-analysis discussions, several experts noted that practical skills,
such as error interpretation and resolution, were primarily evaluated through assignments, leading
to their diminished presence in final exams.

The students’ ratings generally aligned with those of the experts, with 14 out of 19 concept
categories (excluding Object-oriented Basics) showing no significant difference in perceived impor-
tance or difficulty. Interestingly, in cases where significant differences in difficulty ratings were
observed, students consistently rated the concepts as easier than the experts did, with only one
exception: Sequential Execution. These same categories were also rated highly in importance by
the experts. A possible explanation for this discrepancy is that instructors, recognizing these topics
as both challenging and crucial, may devote extra attention to them in their teaching. This could
lead students to perceive these topics as easier simply because they have been taught thoroughly.

5.2 Aggregating Importance and Difficulty for Concept Ranking
Despite the initial variability in the expert ratings, a notable convergence in opinions emerged by
the final round of ratings, as evidenced by a reduction in standard deviation across all concept cat-
egories. By the end, only Object-oriented Basics and External Data retained a standard deviation
above 1.00 for both importance and difficulty, suggesting growing consensus among the experts
on most topics.

To decide which concept categories were most fundamental to the CS1 course we computed a
single aggregate metric to rank the topics. Given that the primary purpose of these fundamental
concepts is to define the scope for assessing the knowledge of incoming students, our focus is on
the more basic elements of CS1. As a result, we prioritize the importance of the topics over their
difficulty. To reflect this prioritization, we adjusted the weighting of difficulty by applying a square
root transformation, resulting in the following formula:

Aggregate = Importance ·
√

Difficulty

This method yielded the top-ranking concept categories shown in Table 4 (the complete list can
be found in Appendix A). These six concept categories featured frequently on final exams, with
the notable exception of Error Interpreting. The importance ratings for these categories showed no
significant difference between students and experts. For difficulty, students generally rated these
topics as either equally challenging or easier compared to the experts.

Concept Expert
Importance

Student
Importance

Expert
Difficulty

Student
Difficulty

Exam Task
Occurrence

Exam Task
Main Concept

1. Looping 10 8.66 6.67 5.38 62% 22%
2. Function Semantics 8.83 8.45 7.5 5.51 64% 19%
3. Function Parameters 8.17 7.98 7.83 4.75 65% 3%
4. Error Interpreting 9 8.65 5.67 6.45 5% 0%
5. Condtitional Execution 9.83 8.6 4.5 4.06 50% 30%
6. Return Values 7.83 8.13 7 4.42 61% 1%
Table 4: Top six concept categories as determined by the aggregate metric, including importance
and difficulty ratings by experts and students, and exam occurrences.

Fundamentals of Norwegian CS1 11

5.3 How do the Findings Compare to the Literature?

Common Concepts. Among the top-ranked concept categories identified through our aggregate
metric, several align closely with findings from previous research, underscoring their significance
in introductory programming courses.

Looping emerged as our highest-ranked category, with ratings from our experts closely matching
those in Goldman et al.’s study [15], where it received an importance score of 9.5 and a difficulty
score of 6.6. This alignment is further supported by Schulte and Bennedsen [27], who emphasized
the significance of Selection and Iteration, identifying it as the most relevant concept for CS1
courses.

Function-related concepts have been repeatedly highlighted as crucial within CS1 curricula.
Henry and Dumas [18] identified functions, along with conditionals and variables, as key concepts
during the dropout peak in introductory programming courses. Their mixed-methods approach
targeted functions as one of three core topics for their CI, noting that students found it particularly
challenging to articulate misconceptions about functions, indicating the complexity of this concept.
Similarly, Goldman et al. [15] included five function-related concept categories, which yielded an
average importance score of 8.8 and a difficulty score of 7.5. Schulte and Bennedsen [27] also
highlighted the relevance of understanding function Parameters, particularly in terms of the correct
type and number for a given function or method, ranking it as the third most relevant concept,
though with a low difficulty score (2.8 out of 5.0).

Conditional Execution is another key concept recognized in multiple studies, though generally
not considered highly difficult. Henry and Dumas [18] included this topic in their CI, observing that
it was the easiest of the three key concepts they identified. Goldman et al. [15] rated Conditionals
with a 9.3 in importance and 6.6 in difficulty, indicating it as more challenging than our findings
or those of Henry and Dumas suggest. Interestingly, Schulte and Bennedsen [27] did not include
a concept related to conditionals in their study.

Error Interpretation, as defined in our study, is somewhat narrower than how it has been
categorized in other research. Schulte and Bennedsen [27] use the broader term Debugging, while
our focus is on the identification of errors rather than the additional process of resolving them.
They rated the topic 3.8 out of 5 on relevance and 3.2 on overall difficulty. Goldman et al.’s [15]
category Debugging/Exception Handling: “Developing and using practices for finding code errors.”
aligns more closely with ours. Their expert panel rated this topic identically to ours on importance
(9.0 out of 10.0) but considered it substantially more difficult, with a score of 8.6 compared to
our 5.6. Luxton-Reilly et al. [19] included Debugging within their broader category Programming
Process, which was identified as a topic covered by 87% of the CS1 courses in their study.

Diverging Concepts. Among the concept categories that were rated and analyzed in our study,
some diverge from the existing literature. One of the most notable shifts has been in the emphasis
on object-oriented programming (OOP). Schulte and Bennedsen [27] reported that in 2006, 85%
of educators included OOP in their CS1 courses, with 60% adopting an objects-first approach.
However, in our analysis, OOP was scarcely featured in Norwegian CS1 assessments apart from
two courses and was even deemed "Not relevant for CS1" by two of the six CS1 experts in the final
survey.

Additionally, other concepts frequently highlighted in past studies were absent from those
mentioned by Norwegian educators. These concepts, along with the corresponding studies, include:

– Recursion [10, 15,16,23,26–28,30]
– Data structures such as matrices [10], graphs [16] and collections beyond arrays [26,28]
– Test design [15, 16,28]

Whether these curricular differences are due to geographical or temporal factors remains uncer-
tain. However, this divergence underscores the fluidity and evolving nature of computer science
education, where priorities and approaches can shift significantly over time and across regions.

12 S. S. Bolland, A. Popov, T. F. Eide, R. Kordts, T. J. F. Strømme

5.4 Limitations

The recommended number of experts for a Delphi process ranges from 15 to 30 [8]. However, we
initially secured only nine experts, and this number further decreased to six by the final survey.
In the first survey, each expert was asked to submit 10 to 15 concepts, resulting in 94 concepts,
which were consolidated into 20 concept categories. By contrast, Goldman et al. [15] identified 32
concept categories. This discrepancy could suggest that our smaller expert pool may have led to
fewer programming concepts being considered. However, it could also indicate that the concepts
taught at Norwegian institutions are less varied than those in Goldman et al.’s study.

Comparing these concept categories, we find that ours are broader in scope. For example,
Goldman et al. [15] delineated five distinct categories related to functions, whereas we identified
only three. The broader nature of our categories may have influenced how experts assessed the
importance and difficulty of these concept categories, potentially leading them to consider a wider
range of differentiating aspects.

For the student perspective, our data was collected from a narrow sample: the students of the
Department of Informatics at the University of Bergen. Ideally, these students would have been
sampled from multiple institutions in Norway, not only one. This may have skewed the student
opinion to align with that of the authors’ institution and not the more general opinion of computer
science students across Norway.

In our analysis of final exams, a potential source of error lies in the interpretation of the pri-
mary concept categories being assessed. These were educated guesses, which may have introduced
some inaccuracies. Moreover, the limited number of exams analyzed from different CS1 courses
constrains the generalizability of our findings. A larger sample of exams would offer a more com-
prehensive and reliable assessment of the key concepts emphasized. Additionally, expanding the
analysis to include assignments throughout the courses would provide a fuller understanding of
the concepts assessed across the entire curriculum, not just in final exams.

6 Conclusion
This study has gathered insights into the most important and difficult concepts in the Norwegian
CS1 curricula through expert consultation, assessment analysis, and student surveying. Initially, a
notable variation in opinions emerged regarding the most relevant topics for the course. However,
we have consolidated a few distinct topics that are rated highly by both students and experts and
have been featured in many exam tasks across the nation. These topics, deemed highly relevant
by existing literature spanning nearly two decades, include Looping, Functions, Conditionals and
Error Interpreting.

Although many of the concept categories identified as both important and difficult are fre-
quently assessed, Error Interpreting stands out due to its limited inclusion in exams, appearing in
only 5% of all tasks. This limited inclusion may be due to its more frequent assessment in course
assignments, or it may reflect the inherent challenge of designing efficient exam tasks to evaluate
this skill. Therefore, there is a strong incentive to explore new methods for creating assessment
tasks that effectively evaluate Error Interpreting, ensuring that this fundamental aspect of CS1 is
adequately covered in the curriculum.

These selected topics require significant educational attention and are the concept categories
we intend to use in developing a CS1 concept inventory. However, they are not the only ones in
need of focus. Loops, conditionals and functions are all structures that depend on other program-
ming concepts. For instance, in Python, a for loop cannot be written without using sequential
datatypes, and a while loop and an if-statement cannot be written without using boolean expres-
sions. This dependence is even more apparent when considering functions. A function modularizes
code, implying that there is already some code with its set of concepts in the body of the function.

To accurately assess whether a student has understood looping, conditionals and function-
related concepts, we must first ensure that they have understood their atomic parts. Therefore,
in our continued work, we will also focus on the foundational components of our selected concept
categories.

Fundamentals of Norwegian CS1 13

6.1 Further Work
The next phase in the CI development focuses on identifying misconceptions related to the selected
concepts. Our objective is to analyze student perceptions acquired through both K-12 programming
curricula and subsequently during the CS1 course. This approach aims to offer valuable insights
into the effectiveness of K-12 programming instruction and to compare misconceptions that emerge
before higher education with those developed during the initial stages of higher education.

Acknowledgements
We would like to thank all participating experts in the Delphi process, without whom this study
and the entirety of The Nordic Prior Knowledge Test in Programming would not have been
possible. Thank you to Siri M. Jensen, Andreas Haraldsrud, Guttorm Sindre, Erlend Tøssebro,
Nils-Christian W. Rabben and others for their participation. We look forward to more fruitful
research endeavors in the future.

References
1. Nordisk forkunnskapstest i programmering. https://programmeringstesten.no/, retrieved: 2024-07-

13
2. Ali, M., Ghosh, S., Rao, P., Dhegaskar, R., Jawort, S., Medler, A., Shi, M., Dasgupta, S.: Tak-

ing stock of concept inventories in computing education: A systematic literature review. In: Pro-
ceedings of the 2023 ACM Conference on International Computing Education Research - Vol-
ume 1. p. 397415. ICER ’23, Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3568813.3600120

3. Armstrong, D.: The quarks of object-oriented development. Commun. ACM 49, 123–128 (02 2006).
https://doi.org/10.1145/1113034.1113040

4. Artelt, C.: Lernstrategien in der schule. Handbuch Lernstrategien pp. 337–351 (2006)
5. Austing, R.H., Barnes, B.H., Bonnette, D.T., Engel, G.L., Stokes, G.: Curriculum ’78: recommenda-

tions for the undergraduate program in computer science a report of the acm curriculum committee on
computer science. Commun. ACM 22(3), 147166 (Mar 1979). https://doi.org/10.1145/359080.359083

6. Bloom, B.S., Englehart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R., et al.: Taxonomy of educa-
tional objectives, handbook i: the cognitive domain. new york: David mckay co (1956)

7. C. Taylor, D. Zingaro, L.P.K.W.C.L., Clancy, M.: Computer science concept in-
ventories: past and future. Computer Science Education 24(4), 253–276 (2014).
https://doi.org/10.1080/08993408.2014.970779

8. Clayton, M.J.: Delphi: a technique to harness expert opinion for critical decisionmaking tasks in
education. Educational Psychology 17(4), 373–386 (1997). https://doi.org/10.1080/0144341970170401

9. Joint Task Force on Computing Curricula, A.f.C.M.A., Society, I.C.: Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science. Association
for Computing Machinery, New York, NY, USA (2013)

10. Consortium, L.A.C.S.: A 2007 model curriculum for a liberal arts degree in computer science. J. Educ.
Resour. Comput. 7(2), 2es (Jun 2007). https://doi.org/10.1145/1240200.1240202

11. Dale, N.: Content and emphasis in CS1. SIGCSE Bull. 37(4), 6973 (Dec 2005).
https://doi.org/10.1145/1113847.1113880

12. Dalkey, N., Helmer, O.: An experimental application of the delphi method to the use of experts.
Management Science 9(3), 458–467 (1963), http://www.jstor.org/stable/2627117

13. Evans, D., Gray, G., Krause, S., Martin, J., Midkiff, C., Notaros, B., Pavelich, M., Rancour,
D., Reed-Rhoads, T., Steif, P., Streveler, R., Wage, K.: Progress on concept inventory assess-
ment tools. In: 33rd Annual Frontiers in Education, 2003. FIE 2003. vol. 1, pp. T4G–1 (2003).
https://doi.org/10.1109/FIE.2003.1263392

14. Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M.C., Zilles, C.: Identifying
important and difficult concepts in introductory computing courses using a delphi process. SIGCSE
Bull. 40(1), 256260 (Mar 2008). https://doi.org/10.1145/1352322.1352226

15. Goldman, K., Gross, P., Heeren, C., Herman, G.L., Kaczmarczyk, L., Loui, M.C., Zilles, C.: Setting
the scope of concept inventories for introductory computing subjects. ACM Trans. Comput. Educ.
10(2) (Jun 2010). https://doi.org/10.1145/1789934.1789935

https://programmeringstesten.no/
https://doi.org/10.1145/3568813.3600120
https://doi.org/10.1145/1113034.1113040
https://doi.org/10.1145/359080.359083
https://doi.org/10.1080/08993408.2014.970779
https://doi.org/10.1080/0144341970170401
https://doi.org/10.1145/1240200.1240202
https://doi.org/10.1145/1113847.1113880
http://www.jstor.org/stable/2627117
https://doi.org/10.1109/FIE.2003.1263392
https://doi.org/10.1145/1352322.1352226
https://doi.org/10.1145/1789934.1789935

14 S. S. Bolland, A. Popov, T. F. Eide, R. Kordts, T. J. F. Strømme

16. Hertz, M.: What do “CS1” and “CS2” mean? investigating differences in the early courses.
In: Proceedings of the 41st ACM Technical Symposium on Computer Science Education. p.
199203. SIGCSE ’10, Association for Computing Machinery, New York, NY, USA (2010).
https://doi.org/10.1145/1734263.1734335

17. Hume, A., Coll, R.: Authentic student inquiry: the mismatch between the intended curriculum and the
studentexperienced curriculum. Research in Science & Technological Education 28(1), 43–62 (2010).
https://doi.org/10.1080/02635140903513565

18. Julie, H., Bruno, D.: Approach to develop a concept inventory informing teachers of novice pro-
grammers mental models. In: 2020 IEEE Frontiers in Education Conference (FIE). pp. 1–9 (2020).
https://doi.org/10.1109/FIE44824.2020.9274045

19. Luxton-Reilly, A., Becker, B.A., Cao, Y., McDermott, R., Mirolo, C., Mühling, A., Petersen,
A., Sanders, K., Simon, Whalley, J.: Developing assessments to determine mastery of program-
ming fundamentals. In: Proceedings of the 2017 ITiCSE Conference on Working Group Reports.
p. 4769. ITiCSE-WGR ’17, Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3174781.3174784

20. Milne, I., Rowe, G.: Difficulties in learning and teaching programmingviews of students and tutors.
vol. 7, pp. 55–66. Springer (2002). https://doi.org/10.1023/A:1015362608943

21. Norwegian Directorate for Education and Training: Kunnskapsløftet 2020 hvorfor har vi fått nye
læreplaner? (2021), https://www.udir.no/laring-og-trivsel/lareplanverket/fagfornyelsen/
hvorfor-nye-lareplaner, accessed: 2024-09-04

22. Parker, M.C., Guzdial, M., Engleman, S.: Replication, validation, and use of a language independent
CS1 knowledge assessment. In: Proceedings of the 2016 ACM Conference on International Computing
Education Research. p. 93101. ICER ’16, Association for Computing Machinery, New York, NY, USA
(2016). https://doi.org/10.1145/2960310.2960316, https://doi.org/10.1145/2960310.2960316

23. Pedroni, M., Meyer, B.: Object-oriented modeling of object-oriented concepts. pp. 155–169 (01 2010).
https://doi.org/10.1007/978-3-642-11376-515

24. Porter, A.C., Smithson, J.L.: Alignment of assessments, standards and instruction using curriculum
indicator data. In: Annual meeting of the American Educational Research Association, New Orleans
(2002)

25. Porter, L., Garcia, S., Tseng, H.W., Zingaro, D.: Evaluating student understanding of core concepts
in computer architecture. In: Proceedings of the 18th ACM Conference on Innovation and Technol-
ogy in Computer Science Education. p. 279284. ITiCSE ’13, Association for Computing Machinery,
New York, NY, USA (2013). https://doi.org/10.1145/2462476.2462490, https://doi.org/10.1145/
2462476.2462490

26. Sanders, K., Ahmadzadeh, M., Clear, T., Edwards, S.H., Goldweber, M., Johnson, C., Lister, R.,
McCartney, R., Patitsas, E., Spacco, J.: The canterbury questionbank: building a repository of
multiple-choice CS1 and CS2 questions. In: Proceedings of the ITiCSE Working Group Reports
Conference on Innovation and Technology in Computer Science Education-Working Group Reports.
p. 3352. ITiCSE -WGR ’13, Association for Computing Machinery, New York, NY, USA (2013).
https://doi.org/10.1145/2543882.2543885

27. Schulte, C., Bennedsen, J.: What do teachers teach in introductory programming? In: Proceedings of
the Second International Workshop on Computing Education Research. p. 1728. ICER ’06, Association
for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1151588.1151593

28. Simon, Chinn, D., de Raadt, M., Philpott, A., Sheard, J., Laakso, M.J., D’Souza, D., Skene, J.,
Carbone, A., Clear, T., Lister, R., Warburton, G.: Introductory programming: examining the exams.
In: Proceedings of the Fourteenth Australasian Computing Education Conference - Volume 123. p.
6170. ACE ’12, Australian Computer Society, Inc., AUS (2012)

29. Stenlund, E.: Programmering og Fagfornyelsen. Master’s thesis (2021)
30. Tew, A.E., Guzdial, M.: Developing a validated assessment of fundamental CS1 concepts.

In: Proceedings of the 41st ACM Technical Symposium on Computer Science Education.
p. 97101. SIGCSE ’10, Association for Computing Machinery, New York, NY, USA (2010).
https://doi.org/10.1145/1734263.1734297

31. Tew, A.E., Guzdial, M.: The FCS1: a language independent assessment of CS1 knowledge.
In: Proceedings of the 42nd ACM Technical Symposium on Computer Science Education.
p. 111116. SIGCSE ’11, Association for Computing Machinery, New York, NY, USA (2011).
https://doi.org/10.1145/1953163.1953200, https://doi.org/10.1145/1953163.1953200

32. Webb, K.C., Taylor, C.: Developing a pre- and post-course concept inventory to gauge operating
systems learning. In: Proceedings of the 45th ACM Technical Symposium on Computer Science Ed-
ucation. p. 103108. SIGCSE ’14, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2538862.2538886

https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1080/02635140903513565
https://doi.org/10.1109/FIE44824.2020.9274045
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1023/A:1015362608943
https://www.udir.no/laring-og-trivsel/lareplanverket/fagfornyelsen/hvorfor-nye-lareplaner
https://www.udir.no/laring-og-trivsel/lareplanverket/fagfornyelsen/hvorfor-nye-lareplaner
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1007/978-3-642-11376-5_15
https://doi.org/10.1145/2462476.2462490
https://doi.org/10.1145/2462476.2462490
https://doi.org/10.1145/2462476.2462490
https://doi.org/10.1145/2543882.2543885
https://doi.org/10.1145/1151588.1151593
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.1145/2538862.2538886

Appendix A

Delphi Concept Categories

Appendix A highlights the finer details of the Delphi process.

1 Expert Demographic
The initial survey included questions about the educational background of the participating ex-
perts. Out of the total nine respondents, eight were currently teaching or had previously taught
CS1. The ninth expert was scheduled to teach CS1 in the upcoming semester and had both con-
ducted CS1 research and authored educational materials for the subject.

All nine experts indicated that the programming language they had taught, were teaching, or
would teach was Python. Additionally, one expert mentioned teaching JavaScript and Blockly.

The dominant programming paradigm taught was procedural, with six experts reporting this
focus. One expert stated object-oriented programming, while two left the field blank or selected
N/A.

Regarding research experience, four experts had conducted research specifically on CS1, four
had advised PhD/Master/Bachelor students focusing on CS1-related topics, and two were inexpe-
rienced with CS1 research.

2 Coded Concept Categories
The coded concept categories and their descriptions are shown in Table 5.

3 Concept Category Ratings
The following two tables show the importance (see Table 6) and difficulty (see Table 7) ratings
from the three rating surveys from the Delphi process. These tables include the mean and standard
deviation of each step, in addition to the difference between the first and third rating.

From the importance and difficulty ratings, we computed a single metric to rank the topics.
This metric was the product of the mean importance and the square root of the mean difficulty
ratings:

Aggregate = Importance ·
√

Difficulty

Table 8 displays the concept categories ranked by this aggregate metric.

16 S. S. Bolland, A. Popov, T. F. Eide, R. Kordts, T. J. F. Strømme

Concept Category Description
Control Flow Syntax Knowing how to syntactically write if-statements, loops and functions
Sequential Execution Knowing how statements are executed one after another in the order they appear in

the code
Conditional Execution Knowing how to use conditional statements, such as if-else statements, to allow the

program to make decisions based on certain conditions
Looping Knowing how to use looping constructs, such as for loops and while loops, to allow

the program to execute a block of code repeatedly until a certain condition is met
Function Semantics Understanding when and how to use functions, to decompose and reuse code
Function Parameters and
Arguments

Understanding function parameters (inputs defined within the function declaration)
and arguments (actual values passed to the function)

Return Values Understanding how functions can return data back to the caller, including use of
None/Null

Primitive Datatypes
-Declaration

Knowing of and how to create variables of primitive datatypes such as integer, float
and boolean

Primitive Datatypes
-Mathematical Operators

Knowing of and how to use mathematical operators on primitive datatypes such
as addition, subtraction, division, multiplication and exponents, and the operator’s
precedence

Boolean Expressions Being able to construct boolean expressions by use of equality, inequality, conjunction,
disjunction, negation, greater than and less than

Sequential Datatypes Knowing of and how to create variables of sequential datatypes, such as list and
string, and manipulating these types by adding, replacing and deleting elements in
the sequence

Variable Semantics Knowing how to differentiate between variable and value and that variables references
values, not expressions.

Variable Assignment and
Mutability

Assigning a value to a variable by direct value or by another existing variable, and
how this differentiates when using mutable and immutable datatypes

Object-oriented Basics Knowing what a class and object is, along with constructor, instance methods and
instance variables

Error Interpreting Reading an error message, being able to identify the error and where the error is
based on the error stack

External References Aiding the coding process by use of resources such as official documentation, Google
and Stack Overflow

Debugger Aiding the coding process by use of an IDE debugger
AI Tools Aiding the coding process by use of AI tools such as ChatGPT and Github Copilot
External Data Reading and writing from/to external files such as CSV files
Conventions Following coding standards such as naming conventions, formatting rules and docu-

mentation practices
Table 5: Label and description of concept categories.

Fundamentals of Norwegian CS1 17

Importance Ratings
Concept Category
Control Flow Syntax
Sequential Execution
Conditional Execution
Looping
Function Semantics
Function Parameters and Arguments
Return Values
PD - Declaration
PD - Mathematical Operators
Boolean Expressions
Sequential Datatypes
Variable Semantics
Variable Assignment and Mutability
Object-oriented Basics
Error Interpreting
External References
Debugger
AI Tools
External Data
Conventions

1st
Mean SD
8.29 1.80
9.14 1.07
9.43 0.79
9.29 0.76
8.29 1.11
7.86 0.69
7.29 1.11
7.43 2.57
7.29 1.98
8.57 0.98
8.00 1.41
7.86 1.95
6.00 1.63
4.14 2.67
8.57 1.27
4.71 1.98
4.57 2.37
2.71 2.63
7.43 1.81
6.29 2.50

2nd
Mean SD
8.50 1.38
9.67 0.52
9.67 0.52
10.00 0.00
8.17 1.60
8.00 0.63
7.67 0.52
8.50 0.84
7.50 0.84
8.67 0.52
8.67 0.52
8.17 0.98
6.33 0.52
5.25 1.26
8.67 0.52
4.33 0.82
4.50 1.64
3.00 2.10
8.00 0.63
6.17 0.75

3rd
Mean SD
8.83 0.75
9.83 0.41
9.83 0.41
10.00 0.00
8.83 0.41
8.17 0.41
7.83 0.41
8.67 0.82
7.50 0.84
8.83 0.41
9.00 0.00
8.83 0.41
6.33 0.52
5.25 1.89
9.00 0.63
3.33 0.82
4.20 0.84
2.00 0.71
8.17 1.17
6.17 0.98

Difference
Mean SD

-0.55 1.05
-0.69 0.66
-0.40 0.38
-0.71 0.76
-0.55 0.70
-0.31 0.28
-0.55 0.70
-1.24 1.76
-0.21 1.14
-0.26 0.57
-1.00 1.41
-0.98 1.54
-0.33 1.12
-1.11 0.78
-0.43 0.64
1.38 1.16
0.37 1.53
0.71 1.92

-0.74 0.64
0.12 1.51

Table 6: The mean and standard deviation of the importance rating by the experts from the first
(n=7), second (n=6) and third (n=6) rating surveys. The difference is calculated by the first rating
subtracted by the third rating. Primitive Datatypes is abbreviated as “PD” for space.

Difficulty Ratings
Concept Category
Control Flow Syntax
Sequential Execution
Conditional Execution
Looping
Function Semantics
Function Parameters and Arguments
Return Values
PD - Declaration
PD - Mathematical Operators
Boolean Expressions
Sequential Datatypes
Variable Semantics
Variable Assignment and Mutability
Object-oriented Basics
Error Interpreting
External References
Debugger
AI Tools
External Data
Conventions

1st
Mean SD
4.57 2.70
2.71 1.11
4.71 1.38
6.43 1.27
7.57 1.62
7.86 1.07
6.43 1.27
2.29 0.95
3.14 1.07
4.43 1.40
5.71 1.11
4.71 1.70
6.71 1.98
6.43 3.46
6.43 0.98
4.86 0.38
6.14 1.35
2.71 1.80
6.14 1.68
3.57 1.40

2nd
Mean SD
4.00 1.26
2.50 0.84
4.33 1.03
6.83 0.41
7.67 0.52
7.83 0.41
6.83 0.75
1.83 0.41
2.83 1.17
4.67 0.82
5.33 0.52
5.50 0.84
7.17 1.17
7.67 1.21
6.00 0.63
5.00 0.00
5.50 0.55
3.17 1.17
6.00 0.89
3.50 0.84

3rd
Mean SD
3.33 0.82
2.17 0.75
4.50 0.84
6.67 0.52
7.50 0.84
7.83 0.41
7.00 0.63
2.17 0.41
3.00 0.89
5.00 0.63
5.17 0.41
5.33 0.52
8.17 0.75
7.80 1.30
5.67 0.52
5.00 0.00
5.60 0.55
3.40 0.55
5.83 0.75
3.33 0.82

Difference
Mean SD

1.24 1.88
0.55 0.36
0.21 0.54

-0.24 0.76
0.07 0.78
0.02 0.66

-0.57 0.64
0.12 0.54
0.14 0.17

-0.57 0.76
0.55 0.70

-0.62 1.19
-1.45 1.22
-1.37 2.15
0.76 0.46

-0.14 0.38
0.54 0.80

-0.69 1.25
0.31 0.92
0.24 0.58

Table 7: The mean and standard deviation of the difficulty rating by the experts from the first
(n=7), second (n=6) and third (n=6) rating surveys. The difference is calculated by the first rating
subtracted by the third rating. Primitive Datatypes is abbreviated as “PD” for space.

18 S. S. Bolland, A. Popov, T. F. Eide, R. Kordts, T. J. F. Strømme

Ranking Concept Aggregate
1 Looping 25.8
2 Function Semantics 24.2
3 Function Parameters 22.9
4 Error Interpreting 21.4
5 Condtitional Execution 20.9
6 Return Values 20.7
7 Sequential Datatypes 20.5
8 Variable Semantics 20.4
9 Boolean Expressions 19.7

10 External Data 19.7
11 Variable Assignment 18.1
12 Control Flow Syntax 16.1
13 Object-oriented 14.7
14 Sequential Execution 14.5
15 Primitive Datatypes - Mathematical Operators 13.0
16 Primitive Datatypes - Declaration 12.8
17 Conventions 11.3
18 Debugger 9.9
19 External References 7.4
20 AI Tools 3.7

Table 8: Aggregate metric of importance and difficulty ratings from the final survey (n=6).

Appendix B

Exam Analysis

The variation between CS1 exams is illustrated in Table 9 by the mean and standard deviation of
each concept category occurrence and use as main concept in final exams.

Concept Category
Control Flow Syntax
Conditional Execution
Looping
Function Semantics
Function Parameters and Arguments
Return Values
Primitve Datatypes - Mathematical Operators
Boolean Expressions
Sequential Datatypes
Variable Assignment and Mutability
Object-oriented Basics
Error Interpreting
External References
Debugger
AI Tools
External Data
Conventions

Mean
Occur Main Concept

57.5 3.4
50.3 30.0
61.8 21.5
64.1 19.2
64.8 2.8
61.3 0.7
46.9 3.0
48.8 2.1
69.6 33.5
16.4 3.4
24.0 21.4
5.3 0.0

11.8 0.1
1.7 1.7
0.0 0.0

16.4 15.0
10.5 6.2

SD
Occur Main Concept

28.0 6.4
14.0 10.4
5.9 11.7

19.6 13.7
19.3 4.0
22.5 1.6
20.7 5.5
16.8 3.4
8.6 10.6

33.4 6.8
35.6 31.2
6.6 0.0

19.0 0.2
4.1 4.1
0.0 0.0
8.0 9.4

11.8 8.0
Table 9: The mean and standard deviation of concept category occurrences and instances where
the task was identified as the main concept being assessed.

Appendix C

Student Ratings

The concept categories and their descriptions detailed in Table 5 were rated by 55 CS1 and 88 CS2
students. Note that the concept category Object-oriented Basics was excluded from these surveys
because it was not covered in their respective CS1 courses, thereby preventing these students from
evaluating its difficulty and importance. Table 10 presents their mean ratings.

Concept Category
Control Flow Syntax†
Sequential Execution
Conditional Execution
Looping†
Function Semantics
Function Parameters and Arguments
Return Values
Primitive Datatypes - Declaration
Primitive Datatypes - Mathematical Operators
Boolean Expressions
Sequential Datatypes
Variable Semantics‡
Variable Assignment and Mutability‡
Error Interpreting
External References
Debugger
AI Tools
External Data†
Conventions‡

Importance
CS1 CS2

8.7 9.02
8.6 8.49

8.66 8.77
8.45 8.94
7.98 8.43
8.13 8.04
8.35 8.18
7.83 8.04
7.83 7.91
8.22 8.22
7.73 7.74
7.91 7.75
7.38 7.33
8.65 8.65
7.37 7.55
7.09 7.16
6.23 6.24
6.61 6.03
6.94 7.19

Difficulty
CS1 CS2
4.74 4.67
4.06 4.78
5.38 4.00
5.51 5.34
4.75 5.72
4.42 4.92
4.81 4.36
3.48 3.18
3.64 3.62
3.92 3.78
5.22 5.37
3.84 4.21
5.27 5.92
6.45 6.74
5.02 5.08
5.55 6.00
3.54 3.42
6.5 6.50

4.79 4.33
Table 10: The mean importance and difficulty ratings by the CS1 (n=55) and CS2 (n=88) students.
“†” denotes significant difference of importance mean. “‡” denotes significant differences in difficulty
mean.

	Fundamentals of Norwegian CS1
	Introduction
	Research Questions and Structure

	Related Work
	Historical and Recent Studies on Fundamental CS1 Concepts
	Norwegian CS1 Content.

	Consulting CS1 Experts

	Methodology
	Intended Curriculum - Delphi Process
	Assessed Curriculum - Exam analysis
	Experienced Curriculum - Student Surveys

	Results
	Delphi Process
	Exam analysis
	Student Perceptions of Difficulty and Importance

	Discussion
	Course Variation in Norway
	Aggregating Importance and Difficulty for Concept Ranking
	How do the Findings Compare to the Literature?
	Common Concepts.
	Diverging Concepts.

	Limitations

	Conclusion
	Further Work

	Delphi Concept Categories
	Expert Demographic
	Coded Concept Categories
	Concept Category Ratings

	Exam Analysis
	Student Ratings

