
Operational Backbone Work: Modernization Activities in

the Migration of Monolith-Oriented IT Architectures

Egil Øvrelid1, Olav Haaland Moseng1, og Ludvig Oftedal Vinje1

1 Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo

Abstract. To cope with new digital markets, incumbent financial organizations need to

modernize their monolithic system portfolio to a more flexible and efficient form. This has

proven to be quite challenging since the existing systems are tightly integrated with historical

practices. We frame the portfolio as the operational backbone (OB) and ask what are the key

activities of OB work in monolithic systems migration, and what is the outcome of such a

migration process? We chose a case study approach to grasp a complex issue within a real-life

context: a big financial institution embarking on a digital journey to modernize its core systems.

Our contribution is a migration model that describes three key modernization activities attributed

to OB Work, and the role of these activities in modernizing the IT portfolio from a fragmented

to a more coherent and flexible OB

Keywords: Operational Backbone Work, Modernization activities, Migration process,

Monolithic Systems, IT architecture

1 Introduction

All organizations that have operated for a while have an extensive portfolio of IT

systems. Some of the core systems are often referred to as monoliths, i.e. three-layered

systems that cover distinct requirements present in particular business areas [1]. These

monolithic systems, developed and implemented at different times, are configured to

respond to different business needs [2]. Examples are patient records developed before

there was an expectation of patient access to own data, or financial systems where the

transactions are between the bank and the system, not directly between the bank and

the customer.

To cope with emerging requirements attributed to new interactions, most

organizations have tried to integrate monoliths in a more or less systematic way, with

varying degrees of success. The integrations have only solved some of the problems

related to the lack of system flow but also created new dependencies and architectural

debt. Rolland and Lyytinen (2021) developed the concept of architectural debt to

denote architecting practices that threaten performance and robustness in IT

architectures [3]. These dependencies may take the form of “meshwork”, making it

difficult to identify core functions during modernization.

Although challenging for incumbent organizations, the new dynamic landscape of

fast immediate, and precise transactions, and competition from emergent entrants,

requires drastic changes in the IT architecture [4]. Ross et al [5] describe several key

challenges for organizations that move from tightly connected system portfolios to

more flexible system landscapes. The IT architecture is central to this process. A central

architectural component is the Operational Backbone (OB) defined as “the technology

and business capabilities that ensure the efficiency, scalability, reliability, quality, and

predictability of core operations” [2, p. 17]. The purpose of OB work is to achieve a

more coherent system landscape, with robust and trustworthy digital services. Central

2

to this process is the splitting of monoliths into smaller independent modules, which

interact through modern API (Application Provider Interfaces) [6].

At the same time, through its role as a consolidated data bank that integrates services,

and safely delivers them to actors working with innovations, OB is an object where the

struggle between inertia and innovation is made evident. It is a venue for a demanding

relationship between the monolithic system portfolios, and what is needed to achieve a

more dynamic and flexible architecture [7]

Consequently, our key interest is to gain a better understanding of activities

associated with OB work in a complex large-scale organization that is modernizing its

IT portfolio. We understand this as a migration process; a gradual pragmatic

replacement of monolithic systems in favor of a more modular and business-friendly

architecture [8]. Our research question is: What are the key activities of OB work in

monolithic systems migration, and what is the outcome of such a migration process?

We proceed by describing a theoretical discourse aligned with our interests before

we describe our case and findings. Our contribution is a closer elucidation of the

modernization activities linked to OB Work, and their contribution in the migration

process.

2 From a monolithic to a modularized operational backbone

2.1 Operational Backbone Work

The Operational Backbone (OB) is a central part of the digital organization and includes

“the technology and business capabilities that ensure the efficiency, scalability,

reliability, quality, and predictability of core operations’ [2, p. 17]. Incumbent

organizations struggle with multiple non-consolidated IT systems [5], leading to a lack

of trust in information due to potential incorrectness. Consequently, in these

organizations, the OB often is an obstacle to innovation [5]. To reach Sebastian’s'

standard an extensive amount of work is required. Earlier literature has framed this

work as architecting [9], [10], highlighting the multiple issues architects confront in

streamlining IT architecture [9]. Other has framed it from a development perspective

[11], focusing on the particular challenges addressed during planning and

programming.

We align with these earlier framings but refer to these activities as OB work. The

central goal for OB work is to modernize the IT portfolio – making it more responsive

to instant changes in the business surroundings. Inspired by [12] we understand OB

work as modernisation activities associated with migrating the IT architecture from a

tightly coupled monolithic structure to a more modular state.

2.2 OB Work and the challenge of monolithic systems

Monolithic systems are generally described as systems where the various functional

parts (data input and output, data processing, error handling, and user interface) are

interwoven in a unified whole [13]. Monolithic systems are often historical systems that

have supported the organization over time. Integration of monoliths to enable processes

that are more efficient across expert groups in the organization, creates a very complex

3

and entangled system landscape [14]. Thus, monolithic systems or clusters of integrated

monolithic systems are hard to maintain because of tight coupling between their various

components [15],[16]. Monolithic systems consist of a large code base, with limited

maintenance of old code as the system continuously evolves. Often accumulated

knowledge and experience is the usual way to understand the systems as they become

increasingly complex. Since these systems contain crucial business logic, monolithic

systems become the backbone of an organisation, constituting a key part of conducting

business [15]

Monolithic systems also introduce an interesting dilemma, as replacing them is a

costly undertaking, and despite their incumbent technical foundation, they are often

very reliable when performing the tasks they were designed to perform [17]. Sneed,

[18] infers that re-engineering of monolithic systems1 has shown to be very challenging

and associated with significant risk, and managers and developers are often reluctant to

initiate such complex projects. Reluctance has persisted, and monolithic systems

remain crucial parts of the systems in many large organisations, including most large

banks today [21]. [17], [19] also highlights these risks, as failure in monolithic systems

can have a catastrophic impact on an organisations ability to perform core activities.

Since monolithic systems are historically bounded to other contextual surroundings,

they may reduce organisations abilities to execute their digital strategies and deliver

innovative digital customer solutions and offerings [5]. As technology has advanced,

it has enabled companies to increasingly use the capabilities of data, connectivity, and

processing power to better understand their customers and deliver new value

propositions [5], [22]. This has a significant impact on existing products and services,

as using new technologies can enhance the customer experience, or make existing

products or services obsolete [5]. Thus, we will next outline some core approaches to

modernizing monolithic systems

2.3 OB Work and approaches to modernize monolithic systems

Bisbal et al. [19] present three main approaches to cope with monolithic systems: (1)

redevelopment, (2) wrapping, and (3) migrating.

Redevelopment, or Re-engineering, is the most discussed technique in early

monolithic systems research [18], [23] and describes the process of rewriting

monolithic systems from scratch or replacing them with a Commercial off-the-shelf

(COTS) system [19]. A redevelopment approach requires careful examination of the

monolithic system and the organisation to understand business rules. This can result in

an effective retirement of monolithic systems, replacing them with an architecture

customised to the organisations need [12], [19]. Redevelopment is considered a "big-

bang" strategy, and seen as risky in most cases. It is both time-consuming and expensive

to replace system portfolios dominated by monolithic systems, with a completely new

1 In the new DORA framework, legacy systems are defined as systems that is not longer supplied or
maintained and has reached the end of its lifecycle. Both [17], [18] or [19] refer to legacy systems as systems

that are still maintained. Since the systems referred to in the paper are still receiving maintenance, we use the

term monolithic systems to comply with the DORA framework [20]

4

system portfolio [24]. Thus, redevelopment is in most cases considered an undesirable

strategy [8], [12].

In contrast, Wrapping, also referred to as Encapsulation, is the simplest solution.

This strategy implies creating new interfaces to enable access to existing data, systems,

and applications [18], [19]. It is considered a "black-box" technique, as it concentrates

the interfaces of the wrapped monolithic systems while hiding its internals. It is a fast,

cost-effective, and simple way of exposing the services of monolithic systems, allowing

new functionality on top of older systems. Wrapping also leverages the existing

systems, which are often well-tested and trusted after many years in use (Almonaies et

al., 2010). Wrapping strategies implies retaining the original systems. Reliability in

terms of overloading and scaling remains an issue as the monolithic systems still

process the requests. The cost of maintenance will also remain, or potentially increase

as the wrapping itself also needs to be maintained [12], [19]. Wrapping is thus

considered a short-term solution [19].

Migration strategies aim to move functionality from monolithic systems to a new

platform, causing as little disruption in the operational environment as possible [19].

The process involves identifying functions in a monolithic system, extracting, and

decoupling them into a new target system. Migration often utilise wrapping and

redevelopment techniques as a part of the strategy, intending to move functionality

away from the monolithic systems, over to a platform with improved design [12]. As

migration aims to meet the requirements of the business already served by the target

system, a good understanding of the monolithic systems’ interactions, operations, and

data is important before a migration effort can begin. The main drawback of migration

techniques is that they are time-consuming, requiring many steps and large amounts of

testing [12]. The Strangler fig pattern [8] is an example of a commonly used migration

technique. It is a three-step process, combining elements from both wrapping- and

redevelopment strategies.

2.4 Modularized IT architectures

Platform architectures and a Service-oriented architecture (SOA) have emerged as

successful examples of modular architectures, emphasising modularisation of systems

and services, with standardised mechanisms for communication and transparency [4],

[25]. Modularisation enables the re-usability of secure and standardised components

and facilitates interoperability, flexibility, and scalability [6], [26]

A modular design aims to decompose complex systems into many "black-boxed"

services that communicate with each other, together forming a larger system [25], [26].

Services can range from delivering simple functions to complex processes, monolithic

systems, or COTS systems, where their functionality can be viewed, accessed, and

reused through standardised interfaces [27]. This "loose coupling" enables services to

be called remotely without critically affecting the overall architecture, state, or

behaviour of the system [28]. Microservices is an example of a decomposition

technique. Microservices are autonomous services deployed independently, with a

single and clearly defined purpose [1]. The modules need to be connected, allowing for

interoperability. System- and data integration must enable visibility and accessibility,

5

allowing them to be accessed and combined seamlessly [27]. In SOA, this is referred

to as the Service Bus, enabling services to be accessed uniformly. Web services are the

commonly accepted technology for enabling integration, using standardised protocols

for service calls through API, messaging, and security tokens and routing. Combining

and configuring these standards into reusable components ensures shared rules and

policies across all services enabling standardisation of communication, interfaces, and

security policies across the whole system [27]. Combining modularised services and

standardised integrations through a service bus creates a modular architecture better

served for fulfilling the requirements of an operational backbone [5]. We proceed with

our Method before we describe our case and findings.

3 Case and method

3.1 Case: BankCorp

To improve our understanding of challenges attributed to OB work we investigated a

case from a large financial institution. BankCorp is currently in the middle of a very

important digital journey to modernize core systems. This entails important investments

in building in-house competency to reach the strategic goal of transforming mainframe

monolithic systems into modular architectures. BankCorp has chosen a gradual

migration to cope with the fact that the bank has a huge amount of customers on several

platforms, so they cannot shut down the business.

3.2 Data collection and data analysis

This is a qualitative case study based on interviews, documents, and conversations [29].

A case study encourages detailed study of a phenomenon, in a particular real-life

context and may draw on multiple data collection sources [30]. We interviewed and

had informal conversations with 12 architects from different departments in BankCorp:

Integration and Flow, New Payment Platform (NPP), and Private Market (PM).

Understanding the financial sector implies understanding both financial,

organizational, and technical challenges, as well as regulatory requirements. The

interviews lasted between 45 to 90 minutes.

We analyzed the data in four steps [31]. First, we created a timeline for the evolution

of BankCorps IT portfolio, and the IT architecture. Based on the data, we then discussed

the particular transition strategies used by BankCorp to adapt to the shifting contexts.

We detected a significant shift around 2017 when BankCorp moved towards a

modernization strategy. Central to this strategy was the effort to remove the constraints

of the monolithic systems. We found three central activities: encapsulation, decoupling,

and modularisation & integration to be decisive for this strategy. We also saw that they

chose a migration process with gradual replacement of the older system functionality.

The result of our analysis is summarized in Figure 1 - a process model. The model is

inspired by the relation between context, mechanisms, and outcome [32].

6

4 Case background: BankCorps’ monolithic systems evolution

BankCorps' current systems have evolved from their early adoption of information

technology in the late 1960s when the financial industry was at the forefront of IT

adoption in Norway. The historical IT systems were primarily designed to support

branch operations, with batch processing of transactions and accounting performed

overnight. These systems were built to run on IBM mainframe computers using

COBOL programming and DB2 database systems.

As online services became more prevalent and important, BankCorp prioritised

modernising the systems. However, many of the critical core systems still ran on the

mainframe, dating back to the 1970s, 1980s, and 1990s.

The main underlying reason for our challenges lies in the disparity between the

evolution of user interface-related technologies and the slow pace at which core

banking systems are evolving, including those used by BankCorp. Some of these

systems date back to the 1970s and 1980s, with some employees having worked

on the same system throughout their careers until retirement.

In the 1990s, distributed systems such as Windows and Linux platforms, the Java

programming language, and .NET emerged as modern alternatives to mainframe

systems. The 1990s saw BankCorp make efforts to modernise systems to meet the

demands of more modern and reliable services that required more frequent online

access. However, these modernisation efforts did not address BankCorp’s reliance on

the mainframe from the 60s for its core operations.

In the early 2000s, the emergence of online banking began with Sbanken leading the

race. Before this, online banking was a very small segment. The initial development of

BankCorp’s online banking system ran on the IBM WebSphere platform, a customised

off-the-shelf software. The need for a mobile banking application became apparent in

the mid-2010s, as a mobile-optimised website that was introduced in the early 2010s

provided similar functionality to the online banking system.

In 2015, work began on a mobile application, which resulted in the development of

a mobile-native online bank for Android and iPhone. Since the monolithic systems were

not exposed as reusable APIs, it was necessary to start by integrating the core systems

to enable the development of services.

5 Findings: Modernization activities as OB Work

5.1 Drivers for OB Work

Business drivers: Strategic planning and maintaining customers.

The integration of new services may necessitate a significant time investment for

migrating underlying systems before the development of a new system can start. The

head of tech strategy says that:

We need to look a year or two ahead when deciding which areas to modernise

because all new features added to our services might take a couple of years to

solve, minimum. Some of them take more than five years to solve if the

underlying systems require significant modernisation.

7

BankCorp recognises that maintaining a loyal customer base is the cornerstone for

financial stability and growth, not technological excellence. The development of

several shared services in the 2010s addressed this concern. An example of how the

business needs drive modernisation activities lies in the mortgage process. BankCorp

is currently facing new challenges in the form of competition from rivals that provide

more efficient mortgage processes. In response, BankCorp must modernise its offerings

to remain competitive and attractive to consumers, as explained by the Head of tech

strategy, 2023;

We are now at risk of losing business because Bulder Bank and our competitors

have quite good mortgage processes. We look at the business drivers, where

there is a threat to our position, and where we need to respond.

Since the majority of people have mortgages, the mortgage process is a core product

within the retail business. To maintain its competitive advantage, BankCorp needs to

continuously modernise and update its mortgage services.

Technological drivers – Reduce Architectural debt and create robust services

The mortgage process also concerns technological drivers as it has historically been

challenging to automate. In 2017, significant efforts were made to automate the process

through screen scraping, resulting in a fully automated mortgage process. However, this

merely automated the existing system, utilising the same COBOL code and mainframe

technology, as explained by the Head of tech strategy, 2023;

It was the first fully automated mortgage process, but it was the same COBOL

code running on the same mainframe. It did a good job, but we want to improve

it again. So now, we’re modernising the process from the ground up.

Adding additional layers to old systems makes it progressively harder to develop them

further. Consequently, BankCorp is now looking to modernize the mortgage process,

which will be an expensive initiative, but it will allow BankCorp to continue competing

with new entrants. An efficient mortgage process requires stable payment systems.

When the payment system relied on batch-based integrations of massive files, it became

increasingly unstable.

5.2 Modernisation Activity 1: Encapsulation

Shortcomings in BankCorps' system portfolio became obvious during the development

of the mobile bank in 2015. The old systems could not expose data and services

efficiently. Any new application that needed to access the older system’s services

required system-to-system integration, which was a resource-intensive process. The

challenges posed by these systems limited BankCorp’s ability to innovate and develop

new applications quickly. Modernization of the core systems to enable faster and more

flexible interactions with modern applications was required.

Encapsulation was done to support this modernisation, by exposing the core systems

to be consumed by applications based on modern protocols. By encapsulation, we refer

to the process of bundling together data and processes to ensure controlled accessibility

[8]. BankCorp enabled encapsulation by using a tool developed by IBM called z/OS

8

Connect which provided a standard way to expose COBOL assets using REST APIs

(IBM, 2023). Encapsulation, thus, allows modern applications to easily access

information that was previously only available through system-to-system integrations,

as explained by the Engineering manager, 2023b;

We had to encapsulate core functionality to support the modernisation of new

applications, like mobile banking. These core systems could not be exposed and

consumed by modern applications without being encapsulated concerning the

functionality of what these core systems could expose in terms of data themselves.

Modern standardised protocols have been crucial in exposing the data and services from

older systems, allowing work on new services across different channels. Making

business logic from older systems accessible through APIs is essential for facilitating

modernisation activities as it enables developers to use older functionality when

developing new services.

5.3 Modernisation Activity 2: Decoupling

Encapsulation enabled the building of modern applications on top of older monolithic

systems. This enabled the quick development of the mobile banking application. While

the encapsulated systems continue to function adequately, the encapsulation strategy

can be considered an "anti-pattern". It merely conceals the complexity of the back-end

processes, as mentioned by the Head of tech strategy, 2023;

It was always the intention to use encapsulation as a temporary solution. It was

highly strategic when it was put in place and it’s still extremely important now,

but over time, it should become less important because you create complexities

by introducing an API gateway as a middleman.

This strategy persisted for about three years. Currently, the strategy for BankCorps'

modernisation efforts involves extracting functionality from the older systems, ensuring

that the modernised components remain entirely separate from these systems. This

process is known as decoupling. However, decoupling of back-end systems is a time

consuming endeavor that is expected to span for decades.

Customer data is crucial in the modernization of BankCorps IT Architecture.

Historically customer data is fetched from several systems. Since the objective is to

establish a distinct autonomous customer system that can be accessed directly, the

Integration and Flow group is actively working on decoupling it from the older systems.

Payment services are also subject to significant migration efforts led by the New

Payment Platform (NPP) project. A platform was created alongside the monolithic

systems, and services were gradually migrated from the old systems to the new

platform. However, certain aspects of the modernisation efforts at NPP follow a "big

bang" approach, where a comprehensive overhaul is implemented. For instance, all

European settlements for BankCorp are scheduled to occur over a specific weekend,

constituting a significant change over a short time-frame. Modernisation efforts within

NPP are deliberately avoiding encapsulation and building new systems on top of

existing ones, in favor of new systems built from the ground-up, as explained by the

Head of tech strategy, 2023;

9

The modernisation strategy involves separating and extracting specific

components from the monolithic systems instead of integrating them. This

process, known as decoupling, focuses on the back end and is expected to span

over a decade. The monolithic systems are broken down into smaller parts, such

as payments, which can be delivered independently as part of the modernisation

efforts.

BankCorp recognises the importance of using monolithic systems as a crucial part of

the value chain for conducting payment transitions. In their long-term migration

strategy, BankCorp systematically selects and decouples portions of the portfolio while

continuing to leverage the functionality of the old systems. Consequently, the

modernisation process unfolds gradually, with incremental updates being introduced

over time.

5.4 Modernisation Activity 3: Modularisation and integration

Encapsulation and decoupling are two important activities to ensure business

performance while migrating the IT architecture. To enable more permanent strategic

agility, a modular IT architecture is required [22]. BankCorp has created several teams

and tech families, that mainly develop microservices. Microservices are not only used

to develop new services but also to enable access to information from monolithic

systems. “We want to track …and to orchestrate the customer journeys from our side”,

meaning that looser coupling facilitates faster development of new services emerging

in dynamic markets.

Integration and Flow manage the migration process at BankCorp. They design,

implement, and maintain systems that promote seamless data flow and connectivity

between modular and independent technologies, with a portfolio of shared services.

The development of new systems and the continuous improvement of existing systems

would not be possible without a set of well-integrated shared services. An important

task for Integration and Flow has been to standardise rules and guidelines for

communication between services and applications at BankCorp. Those are Rest API’s,

API gateways, Developer Portal, Event streaming, Authentication and authorization,

and monitoring.

REST APIs

REST APIs provide an interface allowing one application or service to connect and

access resources of another application or service. They are the most common style of

implementing APIs, allowing for stateless communication of resources in many data

formats, and functionality for reading, creating, updating, or deleting within resources

through different requests. This allows for a large degree of flexibility when both

implementing the REST APIs and using them, making them ideal for many different

applications and communication between them.

API gateways

All externally exposed APIs have to go through an API Gateway. API Gateways serve

as a proxy to the back-end logic of the APIs, routing the calls through the gateway,

which handles security measures such as authorisation and authentication, validations

10

of API keys, load management, and logging and monitoring of the APIs. API gateways

are a crucial technology for monolithic system encapsulation, as mentioned by

Engineering manager, 2023a;

The approach adopted involves the creation of an API layer that encapsulates the

mainframe systems, thereby exposing them as REST APIs to various consuming

systems, such as mobile applications. The objective behind developing these

APIs is to ensure re-usability, avoiding the creation of APIs specific to a

particular consumer.

Developer portal

As the amount API’s grows, ensuring discoverability will become a significant

challenge. BankCorp’s solution has been to create a Developer Portal, a web page with

a searchable overview of all exposed APIs at BankCorp. The various groups publish

their APIs and documentation and communicate updates throughout the life cycle.

Publicly available APIs are also available in the Developer Portal, such as Payment

Services Directive 2 (PSD2) APIs, allowing anyone to view and request access tokens

through the portal.

Event Streaming

At BankCorp, they use Apache Kafka to serve as the event hub for exposing and

subscribing to data streams of events to and from systems and data sources. Similarly

to the Developer Portal for APIs, BankCorp is working on creating a Data Product

Catalog, quite similar to the developer portal displaying data sources available for

subscription. Event streaming is also central in standardising integrations, as explained

by the Engineering manager, 2023b;

Integration mechanisms like event streaming standardise how we conduct

integrations; otherwise, a proliferation of integration mechanisms may occur.

Therefore, it is primarily important that these services are exposed as REST

APIs. If data is to be provided, we prefer it to be offered as data streams through

Kafka and events.

Events represent changes, meaning that changes in databases can be streamed through

the logs, and be subscribed to by consuming applications and services. This allows for

real-time data streaming and data capture, enabling a continuous flow of data containing

the right information at all times throughout the entire architecture [33].

Shared authentication and authorisation services

Having a shared service for authentication and authorisation is important to ensure

access control across multiple systems. This is managed by a shared Identity and access

management (IAM) solution. Authentication and authorisation are two distinct

processes that are necessary for communication between services. BankCorp operates

on an internal zero-trust policy, which means you have to be approved to be able to

access data. The internal procedure for using an API within BankCorp is carried out

through the developer portal as explained by the Engineering manager, 2023b;

The IAM solution manages authentication and authorisation for all services.

11

Onboarding for API consumption is an internal process at BankCorp that is

facilitated through the developer portal. Services are provided with API keys for

connecting to the API, and approval is granted by the providing service.

5.5 Outcome of modernization activities: A more robust OB

These three key activities in operational backbone work have played a central role in

BankCorp’s current ability to develop new consumer-oriented services and

applications, like the development of the mobile banking application or the automated

mortgage process. Private Market (PM) is responsible for developing several services

on an application layer, which enable access to essential functionalities across various

applications. Examples of functionality are updated customer information and

onboarding processes. This functionality is enabled through REST APIs or a more

event-driven design:

We (Integration and Flow) are currently working on creating a customer-

information master for BankCorp. Instead of each system individually querying

the master for updated customer information, an event-driven design through

Kafka is being implemented.

When an update occurs for a customer, the customer information master pushes the

update to all services that require the updated customer information. In addition to

application development, PM has the responsibility of developing a set of front-end

services that are organized into two distinct areas specific to retail operations. These

front-end services consist of reusable components that can be utilised across multiple

services in BankCorp. One component is retail onboarding for the online banking’s

front-end systems. Retail onboarding refers to the process of welcoming and

establishing new customers within the retail sector. On-boarding typically includes

activities such as gathering customer information, verifying identities, setting up

accounts, explaining product offerings, and facilitating the initial interaction between

the customer and the banking service.

6 Discussion

In this section, we return to our research question – what are the key activities of OB

work in monolithic systems migration, and what is the outcome of such a migration

process? Our main goal is to identify and describe modernization activities embedded

in OB work. To provide a clearer understanding of the work required, we reference

literature on monolith systems modernisation [12], [19] and modular architecture [6],

[26], [27].

12

Figure 1 OB Work: A model for describing key modernization activities in the migration process

Our contribution is a model for describing the migration process (Figure 1). The

Migration is important since the bank cannot close. Thus, BankCorps migration process

is designed to transfer the functionality of monolithic systems with minimal disruptions

to the operational environment. Creating a good modular architecture also requires

thoughtful decomposition of the monolithic systems to reduce complexity, creating

separate components with higher visibility, and re-usability [1]. At the same time, it is

necessary to create a more flexible architecture that both facilitates more control, and

more efficient development of new services [2], [5]. It needs to be more transparent,

and easier to use for innovation [4], [7]

Inspired by the context, mechanisms outcome [32], Figure 1 describes three

sequences of the migration process: Precondition and drivers, OB Work, and outcome.

Preconditions and drivers describe the initial condition of the IT architecture

dominated by tightly coupled monolithic systems. The drivers for change are both

financial (strategic planning and maintaining customers) and technical (reducing

architectural debt and creating more robust services). With the emergence of online

services and faster change, a more flexible architecture is needed.

By operational backbone work, we aim to contribute with an overall

conceptualization of the various activities attributed to creating a streamlined

architectural foundation for Micro in an incumbent organization [2], [5], [22]. OB work

consists of several modernization activities, which we see as discrete activities engaged

in transforming the architecture from a monolith to a more flexible architecture [18],

[19], [23]. In our case, we identified three central modernization activities:

encapsulation, decoupling, and modularisation & integration.

We refer to encapsulation as an activity that describes the appropriation of

monolithic systems to enable fast and secure data harnessing. This appropriation often

entails using interfaces to establish a path for secure communication [8], [19].

Encapsulation is valuable, but not enough in the long run, since the monolithic systems

are still in charge. Modernization may therefore also include decoupling. We refer to

decoupling as an activity that describes the decomposition of tightly coupled systems,

and the loosening up of inscribed and unflexible relations. This is often followed by

modularisation & integration defined as the process of modularising monolithic

systems in the transition process and integrating the modules through modern

interfaces. According to core IS literature, modularity is about splitting the design and

production of technologies into independent subparts [6]. The outcome of such a

13

process may be digital agility [22] i.e. foundations for efficient development.

Additionally, the process also facilitates securing mechanisms [34]. For BankCorp this

is important since compliance with regulations such as GDPR are essential. The

outcome, of such a process is, we find, more efficient and trustful services, a more

flexible architecture with less architectural debt, and improvements toward compliance

in line with security and privacy issues.

The study has limitations, due to its relatively few interviews. Even though the

generalizability of the findings may be debatable, research of this sort may carry

important insight that is similar in other sectors.

7 References
[1] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, “From monolithic systems to

Microservices: An assessment framework,” Information and Software

Technology, vol. 137, p. 106600, Sep. 2021, doi: 10.1016/j.infsof.2021.106600.

[2] I. Sebastian, J. Ross, C. Beath, M. Mocker, K. Moloney, and N. Fonstad, “How

Big Old Companies Navigate Digital Transformation,” MIS Quarterly Executive,

vol. 16, no. 3, Aug. 2017.

[3] K. H. Rolland and K. Lyytinen, “Exploring the Tensions Between Management

of Architectural Debt and Digital Innovation: The Case of a Financial

Organization,” Proceedings of the 54th HICSS 2021.

[4] Y. Yoo, O. Henfridsson, and K. Lyytinen, “Research Commentary—The New

Organizing Logic of Digital Innovation: An Agenda for Information Systems

Research,” Information Systems Research, vol. 21, no. 4, pp. 724–735, 2010

[5] J. W. Ross, C. M. Beath, and M. Mocker, Designed for Digital: How to Architect

Your Business for Sustained Success. MIT Press, 2019.

[6] C. Y. Baldwin and K. B. Clark, Design Rules: The power of modularity. MIT

press, 2000.

[7] B. Bygstad and E. Øvrelid, “Architectural alignment of process innovation and

digital infrastructure in a high-tech hospital,” European Journal of Information

Systems, vol. 29, no. 3, pp. 220–237, May 2020

[8] S. Newman, Monolith to Microservices: Evolutionary Patterns to Transform

Your Monolith. O’Reilly Media, Inc., 2019.

[9] A. Martini and J. Bosch, “A Multiple Case Study of Continuous Architecting in

Large Agile Companies: Current Gaps and the CAFFEA Framework,” 13th

Working IEEE/IFIP Conference on Software Architecture (WICSA), 2016

[10] A. K. Ajer and E. Øvrelid, “ARCHITECTURE WORK: MODES OF

ARCHITECTING IN LARGE-SCALE INFRASTRUCTURES,” ECIS 2023

[11] R. C. Martin, Agile Software Development, Principles, Patterns, and Practices.

Prentice Hall, 2002.

[12] A. A. Almonaies, J. R. Cordy, and T. R. Dean, “Legacy System Evolution

towards Service-Oriented Architecture,” in International workshop on SOA

migration and evolution, 2010.

[13] R. Stephens, Beginning Software Engineering. 1st ed. Wrox Press Ltd., 2015.

14

[14] S. Sarkar, S. Ramachandran, G. S. Kumar, M. K. Iyengar, K. Rangarajan, and S.

Sivagnanam, “Modularization of a Large-Scale Business Application: A Case

Study,” IEEE Software, vol. 26, no. 2, pp. 28–35, Mar. 2009

[15] D. Taibi and K. Systä, From monolithic systems to microservices : A

decomposition framework based on process mining. SCITEPRESS, 2019.

[16] E. Øvrelid, “Exploring adaptive mirroring in healthcare IT architectures,” Health

Systems, pp. 1–22, 2023.

[17] K. Bennett, “Legacy systems: coping with success,” IEEE Software, vol. 12, no.

1, pp. 19–23, Jan. 1995, doi: 10.1109/52.363157.

[18] H. M. Sneed, “Planning the reengineering of legacy systems,” IEEE Software,

vol. 12, no. 1, pp. 24–34, Jan. 1995, doi: 10.1109/52.363168.

[19] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy information systems:

issues and directions,” IEEE Software, vol. 16, no. 5, pp. 103–111, Sep. 1999

[20] Springflod, “DORA - Digital Operational Resilience Act,” 2023.

https://www.dora-info.eu/article-3/ (accessed Jul. 05, 2023).

[21] Advanced, “2022 Mainframe Modernization Business Barometer Report,” 2022.

[22] V. Grover, “Digital agility: responding to digital opportunities,” European

Journal of Information Systems, vol. 0, no. 0, pp. 1–7, Jul. 2022,

[23] W. S. Adolph, “Cash cow in the tar pit: reengineering a legacy system,” IEEE

Software, vol. 13, no. 3, pp. 41–47, May 1996, doi: 10.1109/52.493019.

[24] Comella-Dorda, Wallnau, Seacord, and Robert, “A survey of black-box

modernization approaches for information systems,” in Proceedings 2000

International Conference on Software Maintenance, Oct. 2000, pp. 173–183

[25] A. Tiwana, Platform Ecosystems: Aligning Architecture, Governance, and

Strategy. Newnes, 2013.

[26] M. Ren and K. Lyytinen, “Building Enterprise Architecture Agility and

Sustenance with SOA,” CAIS, 2008 doi: 10.17705/1CAIS.02204.

[27] T. Erl, Service-oriented architecture: concepts, technology, and design. Upper

Saddle River, NJ: Prentice Hall Professional Technical Reference, 2005.

[28] D. L. Parnas, “On the Criteria To Be Used in Decomposing Systems into

Modules,” vol. 15, no. 12, p. 6, 1972.

[29] D. Silverman, “Interpreting Qualitative Data,” pp. 1–568, 2019.

[30] B. J. Oates, M. Griffiths, and R. McLean, Researching Information Systems and

Computing. SAGE, 2022.

[31] B. Bygstad, B. E. Munkvold, and O. Volkoff, “Identifying generative

mechanisms through affordances: a framework for critical realist data analysis,”

J Inf Technol, vol. 31, no. 1, pp. 83–96, Mar. 2016, doi: 10.1057/jit.2015.13.

[32] E. Øvrelid and B. Bygstad, “The role of discourse in transforming digital

infrastructures,” Journal of Information Technology, vol. Vol. 34, no. 3, pp. 221–

242, 2019.

[33] “Apache Kafka,” Apache Kafka. https://kafka.apache.org/intro (acc Jul 2023)

[34] A. Ghazawneh and O. Henfridsson, “Balancing platform control and external

contribution in third-party development: the boundary resources model,”

Information Systems Journal, vol. 23, no. 2, pp. 173–192, 2013

