
remarks — Machinery for Marking Student Work

Oleks Shturmov1,2,3[0000−0001−5963−8509] and
Michael Kirkedal Thomsen1,2,4[0000−0003−0922−3609]

1 Department of Computer Science, University of Copenhagen, Denmark
2 Department of Informatics, University of Oslo, Norway

3 oleks@oleks.info
4 michakt@ifi.uio.no

Abstract. remarks is an open-source suite of tools for marking student
work. It has been in moderate use for assessing semi-structured submis-
sions in a handful of Computer Science courses with hundreds of students
since 2016. The contemporary approach to systematically collaborate on
such assessments is to use general-purpose administrative software (e.g.,
spreadsheets, text files or documents, Emacs Org-mode). Since this soft-
ware has not been expressly designed for the purpose, it tends to require
non-trivial technical skill to achieve but mediocre technical support for
the assessment process. In particular, it is hard to achieve (1) support for
criteria-based analytic marking, without precluding (2) holistic, free-form
justifications for the given marks, while enabling (3) decentralized col-
laboration with a reliable and transparent synchronization mechanism.
remarks has been expressly designed to meet these criteria. Guided by
the theory of assessment and evaluation in higher education, it has grown
from a series of scripts surrounding general-purpose administrative soft-
ware to a dedicated tool suite for marking student work. With remarks,
assessing a unit of work constitutes filling in a document whose structure
is guided by, but not limited to a chosen marking scheme. Assessors can
use a contemporary source code revision control system (e.g., Git) to
collaborate on these documents; making conflict resolution explicit and
unsurprising. Using one document per unit of work, further reduces con-
flicting edits, in general. The remarks tool can then derive summative
and descriptive assessments from such documents. We describe and jus-
tify the design of remarks, report on our experiences with the approach,
and invite you to help develop the ideas further.

Keywords: Criteria-based assessment · Analytic scoring · language-
oriented programming.

1 Introduction

Computer Science courses tend to assess student learning by assigning students
practical work (e.g., take-home assignments or exams) and asking them to doc-
ument it in semi-structured writing. Students submit computer programs that
might have some expected structure or behavior, and possibly a technical report,
having perhaps an expected layout, documenting their work further.

2 O. Shturmov and M. K. Thomsen

Educators then engage in assessing the deliveries in relation to desired learn-
ing outcomes. They often can get help from teaching assistants to ensure a
speedy assessment, and often must convene with external examiners to ensure
validity and reliability of any final assessment. Overall, for a fair-sized Computer
Science course, having hundreds of students, a dozen or so human assessors may
be involved in the process.

Coordinating their effort is no easy feat. Firstly, it is best if there is a unified
marking scheme, such that each submission is treated similarly even if marked by
different assessors. Secondly, the marks they give should be justified. However,
having an overly fine-grained marking scheme can both make it hard to apply
to every submission, and substantially increase the workload for the assessor.
Leaving out marking schemes allows assessors to justify their decisions as they
see fit, but at the cost of consistency across the assessment team. Alas, we also
run the risk that no justification may be deemed fit by some assessors. Thirdly,
making an assessment requires a non-trivial amount of mental effort, which can
be hard for humans to exert for long stretches of time. It seems best to let
assessors work at their own pace, subject only to a common deadline.

To these ends, we present remarks—a suite of tools for marking student work.
remarks is an open-source project5, initiated at the Department of Computer
Science at the University of Copenhagen (DIKU) in 2016. remarks has seen
moderate use for marking free-form written assignments and programming tasks
in both coursework and exams in courses such as Computer Systems, IT Security,
Software Development, and Advanced Programming. The feedback overall is
positive, in that remarks is simple for the assessors to use, and tends to lead to
assessments with a seemingly high level of validity and reliability.

At present, assessors work with remarks by (1) filling out plain-text files
reminiscent of Markdown, but substantially richer in structure, (2) synchroniz-
ing those files via git, and (3) using remarks tool suite to arrive at collective
assessments and analyses. We are working a web-based interface for remarks,
which would allow for even more prompt collaboration between the assessors.

remarks was inspired by Markdown and Emacs Org-mode, and has grown
from a collection of shell scripts to a full-blown domain-specific language. As
such, the design of remarks follows a language-oriented approach [8, 13], where
the goal is to eloquently capture the domain of marking student work.

The rest of this paper is structured as follows: Section 2 introduces the lin-
guistic concepts used in both the design of remarks, and the rest of this paper.
Sections 3 and 4 present the resulting domain model and concrete syntax of
remarks files. Though technical, they illustrate how the domain comes across
in the design and implementation of remarks. If you read these, we also refer
you to Appendix D for a quick overview of the file system and command-line
interface of remarks. Section 5 goes over our experience with the tool, together
with a recent (small) user study. Section 6 concludes and discusses future work.

5 https://github.com/DIKU-EDU/remarks

https://github.com/DIKU-EDU/remarks

remarks — Machinery for Marking Student Work 3

2 Background

Assessing student learning is a fundamental activity in higher education, con-
sisting of sampling student work and provisioning appraisals for it in relation
to intended learning outcomes (ILOs) [2,11]. It is through assessment that edu-
cators gauge, steer, and evaluate student learning. Students on the other hand,
get feedback about their learning, and receive grades which go towards their
learning certificates, having significant career implications. As such, assessment
plays a key role in both learning activities and evaluation of learning outcomes;
assessment should happen with a high degree of validity and reliability.

An invalid assessment measures something other than in-how-far the ILOs
have been attained. An unreliable assessment cannot be replicated in diverging
circumstances (e.g., when done by another assessor, or via a different mode of
assessment). Validity and reliability are especially important in the context of
grading, but it seems only healthy to also strive for it while teaching is ongoing,
to keep teaching and learning duly on track. Since assessment is about measuring
human performance, the process is generally riddled with many potential threats
to validity (and reliability) [2, 12].

Computer-assisted assessment (CAA) has long been promised to enable as-
sessments (e.g., of student learning) with a high degree of reliability and validity
in a scalable and efficient manner [2–4]. Unfortunately, these promises have thus
far seemingly failed to materialize [4]. This is anecdotally evidenced by the fact
that while most educators today do use computers, they do not tend to use any
specialized software, but instead opt for general-purpose administrative software.
We discuss one commonly used tools in Section 2.1 and Appendix E.

CAA can come with various levels of automation. In this work, we will focus
on the use of computers as aids in primarily human-driven assessment. We will
refer to the humans in question as “assessors”6. Some assessors will be educators,
and the rest either teaching assistants or external examiners. All assessors have
expertise in the domain being taught, but educators also have formal training in
teaching. Educators bear the responsibility for the success of the learning process
and specify ILOs. The other assessors aid to make valid and reliable assessments.

Technical fields, such as Computer Science, often require that students attain
certain knowledge of theoretical concepts, as well as certain analytical compe-
tences and technical skills throughout a course. Assessment of such ILOs often
happens by asking students to conduct practical work, and document it in semi-
structured writing (e.g., as computer programs and/or technical reports).

There are several key issues to consider to ensure validity with this mode of
assessment. Firstly, students must not have to spend time on unrelated ground
work in order to do the assignment—it should be properly aligned with course
prerequisites and the ILOs. Secondly, the assignment should be sufficiently unique
so that it may serve as an exhibit of the student’s analytical abilities, rather than
rote learning. Thirdly, there is bound to be a gap between the formulation of the
ILOs and the (unique) assignment. We can bridge this gap by devising dedicated

6 Alternative, synonymous names are “appraisors” or “markers” [10].

4 O. Shturmov and M. K. Thomsen

evaluative criteria, which pinpoint the qualities that a submission must have in
order to serve as an exhibit of the attainment of the ILOs. For instance, a desired
learning outcome may be “knowledge of synchronization primitives in a low-level
systems programming language”, while an evaluative criteria could be “uses the
provided lock when accessing the shared struct”.

Devising evaluative criteria alongside the assignment helps both ensure con-
structive alignment with the ILOs, and arrive at a marking scheme for submis-
sions. A marking scheme suggests the criteria to evaluate for every submission,
how to judge each criterion, and the weight it plays in the overall assessment.
Having a marking scheme aids in ensuring the validity and reliability of an as-
sessment, since each submission is treated with similar scrutiny.

Marking schemes are sometimes also called “scoring guides” or “rubrics” [5,
9, 10]. Scoring guides in particular suggest that for each evaluative criteria, the
assessor must assign a score. These scores are are then combined, analytically
to form an overall score for the submission. Rubrics, on the other hand, tend
to focus more on illustrating what constitutes a good, mediocre, or bad exhibit
along the evaluative criteria. In our view, both qualities are important, and we
will not delve on these distinctions further. Instead, we focus on having marking
schemes, reminiscent of scoring guides and rubrics at the same time.

Finally, it is commonplace to distinguish between formative and summative
assessment. In formative assessment, the appraisal is delivered as contextualized
prose, directly to the student. The purpose is to “form” better student under-
standing of the subject matter, as well as “form” subsequent learning activities
(e.g., a student is asked to resubmit). Summative assessment on the other hand
is delivered as a grade, placing the student on a grading scale. Students tend to
care more about their individual grades, while the educator may be interested
in how the class is doing as a whole.

Summative assessments are readily comparable. Students with the same
grade exhibit a comparable level of attainment of the ILOs from a holistic per-
spective. Summative assessment however does not provide insight into the stu-
dent’s attainment of the individual learning outcomes. Students with the same
grade may understand different parts to different extent. Although we can glean
the difference in their understandings from formative assessments, if any, these
are not readily composable.

Lesser known is diagnostic assessment, where the appraisal consists of a col-
lection assessments, providing insight as to the attainment of some individual
learning outcomes. For instance, a filled out marking scheme constitutes a di-
agnostic assessment. A diagnostic assessment is perhaps primarily of interest to
the educator in order to better align subsequent teaching, but it can also be a
good form of feedback for the student, as a more structured alternative to purely
formative or purely summative feedback.

2.1 Example: Collaborative Online Spreadsheets

When faced with an assessment task, like the ones outlined above, many educa-
tors will bring out a collaborative online spreadsheet.

remarks — Machinery for Marking Student Work 5

A B C D E F G
1 Theory(50) Practice(50) Total(100)
2 T1(10) T2(20) T3(20) P1(25) P2(25)
3 S1 =SUM(B3:F3)
4 S2 =SUM(B4:F4)

...

Table 1. Sample marking scheme spreadsheet for submissions S1, S2, . . .

Table 1 shows an example of such a spreadsheet. We dedicate a row for each
submission, and a column for each (sub)task of the assignment. The assessors
then give a mark to each cell in the resulting matrix. Once done, the columns
are analytically combined to form an overall score for each submission.

This (simplified) example suffers from a number of drawbacks. Some are
methodological (SM), others technical (ST), and others still have to do with col-
laboration (SC). Methodological drawbacks can usually be compensated for by
writing up additional, but technically disjoint documents. Technical drawbacks
can often be remedied by leveraging additional technical features of common
spreadsheet software. Collaboration drawbacks stem from the fact that spread-
sheets are usually not subject to rich revision control systems [7, 14].

SM1 It is not clear what qualities in a submission should yield what number of
points for each column in the table.

SM2 It is not clear where and how an assessor should leave comments to justify
the marks that they give.

SM3 It is not clear how the marks in the table relate to the ILOs.
ST1 Maximum points are not enforced, here they are mere text.
ST2 It is common to apply additional weights to the rows and/or columns. For

instance, the workload of filling in the marks could be divided among many
assessors, such that each assessor either marks a subset of the columns for
all submissions, or all columns for a subset of the submissions.

ST3 It is common to allow bonus or foul points, to account for work done, or
omissions, beyond what the marking scheme covers.

SC1 Users do not structure their changes in terms of well-formed commits;
changes are tracked automatically, leaving ample room for accidental edits.

SC2 Spreadsheets are not easily compared and merged; automatic merging is
not solvable in general, unless the edit operations are suitably constrained [14].

3 Domain Model

Given the terminology defined in Section 2, and motivated by the examples
therein, we now present the domain model of remarks. We present it as an
abstract syntax tree. This can be made concrete in a domain-specific language,
as we discuss in Section 4, or a data model in a more conventional DBMS, or

6 O. Shturmov and M. K. Thomsen

something third entirely. These latter options are left as future work. For an
in-depth discussion of language-oriented programming, and the notation used in
this section and the next, we refer the interested reader to Appendix C.

Assessing a unit of work with remarks constitutes making a judgement.
Judgements can be hierarchically structured, where sub-judgments serve to an-
alytically and descriptively justify their super-judgements.

A judgement consists of a header and some justification7. Judgements can
be nested, and so they have an associated depth (here written as n).

⟨Judgement⟩n ::= ⟨Header⟩n ⟨Justification⟩n

The header has some identifying information, to distinguish the judgement
from other judgements. In its basic form, a judgement is summative—an assessor
can assign a number of points out of a set maximum number of points. This too
occurs in the header. However, the assessor does not need to set the points, if
they can be analytically deduced from sub-judgements (e.g., as a weighted sum).
Finally, as a special case, it might not make sense to perform any judgement (e.g.,
if the student did not do the unit of work).

⟨Header⟩n ::= ⟨ID⟩ ⟨MaybePoints⟩ ⟨MaxPoints⟩
⟨MaybePoints⟩ ::= ‘Analytic’ | ⟨GivenPoints⟩ | ‘Invalid’

To holistically, descriptively, and analytically justify a summative assessment,
the assessor can provide a sequence of remarks and sub-judgements:

⟨Justification⟩n ::= ⟨Remark⟩∗n ⟨Judgement⟩∗(n+1)

Sub-judgements are regular judgements, but with an increased depth. A re-
mark is a textual comment with a mood indicator. Remarks too can be hierar-
chically structured for more detailed holistic justifications.

⟨Remark⟩n ::= ⟨Mood⟩ ⟨Text⟩ ⟨Remark⟩∗(n+1)

⟨Mood⟩ ::= ‘Positive’ | ‘Negative’ | ‘Mixed’
| ‘Stuctural’
| ‘Warning’ | ‘Impartial’

The “mood” ‘Structural’ is not a mood, but rather indicates a bullet-point
which may have sub-remarks. The moods ‘Warning’ and ‘Impartial’ are useful
in multi-pass assessments (e.g., where assessments are subsequently validated
by educators and external examiners). The first serves to warn the subsequent
assessor, the second suggests that there is something worthy of note, but it is
left for the successor to figure out the consequences.

The assessor can choose to have just remarks, in which case the judgement
is (modulo mood indicators) holistically justified, or just have sub-judgements,
7 We admit additional properties on judgements, but we omit this for brevity.

remarks — Machinery for Marking Student Work 7

in which case it is analytically justified; or choose to have both. The latter case
is particularly useful to handle cases where making preset sub-judgements only
would not fully justify the summative assessment (e.g., bonus points).

Both ⟨Judgement⟩ and ⟨Remark⟩ roughly correspond to an evaluative crite-
rion. The difference lies merely in the form of assessment.

4 Plain-Text Format

The remarks plain-text format is inspired by Markdown8. As such, the ⟨Header⟩n
of a ⟨Judgement⟩n begins with n ‘#’ symbols, reminiscent of a Markdown head-
ing, and ends with a special suffix—maybe some points out of a given maximum
number of points. Line breaks are not allowed in a judgement header.

⟪⟨Header⟩n⟫ ::= ‘#’n ⟪⟨ID⟩⟫ ‘:’ ⟪⟨MaybePoints⟩⟫ ‘/’ ⟪⟨MaxPoints⟩⟫

⟪⟨ID⟩⟫ is a non-empty sequence of characters, except line break and ‘:’. The
depth n and the text ⟪⟨ID⟩⟫ uniquely identify a judgement.
⟪⟨MaxPoints⟩⟫ is a non-empty sequence of digits, optionally followed by a

decimal point and exactly two digits after the decimal point. remarks does not
allow arbitrary floating-point values by design—we do not want to deal with
round-off errors, and other potential issues relating to use of floating-values in
assessments. Internally, points are represented as integers.
⟪⟨MaybePoints⟩⟫ is either a sequence as ⟪⟨MaxPoints⟩⟫ above, indicating

⟨GivenPoints⟩, the empty string ϵ indicating ‘Analytical’, or the character ‘-’,
indicating ‘Invalid’.

⟪⟨MaybePoints⟩⟫ ::= ϵ | ⟪⟨GivenPoints⟩⟫ | ‘-’

As with Markdown, a ⟪⟨Header⟩n⟫ is followed by a line-break, when seen in
the context of a judgement. Properties too are separated by line breaks.

⟪⟨Judgement⟩n⟫ ::= ⟪⟨Header⟩n⟫ ‘\n’ ⟨Justification⟩n

The following remarks file corresponds to a submission row in Table 1:

Theory: /50
T1: /10
T2: /20
T3: /20
Practice: /50
P1: /25
P2: /25

8 In fact, remarks was initially a collection of shell scripts that manipulated
Markdown-styled files.

8 O. Shturmov and M. K. Thomsen

Remarks are again inspired by Markdown bullet-point lists. However, instead
of meer bullets, we can use mood indicators to indicate whether the item is
positive, negative, etc. Individual remarks are separated by line breaks.

⟪⟨Remark⟩n⟫ ::= ‘ ’n ⟪⟨Mood⟩⟫ ‘ ’ ⟪⟨Text⟩⟫ ⟪⟨Remark⟩(n+1)⟫
∗

The mood marks are defined as follows:

⟪‘Positive’⟫ ::= ‘+’
⟪‘Negative’⟫ ::= ‘-’
⟪‘Mixed’⟫ ::= ‘˜’

⟪‘Structural’⟫ ::= ‘*’
⟪‘Warning’⟫ ::= ‘!’

⟪‘Impartial’⟫ ::= ‘?’

The plain-text format is further supported by the file system and command-
line interface of remarks. See Appendix D for a further overview.

5 Experience

remarks has in different aspects been actively used at the Department of Com-
puter Science, University of Copenhagen (DIKU) since 2016. It has mainly been
used on the 15 ECTS second-year bachelor course Computer Systems9 (Comp-
Sys) with about 180 students, 7 teaching assistants (TAs) and 3 teachers and
4 external exam examiners. CompSys was created as a course in 2016. remarks
was also used from 2016 to 2022 on the elective 7.5 ECTS third-year bachelor
course IT-security10 (ITS) with about 100 students, 3 TAs and 2 teachers.

The usage can categorised as following:

– Marking in-course assignment submissions.
– Marking exam assignment submissions.

5.1 Scenarios

We will in the following detail the two usage scenarios from DIKU. We will note
that this is not a full list and remarks can easily be used in other situations.
The authors have themselves used remarks for simple exam corrections and
assessments of exam complaints. But these two scenarios shows the full benefit
when more people need to collaborate.

9 Links to Computer Systems:
- Course description: https://kurser.ku.dk/course/ndab16005u/.
- Latest course page: https://github.com/diku-compSys/compSys-e2024

10 Links to IT-Security:
- Course description: https://kurser.ku.dk/course/ndaa09025u.
- Latest course page: https://github.com/diku-its/e2024

https://kurser.ku.dk/course/ndab16005u/
https://github.com/diku-compSys/compSys-e2024
https://kurser.ku.dk/course/ndaa09025u
https://github.com/diku-its/e2024

remarks — Machinery for Marking Student Work 9

Marking in-course assignment submissions

Situation: Both CompSys and ITS had multiple TAs that individually mark a
number of submissions for each assignment. The TAs give written feedback to
the students, score and pass/fail the submission.

Problem: The assignments (especially on CompSys) were quite large with stu-
dents working over 2-3 weeks, but still had underlying learning goals related to
the course schedule. With 4 to 7 TAs to assess the submissions and give feed-
back to the students, this requires a significant amount of coordination either
during marking, or before assessment is given to students. However, the TAs
are also full-time students that mark at different paces, so with coordination
amongst the TAs, the assessment for all students can be delayed. Having little
to no coordination can result in different levels amongst the TAs.

On both CompSys and ITS we observed a reduction in the number of student
complaints about inconsistent, or low quality TA marking, as we have gradually
adopted and improved our use of remarks over the years.

Approach: On both courses the teacher writes the remarks files for the assign-
ments and the TAs assess and give feedback to the students based on them.
The files contain detailed evaluative criteria, derived from overall ILOs for the
course, specialized for the assignment. This provides the TAs with a high-level
overview of the assignment. The assessments in the remarks files made by the
TAs are also used for potential resubmissions, by updating the assessments. The
remarks files are not shared with the students, but the most significant parts
have overlapping text in the assignment texts. An example of a remarks file used
in CompSys is included in Appendix A.

We try to create the remarks files with the assignment. As for the assignment
text, the remarks files are discussed with the TAs prior to start of the assignment;
the intention is that TAs can assist students to focus their assignment work.

When assessing, the TAs annotate the remarks file and give a percentage that
then is translated to a to a number of points (0-4) or pass/fail of a predefined
scale. The TAs also use the remarks entries to guide the written feedback that
they give to the students.

Marking exam assignment submissions

Situation: The final grade of CompSys is based on an evaluation by both an
internal evaluator (often course teacher) and an external examiner. Due to the
number of students there are 4 external examiners. The size of the course11 and
number of students also means that internal evaluation is separated between
several teachers.
11 The topics of CompSys includes computer architecture, operating systems, computer

networks, and simple IT-security.

10 O. Shturmov and M. K. Thomsen

Problem: Assessing the exams of a course with many students is a big task
with many different persons involved. Today, to free up time for the teachers
for student confrontations, TAs give a first assessment, followed by the teachers
and external examiners. On CompSys this results in a total of 14 to 16 per-
sons involved in the exam assessment. This requires much coordination to avoid
variation in evaluations and using less time on discussing grading of individual
students between the internal evaluators and the external examiners.

Approach: It is the teachers (relating to the different topics on the course) that
make the remarks files for the exam evaluation. We have tried to define the
remarks files such that they fit the ILOs of the course. We can then use these
when creating the exam, to evaluate how well we test these. In later years as the
exam format has stabilised (though the individual questions are still updated),
the remarks files have also become quite stable. After the TAs have tested the
exam set, we also ask them how well the remarks files fit, to get an assessment of
how well our ILOs are tested by the exam questions. Finally, both exam sets and
remarks files are sent to the external examiners for information and comments.

After students submit their exam assignments, the TAs make an initial as-
sessment of the answers. This is strictly based on the points in the remarks
files and each TA will assess one or two questions for all students. The intent of
this is to get a consistent assessment of each question without considering the
assignment as a whole. Afterwards the teachers (internal evaluators) will look
though the assessment and using remarks adjust the level if needed. The exter-
nal examiners are assigned distinct subsets of the students. The examiners gets
the full assessment from remarks; there are several formats for this, but with
remarks we can insert the individual assessments as comments in the pdf-files
that are handed in or give a detailed interactive table with the assessments.

As a result, TAs and internal evaluators give a “vertical” (per question) assess-
ment, while the external examiners give a “horizontal” (per student) assessment
(see also Table 1). This approach requires much coordination, which is made
easy with remarks.

5.2 Course Evaluations

All courses at the University of Copenhagen are subject to evaluation by their
students. Here students evaluate course workload and level, among other quali-
ties, based on a course-agnostic set of questions.

One of these questions relates to the feedback that students get about their
work; this is the question:

In my opinion, I have received relevant academic feedback on my oral
and written work on the course.12

12 In Danish: “Jeg synes, at jeg har fået relevant faglig respons på mit skriftlige og
mundtlige arbejde på kurset.”

remarks — Machinery for Marking Student Work 11

2017 2018 2019 2020 2021 2022 2023
Strongly disagree 12.5% 5.8% 4.6% 0.0% 5.4% 2.6% 4.9%
Disagree. 10.7% 11.6% 4.6% 9.8% 7.1% 0.0% 12.2%
Neither agree nor disagree 17.9% 14.5% 12.3% 17.6% 17.9% 18.4% 7.3%
Agree 32.1% 37.7% 43.1% 25.5% 32.1% 42.1% 31.7%
Strongly agree 26.8% 30.4% 35.4% 47.1% 37.5% 34.2% 41.5%
Score 2.50 2.75 3.00 3.10 2.89 2.97 2.86
Number of answers 56 69 65 61 54 38 41

Table 2. Evaluation on CompSys of the question “In my opinion, I have received
relevant academic feedback on my oral and written work on the course.” The score is
calculated between 0 and 4, 4 being “Strongly agree”, as the sum-product of the score
and percentage.

In CompSys, it is mainly the TAs that communicate directly with the students—
thus, TAs are the primary feedback-givers. The teachers mainly do lectures, but
also sometimes interact with students at exercise classes and in an online forum.

Table 2 shows the result of the evaluations along this question. We have not
included data for 2016. This was the first year for the newly designed course and
had many significant problems; this is therefore considered as an outlier. In 2017
the course was redesigned to the format that is still used today.

Unfortunately, we do not have data from before starting to use remarks and
can therefore not make a comparative study. However, remarks was a continuous
development project and increasingly integrated into the course from 2016 to
2019. We can see a general upwards trend over the integration period with less
than 10% being dissatisfied. During and after the Covid-19 shutdown the data
show a less clear picture; the number of students evaluations also falls.

5.3 TA Evaluations

To get an assessment of remarks we have asked former TAs on both CompSys
and ITS to fill out a questionnaire. The questionnaire is was separated into three
parts and all questions are included in Appendix B:

– Simple questions that follows the System Usability Scale (SUS) as defined
by the ISO standard, ISO 9241 Part 11 [1, 6].

– Assessment based on prior TA experiences from other courses.
– Assessment based on subsequent TA experiences from other courses.

The questionnaire was distributed to about 25 to 30 former TAs going all
the way back to 2019. Of these 11 filled the questionnaire. The call was only
distributed on university e-mails addresses; some of the older TAs have finished
their studies and might not check this address. It is therefore expected that
answers mainly were from the more recent TAs.

System Usability Scale The first part of the questionnaire was a specialisation
to the questions of SUS. The result of this part can be seen in Table 3.

12 O. Shturmov and M. K. Thomsen

SUS Question Average
1. I like to use remarks to assist in marking student work. 3.55
2. I found remarks unnecessarily complex. 0.64
3. I thought remarks was easy to use. 3.45
4. I needed support from a teacher to be able to use remarks. 1.18
5. I found that the various functions in remarks were well integrated. 2.45
6. I thought there was too much inconsistency in remarks. 0.91
7. I would imagine that most people would learn to use remarks very quickly. 3.09
8. I found remarks very cumbersome to use. 0.64
9. I felt very confident using remarks. 3.18

10. I needed to learn a lot of things before I could get going with remarks. 0.55
SUS score average: 79.5%
SUS score minimum: 65.0%
SUS score maximum: 97.5%

Table 3. SUS questions with average and SUS score of questionnaire to TAs. Each
question is assessed from 0 to 4, with 0 being “strongly disagree” and 4 being “strongly
agree”. The SUS score is a percentage.

The data shows that the TAs generally have a strong preference for answers
that gives the best grading of remarks. The two the question with the lowest
assessment are Questions 4 and 5. Question 4 is about how much assistance that
the user needs to use remarks and Question 5 is about the integration of the
tool. This was quite expected as remarks has been under development and the
user interface has been less prioritised.

The average SUS score is 79.5% with a minimum of 65.0% and maximum of
97.5%. The SUS score is expected to follow the grading scale of a norm-referenced
test, which means that average can be interpreted as a grade B with a spread
from grades C to A. Of course, to conclude this for certain we would need to
evaluate many other teaching evaluation tools. This is outside the scope of this
paper, but we will conclude that the TAs see remarks quite favourably.

In Relation to Prior and Consecutive Experience Of the 11 TAs that
answered the questionnaire, 4 TAs had experience with assessment prior to the
courses. 3 of the TAs reported that they had gotten “none” to “simple descrip-
tions” for marking on these courses. 1 TA reported that they had gotten “detailed
descriptions”. 2 TAs reported that remarks gave better support, while the other
two TAs reported “not sure”.

Of the 11 TAs that answered the questionnaire, 6 TAs got subsequent ex-
perience on other courses. Of these 4 of the TAs reported that they had gotten
“none” to “simple descriptions” for marking on these courses; 1 TA reported get-
ting only “oral descriptions”. Only 1 TA reported that they had gotten “detailed
descriptions”. 4 TAs reported that remarks gave better support, while the other
two TAs reported “not sure”.

remarks — Machinery for Marking Student Work 13

This is a small sample-size, but the results indicate that there is a lack of
systematic support for TA work and remarks can be a tool for this. It could be
interesting to compare this with the support TAs get across the department.

5.4 Personal Experience

To finish the experience section, the authors would like to give a personal account
as course responsible for both CompSys and ITS over several years. The authors
started the work on remarks to mitigate some of the work managing many
TAs and ensuring better and consistent assessment of student work. From that
perspective, we find that remarks has been quite successful.

remarks has given clear understanding between teachers and TAs on the
courses, where we talk more about general assessment of the assignments and
very little about individual hand-ins. Very few students have been complaining
about the assessment they have received.

For the grading of the exams it has also been a very useful tool. This mainly
shows in two ways. Firstly, the external examiners have expressed great satis-
faction with the level of detail they get. The clear evaluative criteria mean that
there are very few students that need to be discussed at a final grading meet-
ing. This have lately taken less than an hour for grading about 160 students.
Secondly, we have received very few exam complaints. Since the 2018 CompSys
have gotten 2 formal complaints and 4 informal requests to consider the grade.
The informal requests and one of the formal exam complaints were due to errors
in viewing pdf-files. Having the remarks files made it easy to go back to the
assessment to spot and correct the error.

The main downside of today is that remarks requires some technical skill to
setup and manage. However, this also give a large amount of flexibility. This is
something that will be addressed in future work.

6 Conclusion

In this paper we have introduced and given an assessment of remarks; an open-
source suite of tools for marking student work. We have described how it can be
used for marking semi-structured written student work in fair-sized Computer
Science courses.

We have described how remarks has been used on two bachelor courses at
the University of Copenhagen and detailed the scenarios in which TAs are aided
to perform student assessment. The data that have been gathered from this
experience, shows that remarks has a positive effect. We have indications that
students are satisfied with the feedback that they get and that the TAs like to
have the support that they get from remarks.

It is clear that remarks is still an academic software development project.
To that end, future work can be classified into three areas. Firstly, we would like
to get experience with using remarks in more courses. There are other courses
at the University of Copenhagen that have started to use remarks, which is a

14 O. Shturmov and M. K. Thomsen

step forward. However, this leads to the second issue. To have wider adaptation,
we need to make remarks easier to use. A web-based interface is a first step.
Advanced uses of remarks today as a teacher still require some level of shell
scripting, which speaks to shortcomings of the tool suite. Finally, we would like
to more formally evaluate remarks wrt. other approaches.

We invite you to check out our project on GitHub; get in touch with the
authors if you would like to try out remarks, or would like to argue that your
spreadsheet, built over years of assessment experience, is superior to remarks.

References

1. 9241-210:2019, I.: Ergonomics of human-system interaction –
part 210: Human-centred design for interactive systems (2019),
https://www.iso.org/standard/77520.html

2. Brown, G.A., Bull, J., Pendlebury, M.: Assessing student learning in higher edu-
cation. Routledge, 1 edn. (1997). https://doi.org/10.4324/9781315004914

3. Bull, J., McKenna, C.: Blueprint for computer-assisted assessment. Routledge, 1
edn. (2003). https://doi.org/10.4324/9780203464687

4. Conole, G., Warburton, B.: A review of computer-assisted assessment. Re-
search in Learning Technology 13(1), 17–31 (2005). https://doi.org/10.1080/
0968776042000339772

5. Dawson, P.: Assessment rubrics: towards clearer and more replicable design, re-
search and practice. Assessment & Evaluation in Higher Education 42(3), 347–360
(2017). https://doi.org/10.1080/02602938.2015.1111294

6. Lewis, J.R.: The system usability scale: Past, present, and future. International
Journal of Human–Computer Interaction 34(7), 577–590 (2018). https://doi.
org/10.1080/10447318.2018.1455307

7. Macedo, J.N., Moreira, R., Cunha, J., Saraiva, J.: Get your spreadsheets under
(version) control. Ibero-American Conference on Software Engineering (2019)

8. Pickering, R.: Language-Oriented Programming, pp. 327–349. Apress, Berkeley,
CA (2009). https://doi.org/10.1007/978-1-4302-2390-0_12

9. Popham, W.J.: What’s wrong-and what’s right-with rubrics. Educational leader-
ship 55, 72–75 (1997)

10. Sadler, D.R.: Indeterminacy in the use of preset criteria for assessment and grading.
Assessment & Evaluation in Higher Education 34(2), 159–179 (2009). https://
doi.org/10.1080/02602930801956059

11. Secolsky, C., Dension, D.B. (eds.): Handbook on Measurement, Assessment, and
Evaluation in Higher Education. Routledge, 2 edn. (2018). https://doi.org/10.
4324/9781315709307

12. Terry J. Crooks, M.T.K., Cohen, A.S.: Threats to the valid use of assessments.
Assessment in Education: Principles, Policy & Practice 3(3), 265–286 (1996).
https://doi.org/10.1080/0969594960030302

13. Ward, M.P.: Language-oriented programming. Software - Concepts and Tools
15(4), 147–161 (1994)

14. Yanakieva, E., Bird, P., Bieniusa, A.: A study of semantics for crdt-based col-
laborative spreadsheets. In: Proceedings of the 10th Workshop on Principles and
Practice of Consistency for Distributed Data. p. 37–43. PaPoC ’23, Association for
Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/
3578358.3591324

https://doi.org/10.4324/9781315004914
https://doi.org/10.4324/9781315004914
https://doi.org/10.4324/9780203464687
https://doi.org/10.4324/9780203464687
https://doi.org/10.1080/0968776042000339772
https://doi.org/10.1080/0968776042000339772
https://doi.org/10.1080/0968776042000339772
https://doi.org/10.1080/0968776042000339772
https://doi.org/10.1080/02602938.2015.1111294
https://doi.org/10.1080/02602938.2015.1111294
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1007/978-1-4302-2390-0_12
https://doi.org/10.1007/978-1-4302-2390-0_12
https://doi.org/10.1080/02602930801956059
https://doi.org/10.1080/02602930801956059
https://doi.org/10.1080/02602930801956059
https://doi.org/10.1080/02602930801956059
https://doi.org/10.4324/9781315709307
https://doi.org/10.4324/9781315709307
https://doi.org/10.4324/9781315709307
https://doi.org/10.4324/9781315709307
https://doi.org/10.1080/0969594960030302
https://doi.org/10.1080/0969594960030302
https://doi.org/10.1145/3578358.3591324
https://doi.org/10.1145/3578358.3591324
https://doi.org/10.1145/3578358.3591324
https://doi.org/10.1145/3578358.3591324

remarks — Machinery for Marking Student Work 15

A Remarks example from Computer Systems

Example of a detailed remarks file for the first assignment on the Computer
Systems course at DIKU. It is written by the teachers for TAs that correct the
assignments. In the assignment the students are to implement a simple version
of file(1) in C.

Feedback:

Corrected by: [Name]

[Your Feedback]

API: /10
* Can read path from command-line.
* Writes to stdout even if file does not exist.
* Writes to stderr if no arguments are provided.
* Exit code is 0, even if file does not exist.
* Exit code is 1, if no arguments are provided.

File Types: /15

Implementation: /10
* Understand EXIT_SUCCESS, EXIT_FAILURE.
* Can open a file.
* Can handle non-existing paths.
* Understand errno.
* Can read a file one byte a time.
* Understand bit-wise operators.
* Understand bit masking.
* Understand ASCII.
* Can write a for-loop and/or while-loop.
* Can write a switch-case and/or if statement.
* Can read multiple bytes in sequence (UTF-8).
* Understands variable-width encoding.
* Remember to close the file.
* Do fallback to data if file contains spurious null-bytes.

Bonus: +0
* Support null-bytes at the end of a file.

Style: /5
* Check return codes throughout.

16 O. Shturmov and M. K. Thomsen

* Don’t have magic constants.
* Functions are short, concise, and well-named.
* The style is sensible in general.
* No zip bomb
* src/ is located correctly

Testing: /25
* Understand echo.
* Understand hex.
* Understand what a shell script is.
* Understand diff.
* There are files for testing all different types.
* There are files for testing empty.
* There are files for testing data.
* There are (automated) tests.
* Tests are reproducible.
* Test-results are comprehensible.
* Tests are extensible.

Report: /40
* Report is comprehensible.
* Gives a good overview of what has been solved.
* Actually describes the submitted code.
* Describes the added tests.
* Discusses the non-trivial parts.
* Disambiguates properly (e.g., trailing null-byte).
* Contains both name and KUid
* Describes what file(1) reports for a binary.

Theory: /10

Boolean logic: /2
* Understand Boolean logic.
* It is the same, as both sides in some way say "set the bits

to 1 for which A has 1 and B has 0".

Logical operators: /6
* Understands bit-wise operators
* Understands bit masking
* Can show the expression

* x << 3 -- uses shift, note 3 and not 8
* !(x ^ 0x6) -- uses xor for comparison

remarks — Machinery for Marking Student Work 17

* (x >> 31) || !x -- property of two’s complement numbers or 0
* !(!(x ^ y)) eller (x^y) (venstre giver 1 eller 0, højre giver

non-0 eller 0) -- similiar to exercise 2

Floating point: /2
* Understand floating points
* Can explain what denormalised numbers are (used when exp == 0),

makes M have a leading 0 (before the fraction point, in normal
numbers it has a leading 1)

* Knows advantage (can encode 0 that is 0x0, can represent values
closer to 0)

B Questionnaire questions

Questions based on the System Usability Scale assessed from “Strongly Disagree”
to “Strongly Agree”:

– I like to use Remarks to assist in marking student work.
– I found Remarks unnecessarily complex.
– I thought Remarks was easy to use.
– I needed support from a teacher to be able to use Remarks.
– I found that the various functions in Remarks were well integrated.
– I thought there was too much inconsistency in Remarks.
– I would imagine that most people would learn to use Remarks very quickly.
– I found Remarks very cumbersome to use.
– I felt very confident using Remarks.
– I needed to learn a lot of things before I could get going with Remarks.

Questions relation to prior experience:

– Did you mark student work on courses before you were introduced to Re-
marks? (yes/no)

– What has generally been your role in these previous courses?
• Teaching Assistant
• Head Teaching Assistant
• Teacher
• External Examiner
• Other

– What marking support did you get on previous course:
• None
• Simple Description
• Oral Description
• Detailed Description
• Remarks

– Did you find that Remarks gave you better support in the marking process?
(yes/no/not sure)

18 O. Shturmov and M. K. Thomsen

– What did you find positive about this prior experience? (Text field)
– What did you find negative about this prior experience? (Text field)

Questions relation to subsequent experience:

– Did you mark student work on courses before you were introduced to Re-
marks? (yes/no)

– What has generally been your role in these subsequent courses?
• Teaching Assistant
• Head Teaching Assistant
• Teacher
• External Examiner
• Other

– What marking support did you get on subsequent course:
• None
• Simple Description
• Oral Description
• Detailed Description
• Remarks

– Did you find that Remarks gave you better support in the marking process?
(yes/no/not sure)

– What did you find positive about this subsequent experience? (Text field)
– What did you find negative about this subsequent experience? (Text field)

C Language-Oriented Programming

Language-oriented programming is an approach to software development where
we principally design a domain-specific language for representing and solving
problems in the target domain of the software [8, 13]. The language may, but
does not need to be exposed to the end-user. It is intended mainly as a domain
of discourse for the developers of the software.

One benefit of this approach is that we can arrive at a maximally concise and
safe domain modeling language. In contrast, if we begin by modeling in a general-
purpose programming language, we are forced to use, and are constrained by the
constructs and connectives afforded by that language. This may limit our ability
to safely and succinctly model the domain from both a syntactic and semantic
perspective. Herein lies the second benefit, as the practice of formally modeling
programming language syntax and semantics is much more well-established than
the practice of formally modelling software, in general.

The downside of this approach is indeed that we develop a near full-blown
programming language. This can seem like a lot of work for the uninitiated.
However, today there exists a wealth of domain-specific language workbenches,
and a number of general-purpose programming languages have been expressly
designed to streamline creation of embedded and extraneous domain-specific
programming languages (e.g., Haskell, Racket).

remarks — Machinery for Marking Student Work 19

In section 3 we use BNF-style notation to introduce the domain model of
remarks. The domain model closely corresponds the abstract syntax tree in our
implementation. It is intentional that there is a close correspondence between
the two, so Section 3 reveals only an abstract syntax for remarks. For instance,
we do not specify how many spaces are allowed between the tokens.

Section 4 reveals the details of the concrete syntax of our current plain-text
format. However, the abstract syntax introduced in Section 3 may also well be
concretely implemented as a data model in a database management system. In
that case, details about whitespace, for instance, would have be obtrusive.

Since there are many BNF-style notations, we clarify our conventions here:
An italicized, CamelCased name in angle brackets (e.g., ⟨Judgement⟩) denotes
a syntactic non-terminal. A text in monospaced font enclosed in single quota-
tion marks (e.g., ‘Analytic’) denotes a syntactic terminal (i.e., literal or atomic
value). Syntactic non-terminals may be indexed by non-negative integers (e.g.,
⟨Judgement⟩1). A non-terminal is declared either in prose or by using the dec-
laration operator ‘::=’, with a pattern on the left-hand side, and a non-empty
list of projections on the right-hand side, separated by ‘|’:

⟨Pattern⟩ ‘::=’ ⟨Projection⟩1 ‘|’ ⟨Projection⟩2 ‘|’ · · · ‘|’ ⟨Projection⟩n

A ⟨Pattern⟩ names an undeclared non-terminal, and may be indexed by a
variable name, meaning that we are defining an indexed non-terminal. The vari-
able name becomes a fresh name which can be used in the projections on the
right-hand side of the declaration.

Finally, a non-terminal occurring on the right-hand side of a declaration, may
be qualified with Kleene-star denoting 0 or more occurrences of the non-terminal
(e.g., ⟨Judgement⟩∗1).

Section 4 provides the concrete plain-text syntax of remarks, as understood
by our tool-suite today. This section also uses BNF-style notation, but to distin-
guish this concrete syntax from the abstract syntax in Section 3, Section 4 uses
double angle brackets for the non-terminals (e.g., ⟪⟨Judgement⟩n⟫).

D File System and Command-Line Interface

remarks was principally designed to streamline asynchronous collaboration on
assessments among dozens assessors, make conflict resolution explicit and un-
surprising, and minimize possibility of conflicting edits, in general.

To that end, remarks files are plain-text files (as discussed in Section 4),
amenable to revision control with a conventional source code revision control
system (e.g., Git). Furthermore, we have usually used one remarks file per unit
of work to be assessed. Notably, a “unit of work” does not necessarily corre-
spond to “a submission”. For instance, it may be the theory or practice part
of a submission, each assessed by a different assessor. By virtue of planning,
it is almost never the case that two assessors are assessing the same unit of

20 O. Shturmov and M. K. Thomsen

work at the same time. Hence, assessors rarely, if ever face merge conflicts when
synchronizing their assessments.

The remarks tool suite consists of a single command-line utility called remarks.
This tool can be used to arrive at a summative or descriptive assessments based
on a remarks file. For instance:

check checks that a remarks file has been filled in correctly.
summary checks and prints a summary of the points, down to a given depth.
pending prints what parts are yet to be assessed.
export exports judgements in given format (e.g., HTML, Markdown, PdfMark).

E Example: Org-mode

Another popular choice of administrative software for conducting assessment is
Emacs Org-mode. Using this tool requires some, though not intricate knowledge
of the Emacs text-editor.

A typical assessment Org-mode file, reminiscent of our Table 1, may look
something like this:

* S1
** Theory
*** T1

:PROPERTIES:
:points:
:END:
(free-form textual remarks)

*** T2
:PROPERTIES:
:points:
:END:
(free-form textual remarks)

...

Emacs can then be used to compute summative assessments analytically,
based on the points given in the leaf :points: attributes. These can then be
stored in the .org file itself.

This is considerably more verbose than remarks, making it hard to manage
in a conventional source code revision control system. This file is easier to look at
in Emacs, since it conveniently folds the properties and bullet-points. However,
that functionality is of course not there when looking at a conventional Git diff.

It is quite possible that most remarks functionality can be achieved with
Emacs Org-mode. However Emacs Org-mode will always be a general purpose
admistrative software data format, while remarks strives to be an eloquent
domain-specific language for marking student work.

	remarks — Machinery for Marking Student Work

