Accelerating PFLOTRAN-OGS
on GPUs using PETSc

Tobias Dyngeland and Anne C. Elster

Norwegian University of Science and Technology,
Dept. of Computer Science, Trondheim, Norway
tobias.dyngeland@ntnu.no, elster@tnu.no

Abstract. With the evident effects of rapid climate change and soci-
ety “s continuing dependence on fossil fuels, efficient modelling of reser-
voir behaviour for emerging CO, storage projects is in high demand. Due
to the models’ physical complexity and the non-linear nature of CO, stor-
age processes, the computational demands are so significant that physical
aspects, such as the dissolution effect, are ignored due to computational
limits. State-of-the-art flow simulation codes use highly parallel hard-
ware and programming models to handle large-domain simulations. At
the time of this work, complex flow simulators had yet to fully investigate
the benefits and impact of utilising accelerators like GPUs. This study ex-
plores the performance of accelerating the production code PFLOTRAN-
OGS, developed by OpenGoSim, using GPUs through PETSc’s recently
built-in accelerated solvers. Our accelerated simulation is run on two
test cases: GW1, a CO, storage case from OpenGoSim, and SPE1, a sim-
ple Black Oil benchmark from the Society of Petroleum Engineers. The
preliminary benchmark indicates that a GPU-accelerated solver with a
CPU-based framework gives an overall slower simulation. However, our
profiling verifies that most of the time was spent on transferring matri-
ces back and forth between the CPU and GPU, while the solver steps
have significant speedup on the GPU. Our results thus show that the
CUDA-accelerated PETSc FGMRES solver will be faster than its CPU
counterpart once the complete code is moved to the GPU.

Keywords: GPU - Fluid simulation - CO, storage - PFLOTRAN.

1 Introduction

Modern-day oil and gas extractions from subsurface reservoirs and permanent
CO, storage projects need detailed fluid flow models to ensure safety and effi-
ciency. These models should predict field performance and ultimate recovery for
various field development scenarios under different operational conditions [1].
However, accurate simulations of the reservoir development bring many chal-
lenges, as porous media is strongly heterogeneous and anisotropic [2]. Grids
with a high aspect ratio are fully unstructured with polygonal cells. The phase
behaviour is non-trivial as phases can appear and disappear as fluid components

2 T. Dyngeland

dissolve or vaporise. Coupling to wells can connect regions far away from each
other, and the reservoir models are highly non-linear.

The Newton-Raphson (NR) method is commonly used for solving non-linear
fluid equations due to its fast convergence towards the root [3]. This method
requires the Jacobian inversion to calculate the input vector’s next iteration.
Inverting matrices is, however, computationally expensive, and today’s approach
is typically to iterate towards the inverted Jacobian by solving the linear system

J(Xk)Xk+1 = J(Xk)Xk - R(Xk).

Major contrasts in material properties, such as permeability and porosity, com-
bined with high grid cell aspect ratios can lead to an ill-conditioned Jacobian
and non-convergence with NR [4]. Using an ineffective preconditioner for the
linear system can lead to the Krylov solver failing due to reaching the maximum
number of linear iterations, resulting in smaller time steps.

State-of-the-art simulators use highly parallel hardware and programming
models to distribute the workload and solve the equations efficiently. Message
Passing Interface (MPI) [5] is a standard for communication libraries on com-
pute clusters and includes implementations such as OpenMPI and MPICH. Note,
however, that classical MPI does not have the concept of host and device mem-
ory [6, 7]. GPU-aware MPI does accept GPU memory pointers, but many MPI
implementations do not utilise the Stream Queue, preventing pipelining.

At the start of this work, in the Summer of 2022, complex fluid simulators
that solve systems of implicit equations primarily leveraged computing power
from multiple CPUs. In [8, 9], Hammond predicted that accelerating such sim-
ulators would only achieve an x4 speed-up for realistic data. Das [10] showed
through a simplified study of groundwater flow scenarios that numerical sub-
surface flow equations, such as Advection-Diffusion Eqn. (ADE) with the Finite
Volume Method (FVM) discretisation and a Backward Euler scheme, can be
accelerated with GPUs.

In our work, we investigate PFLOTRAN-OGS, a real-world multi-phase flow
production code (e.g., it simulates both water and gas and mixing) by Open-
GoSim, and explore how it can gain performance by using the new acceler-
ated solvers in the Scalable Nonlinear Equation Solver (SNES) provided by The
Portable Extensible Toolkit for Scientific Computing (PETSc) [11]. In the Sum-
mer of 2022, PFLOTRAN-OGS only used MPI as their programming model
for parallelisation and had just started experimenting with accelerated kernels
for their solvers. Later, OpenGoSim developed a proprietary, multi-threaded
GPU/CPU C++ 11 version of the preconditioner Compressed Pressure Resid-
ual (CPR) that uses a multi-colour Incomplete Lower-Upper (ILU) factorisation
method as the second stage and is now a stand-alone library called Wisp [12].

2 Mathematical Basis of Reservoir Simulations

Reservoir models consist of a set of phases and components. A component is
a substance in the reservoir, e.g. water or CO, and the phase represents the

Accelerating PFLOTRAN-OGS on GPUs using PETSc 3

state of a component, e.g. liguid and gaseous. Components can exist in multiple
phases. This means that the gas component can dissolve in the liquid phase, and
more than one phase can contribute to the flow of a component.

2.1 The Black Oil Model

The Black Oil Model is a three-phase, three-pseudo-component petroleum reser-
voir model incorporating compressibility and general mass transfer between
phases [13, 14]. The components in this model are water, oil, and gas, which
can exist in the phases liquid, oleic, and gaseous. The model’s core is mass
conservation, where the change in mass over a time step At should equal the
difference in mass flowing in and out of a given volume. That is, following the
mass balance equation

Jc
05, + Vlae) = Q. 1)
where ¢ is the porosity, c is the concentration, q is the Darcy velocity, represent-
ing the volume of fluid flowing per unit area per unit time, and @ is a source
term.

2.2 The Gas-Water Model

The Gas-Water model is a two-phase, two-component flow model that can de-
scribe COqy-storage in deep saline water formations [15]. The conserved com-
ponents, CO, and water, can exist in the phases liquid and gaseous. Like the
Black Oil model, the Gas-Water model revolves around a mass balance equation
called the ADE. It combines Reactive Transport with the use of Darcy Flow and
Molecular Diffusion through Fick’s First Law of Diffusion in

qs% + V(qc) — ¢D,,V?c = Q, 2)

where D, is the effective molecular diffusion coefficient in the pore space.

2.3 Energy Balance

The energy balance equation

0
5 &> SensUs + (1= ¢)peGT | +V - > (agnsHp — kVT) = Q,
8 5

describes the conservation of energy by equating the sum of the time rate of
change of the energy term and the summation of the advection and conduction
terms where 3 describes the different phases [16, 17, 14]. The rest of the variables
are as follows: S is the saturation, n describes the molar density, Ug is the
internal energy, p, is the rock density, ¢, is the heat capacity of the rock, T is
the temperature in Kelvin, H is the enthalpy, and x is the thermal conductivity.

4 T. Dyngeland

2.4 The Numerical Solution

Common discretisation schemes for fluid flow simulations include variations of
the Finite Element Method (FEM) and the FVM. PFLOTRAN discretises the
reservoir with FVM. This method enforces flux conservation in and out of a
Control Volume (CV) by directly integrating the governing equations and keep-
ing track of the flux passing through the cell surfaces, as shown in Fig. 1. This
gives the advantage of enhancing accuracy through two main approaches: re-
structuring the grid and increasing the number of integration points.

L dera]

(x — Az, y)| (z,y) [z +Az,y)
Ay 4
4‘\'\ Az (ﬁ,\yawf‘*

Fig. 1. Neighbouring fluxes into a CV in a 2D vertex-centred, structured FVM discreti-
sation. Flux is illustrated above by the four arrows representing F (; y—ay), F(z4+Az,y),
F(2—Ac,y), F(2,y+ay), respectively. Their sign determines the direction of the flow.

A general approach for FVM:

1. Discretise the spatial domain with a number of grid points.

2. Integrate the governing equation over the domain.

3. Approximate the resulting integrals numerically.

4. Assemble and solve the discrete algebraic system of equations.

PFLOTRAN uses a first-order, cell-centred FVM scheme with upwind weight-
ing and approximates the integrals numerically with a single integration point
[18]. Today’s industry standard is fully implicit solvers for the time step due to
the stiffness of the equations and the ability to introduce constraints such as
energy balance, faster convergence, and high parallelisability.

Applying the FVM to Eqn. 1 and 2 by using a single integration point per
cell and utilising the Divergence Theorem on the flux integrals yields

At“’jAt — At’ t+ At t+ At
AT av YRR AS - QYA =0. @
ne{neighbours}

Eqn. 3 is then numerically integrated over the time domain using the Backwards
Euler method and is solved with NR at each time step. The overall approach is

Accelerating PFLOTRAN-OGS on GPUs using PETSc 5

the same for the Black Oil and Gas-Water models, with the difference being in
the flux term, F', where the Gas-Water model includes molecular diffusion. The
advective and diffusive fluxes have been combined into a single flux for simplicity.

3 The PFLOTRAN-OGS Simulation Code

Our work uses the PFLOTRAN-OGS application, Parallel Flow and Reactive
Transport, an open-source branch of the original PFLOTRAN code primarily fo-
cusing on CO, storage simulations. PFLOTRAN is a highly parallel FORTRAN
code running on a multi-CPU front end for simulating multi-phase, multicompo-
nent and multiscale subsurface flow and reactive transport in a porous medium
[19, 20]. Parallelism is achieved through domain decomposition to calculate the
flux across subdomains with MPI, exemplified in Fig. 2.

123456

a

b

C

» 4

123 456
a a
b b
C C

Process 1 ~, N A . Process 2
RAFRNAY

Fig. 2. Example of domain decomposition where the domain is split between two pro-
cesses that exchange borders by sending a ghost vector. Each process creates an extra
local column to store the received information.

PFLOTRAN — OGS

Request Cus&om Return, new
nditioner

iteration preco solution

PETSc

Call-back "Request Forward
multigrid step result

hypre

Do multigrid
sweep

Fig. 3. PFLOTRAN-OGS - PETSc - hypre communication structure for the two-stage
CPR preconditioner. Figure based on [12].

6 T. Dyngeland

It incorporates the numerical software suites, PETSc, for solvers, data structures

and communication, and hypre for its Algebraic Multigrid (AMG) precondi-

tioner, BoomerAMG, which can be called through PETSc. Fig. 3 illustrates the

communication paths between PFLOTRAN-OGS, PETSC, and hypre for the

custom preconditioner CPR. CPR is the default preconditioner in PFLOTRAN-

OGS and is a two-stage AMG-based preconditioner that uses Jacobi as a smoother
and a processor-block Jacobi ILU(0) in the second stage (solve stage). Fig. 4 il-

lustrates the V-cycle approach for an AMG.

Relax: Ax =b Relax: Ax =b
Calculate: r*' = Ax*' — b = AeM Correct: x®1 := x*1 — M
Restriction’ 2 Prolongation
Relax: A. efll = rfll Y Relax: A, e’jll = rfll
Calculate: r™2 = Acle’gl2 . ACorrect: elgll = e’le — e',ff
Restriction’, Prolongation
Solve: ACQefQ2 = r’fj

Fig. 4. V-cycle for 3-level multigrid calculations and corresponding grid coarsening
on right. r describes the residual of approximation. The smoother is applied during
the relaxation stage to smooth out high-frequency error field. Restriction operation
interpolates the residual to a coarser version and recursively calls the multigrid method,
making it multilevel. At coarsest grid, the equation can be solved with a direct solver.

4 Integration, Test Setup, and Testing Approach

PFLOTRAN-OGS installs a copy of PETSc 3.12.2, which predates the accel-
erated solvers in PETSc. Thus, to access the accelerated solver, PFLOTRAN-
OGS had to be rebuilt with an updated PETSc version. To take advantage of
PETSc and avoid issues with "PCShell”, we intercepted the custom CPR pre-
conditioner in the ”CPRMake” subroutine and defaulted to the standard PETSc
preconditioners. As of PETSc 3.16, PETSc requires that FORTRAN bindings be
explicitly added since these are no longer added by default. In addition, CUDA
options need to be added to access the accelerated solvers. To enable the acceler-
ated AMG from hypre, hypre had to be configured with unified memory. We tried
this, but our initial results were disappointing and not the focus of our study, so
BoomerAMG was left out as a standalone preconditioner. Table 1 shows the four

Accelerating PFLOTRAN-OGS on GPUs using PETSc 7

versions of PFELOTRAN-OGS, whereas Figure 5 shows the targeted acceleration
and the simulation flow.

Table 1. Overview of the tested versions.

Version Preconditioner Solver Proc. Unit PETSc PFLOTRAN-OGS

original Shell FGMRES CPU 3.12.2 1.6
orig-P3.17 Shell FGMRES CPU 3.17.4 1.6
gpu ILU FGMRES GPU 3.174 1.6
gpu ILU/Block Jacobi FGMRES CPU 3.17.4 1.6
ilu-bjacobi ILU/Block Jacobi FGMRES CPU 3.12.2 1.6

The versions in the above table are described as follows:

— original - baseline version following the PFLOTRAN-OGS installation guide.

— ilu-bjacobi - same as original, but with an interception of CPR.

— orig-P3.17 - CPU version with an updated version of PETSc.

— gpu - version targetting the GPU with an updated version of PETSc and an
interception of CPR. PETSc needs CUDA vectors and matrices to use the
accelerated solver.

|
Strgpi)%ieng L gggﬁggﬁ % Precon.@olve H Fin. ‘

Fig. 5. Simplified overview of a simulation. Flow calculations are run first, followed by
reactive transport at each time step. PETSc includes Time Stepping, Newton-Raphson,
preconditioning, and the linear solver. When the solver has evaluated the Jacobian, the
next NR iteration can start. If NR is within the error bounds, the next time step can
happen. The Solve step, marked in blue, is the accelerated part of our experiments.

We run the simulations on two different test cases, SPE1 [21] and GW1 [12].
SPE1 is a standard oil extractions benchmark from the Society of Petroleum
Engineers. It’s a small 10x10x3 test case, shown in Fig. 6, and functioned as an
integration test for our acceleration [21]. It’s a live oil/dry gas black-oil model
with nearly immobile water. A single producer is controlled by bottom-hole
pressure, and a single injector injects gas into the reservoir initially filled with
undersaturated oil.

The second test case, GW1, is an isothermal CO, storage simulation case
meant to put a heavier load on the GPU. It uses an external CO, database
[22] with sampled characteristics for density, viscosity, enthalpy, and fugacity to
increase the accuracy of the simulation. The domain is a 100x100x10 grid with
the injector located at the southwest corner, as shown in Figure 7.

8 T. Dyngeland

[oo dooo fooo booo hooon

Fig. 6. The SPE1 output at the end of its simulation. The figure shows the cell per-
centage that consists of the gas component. Generated with ResInsight.

[H
HTTHIHH

Fig. 7. Aqueous mole fraction of CO, at the end of the simulation of the GW1 test case.
Generated with ResInsight.

The main specifications of our machine are listed in Table 2. The simulations
were run with one and four MPI processes. We chose one due to the issues
presented in the Introduction and our initial testing showing a massive slowdown
when launching the simulation with acceleration and multiple MPI processes.
The execution time of SPE1 went from roughly 5.2 seconds with one MPI process
to approximately 9.5 hours and 5400 steps with two MPI processes. We used four
MPI processes as an arbitrary power of two that was strictly less than the number
of physical cores on our test system. Scalability studies such as Hammond et al.
[23] dive deeper into the multi-CPU performance of PFLOTRAN, while our
research explores the impact of utilising a GPU.

5 Results

The input deck for both SPE1 and GW1 contains no random variables for the
geophysical properties, meaning the outputs of the simulations produce the same
geophysical result each run within roundoff errors. To verify the correctness
between the different versions, we compared the tables containing the solution
at set time steps from the output files.

Table 2. Specifications of the system used for simulation.

Operating System Ubuntu 20.04.5 LTS
CPU Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz
GPU NVIDIA GeForce RTX 2080 Ti

NVIDIA Driver Version 510.85.02

Accelerating PFLOTRAN-OGS on GPUs using PETSc 9

The performance results reported in the following tables are based on the
arithmetic mean taken over five separate runs, with rounded decimals, to en-
sure a reliable representation. This will reduce the impact of varying underlying
conditions, such as the state of caches or interleaved system tasks. The perfor-
mance measurement is split in two: the efficiency of the different preconditioners
is presented in Table 4, and the execution time of the whole simulation is pre-
sented in Table 3. The columns in the performance of the preconditioner are as
follows: Steps refers to the total number of timesteps, At, required to complete
the simulation within the constraints of the input deck. Newton Iterations repre-
sents the total number of Newton iterations required to solve the system. Linear
Tterations is the total number of iterations it took to approximate the inverse
Jacobian for all Newton iterations. A cut happens when the time step is halved
due to non-convergence with NR.

Table 3. Execution time of the benchmarks.

Time, n=1 [s] Time, n=4 [s] Run

1.8119 5.9724 original

1.7728 1.0103 orig-P3.17

SPE1 1.6451 4.5809 ilu-bjacobi
1.7126 14596 gpu(CPU)

5.1476 Not Run gpu(GPU)
39262 15559 original
384.90 144.71 orig-P3.17

GW1 2710.2 1598.9 ilu-bjacobi
2763.2 14406 gpu(CPU)

1825.0 Not Run gpu(GPU)

Note that from Table 3, only the versions with updated PETSc software re-
duced their execution time with increased processing power on the SPE1 bench-
mark. The execution time was similar across the versions, except for the accel-
erated run, which needed three times as long as the others. The more complex
GW1 benchmark, however, shows the impact of using an efficient preconditioner.
The CPR setup was almost seven times faster than the ILU-based setup and
nearly 4.6 times faster than utilising the multi-threaded GPU with one MPI
process. Note that leveraging the GPU in this test case outperforms the same
preconditioner setup that only utilised the CPU.

Our results in Table 4 show that CPR required about a third of the itera-
tions of ILU and Block Jacobi to solve the linear system while completing the
simulation within a similar time frame (Table 3) on the SPE1 benchmark. CPR
is, therefore, the least likely to hit the max iteration constraint, presumably re-
sulting in fewer cuts on more extensive simulations. The GW1 benchmark further

10 T. Dyngeland

Table 4. Preconditioner metrics for the benchmarks. Columns with multiple precon-
ditioners show the results as ILU/Block Jacobi.

Steps Newton Linear Cuts Run
Iterations Iterations

131 494 2748 0 original

131 494 2748 0 orig-P3.17

SPE1 131 494 7995,/9069 0 ilu-bjacobi

131 494 7995,/9069 0 gpu(CPU)

131 494 7995 0 gpu(GPU)
N 256 1663 0 original

42 256 1663 0 orig-P3.17

GW1 83/90 882/944 70368/75332 2 ilu-bjacobi

83/88 882/921 70368/73492 2 gpu(CPU)

83 882 70368 2 gpu(GPU)

enhances the performance gap between CPR, ILU, and Block Jacobi for the GW1
test case, where CPR needs about half the number of steps to complete the sim-
ulation. Both ILU and Block Jacobi had two cuts, indicating non-convergence
with NR, possibly due to the linear solver not completing. Note the two-step
improvement when running Block Jacobi on the newer PETSc software.

We can see how the different kernels on the gpu version performed by running
the profilers Nvidia Nsight Systems and Nsight Compute. Results in Table 5 and
6 and Fig. 8 and 9 are based on output from these profilers. The CUDA kernels
had mostly identical performance patterns, showing signs of branch divergence
and memory stalls. The test cases GW1 and SPE1 showed the same general be-
haviour, though the grid on SPE1 was too small to fill the available resources on
the device.

Note that from Table 6, only 72 seconds, out of the total 1825 seconds of
execution, was spent doing compute, which means that only about 3.9% of the
total execution time was utilising the GPU. This indicates that very little work
is being sent to the GPU compared to its computational power or that memory
constraints and dependencies are stalling the required work.

Fig. 8 shows that each warp of the axpy kernel is being stalled for 46.8 cycles
waiting for a data dependency, as denoted by Stall Long Scoreboard. In addition,
axpy requires about 57 cycles to issue a single instruction and 58 instructions to
complete an instruction. The dot_kernel required about twice as many cycles,
requiring 107-113 warp cycles per issued instruction.

Furthermore, Fig. 9 shows that the memory bandwidth is highly utilised while
the compute capabilities are mostly idling, indicating that the kernel is memory-
bound. The kernel only used double-precision (FP64) with a peak performance
of 11% and did not utilise the single-precision (FP32) pipeline at all.

Accelerating PFLOTRAN-OGS on GPUs using PETSc 11

Table 5. The first few entries of the CUDA API calls from the GW1 test case. The
leftmost column shows the time in percentage. Total Time, Avg, and StdDev shows the
time in nanoseconds.

Time Total Time Instances Avg StdDev Name

34.8 72,667,956,378 3,001,783 24,208.3 19,449.1 cudaMemcpyAsync

20.7 43,250,746,221 5,848,861 7,394.7 9,414.9 cudaEventSynchronize
20.7 43,154,003,436 220,758 195,481.0 27,111.6 cudaMemcpy

12.7 26,556,879,803 8,837,573 3,006.1 4,810.3 cudaLaunchKernel

7.4 15,517,363,763 14,620,734 1,061.3 4,616.4 cudaEventRecord

1.4 2,859,605,060 2,923,995 978.0 528.2 cudaStreamSynchronize
1.1 2,308,729,302 8,769,036 263.3 183.9 cudaStreamGetCaptureInfo
0.7 1,553,648,018 2,923,012 531.5 267.1 cudaEventQuery

0.2 444,325,063 276 1,609,873.4 20,038,808.5 cudaFree

0.1 115,020,158 198 580,909.9 670,053.6 cudaMallocHost

0.0 84,228,075 198 425,394.3 397,110.0 cudaFreeHost

0.0 52,245,154 3 17,415,051.3 30,159,111.0 cudaStreamCreateWithFlags

Table 6. The first few entries of the kernels launched during the GW1 test case. The
leftmost column shows the time in percentage. Total Time, Avg, and StdDev shows the
time in nanoseconds.

Time Total Time Instances Avg StdDev Name
40.6 29,130,955,334 2,846,130 10,235.3 843.5 dot_kernel
32.4 23,282,160,176 2,918,262 7,978.1 625.5 axpy_kernel_val
16.9 12,113,501,445 2,846,130 4,256.1 361.4 reduce_1Block_kernel
7.2 5,192,775,712 74,066 70,110.1 1,092.4 nrm2 kernel
2.1 1,514,058,114 74,066 20,442.0 501.5 nrm2 _kernel
0.7 494,398,173 72,217 6,846.0 534.9 scal kernel val
0.0 29,950,337 2,816 10,635.8 736.1 iamax_kernel

Warp State (All Cycles)

T T
Stall Branch Resolving 7ﬂ 0.4 -
Stall Drain [] 0.6 B

Stall No Instruction] 0.7 n
Selected *D 1.1 -

Stall IMC Miss [] 2.6 -

Stall Wait || 2.9 -

Stall Long Scoreboard | 46.8}

0 10 20 30 40 50
Cycles per Instruction

Fig. 8. Warp statistics for the axpy kernel from the GW1 test case. The warp states
describe a warp’s readiness or inability to issue its next instruction. The chart shows
the average number of cycles spent in that state per issued instruction.

12 T. Dyngeland

GPU Throughput

T T T T T
Memory | | 71.18 -

Compute 22.73 =
| | |

0 10 20 30 40 50 60 70 80 90 100
Achieved percentage of utilisation

Fig. 9. Scheduler statistics for the axpy kernel from the GW1 test case.

We note that the work done on the GPU is relatively low. This can be traced
back to the operations done on the GPU, which mainly consisted of simple
vector operations. Small amounts of data were sent to the GPU, computed,
and returned. This illustrates our main issue with our acceleration: the data is
not staying on the device, and only a portion is being moved to the GPU for
computing.

The data flow is not available for the threads partly because only the solver
was accelerated. The TOWG module that constructs the Jacobian was still
on the CPU and is part of PFLOTRAN-OGS, not PETSc. PFLOTRAN-OGS
passes PETSc-pointers to the TOWG functions that tell it how to construct the
Jacobian. When SNES needs to solve a linear system involving the Jacobian, it
calls the TOWG module to construct it. It then uses the given preconditioner
and solver to solve the system. This means we have a construction and precon-
ditioning step on the CPU while the solver is run on the GPU. This required
the Jacobian to be copied to the GPU at every iteration.

6 Conclusion

The physical complexity and non-linear nature of multi-phase flow simulations,
including modelling of CO,, demand a lot of computation power.

In this study, we explored GPU acceleration of the production application
PFLOTRAN-OGS by utilising GPU-accelerated functions provided by recent
versions of PETSc. The successful integration of these complex codes was tested
using the SPE1 and GW1 benchmarks, where the latter is also a smaller test case
but uses more relevant numerical equations for CO4 simulations.

Our results showed that only about 72 seconds, out of 1825, were spent do-
ing computing on the GWl benchmark, indicating the GPU was mostly idle. To
alleviate this problem, more of the computations should be moved to the GPU,
for example, the construction of the Jacobian matrix. OpenGoSim has since
implemented this in the upcoming releases of PFLOTRAN-OGS. Our profiled
GPU kernels exhibited a high degree of long scoreboard stalls. This stemmed
from unresolved data dependencies from the memory system. Since the simula-

Accelerating PFLOTRAN-OGS on GPUs using PETSc 13

tion proceeded on both the CPU and the GPU, the data is frequently moved
between them.

To improve the implementation, it would be useful to look into optimising the
use of the memory hierarchy and utilising more advanced features of the CUDA
Programming Model to improve memory characteristics. Finally, since PetscSF,
the communication module in PETSc is exploring NVIDIAs’ NVSHMEM as a
solution to add stream support, this could also be worth further study.

Overall, our work showed that GPUs hold much promise for speeding up
complex multi-phase flow simulations and similar codes. We also illustrated some
challenges of accelerating only parts of the iterative steps that depend on other
numerical methods. Various storage formats for the associated matrices used by
the solvers could also be further explored.

Acknowledgements

Thanks are due to the people at OpenGoSim, especially Dave Ponting and Daniel
Stone, for their invaluable assistance with understanding the code and answer-
ing questions during this study. Many thanks to Prof. Philip S. Ringrose for
his insight and assistance with the geophysical aspect. We would also like to
acknowledge NTNU, including Dept. of Computer Science, for supporting the
HPC-Lab equipment used in our experiments. This work was partially supported
by the SFI Centre for Geophysical Forecasting under RCN grant 309960.

References

[1] Denise Watts. Reservoir simulation models in production forecasting. Ac-
cessed: 2023-05-26. 2016. URL: https://petrowiki.spe.org/Reservoir_
simulation_models_in_production_forecasting.

[2] Atgeirr Flg Rasmussen. OPM Flow in MSO4SC and other stories. Ac-
cessed: 2023-05-26. 2017. URL: https://opm-project.org/wp-content/
uploads/2018/01/MS04SC-0PM-slides-updated.pdf.

[3] Manoj Kumar, Akhilesh Kumar Singh and Akanksha Srivastava. “Vari-
ous Newton-type iterative methods for solving nonlinear equations”. In:
Journal of the Egyptian mathematical society 21.3 (2013), pp. 334-339.

[4] Heeho D Park et al. “Linear and nonlinear solvers for simulating multi-
phase flow within large-scale engineered subsurface systems”. In: Advances
in Water Resources 156 (2021), p. 104029.

[6] Jack Dongarra et al. “MPI-a message-passing interface standard”. In: In-
ternational Journal of Supercomputer Applications and High Performance
Computing 8.3-4 (1994), p. 165.

[6] Junchao Zhang et al. “The PetscSF Scalable Communication Layer”. In:
IEEF Transactions on Parallel and Distributed Systems 33.4 (2022), pp. 842—
853.

[7] Richard Tran Mills et al. “Toward performance-portable PETSc for GPU-
based exascale systems”. In: Parallel Computing 108 (2021), p. 102831.

14 T. Dyngeland

[8] PETSC Development Team. Frequently Asked Questions. Accessed: 2022-
09-08. 2022. URL: https://www.pflotran. org/documentation/user_
guide/how_to/faq.html.

[9] Glenn Edward Hammond. PFLOTRAN: Practical Application of High
Performance Computing to Subsurface Simulation. Tech. rep. Sandia Na-
tional Lab.(SNL-NM), Albuquerque, NM (United States), 2016.

[10] Rajeev Das. “GPUs in subsurface simulation: an investigation”. In: Engi-
neering with Computers 33.4 (2017), pp. 919-934.

[11] Satish Balay et al. PETSc Web page. https://petsc.org/. 2023. URL:
https://petsc.org/.

[12] David Ponting. e-mail. Private Communication. 2022.

[13] John A Trangenstein and John B Bell. “Mathematical structure of the
black-oil model for petroleum reservoir simulation”. In: SIAM Journal on
Applied Mathematics 49.3 (1989), pp. 749-783.

[14] OpenGoSim. The Mathematical Formulation of the Black Oil Model. Ac-
cessed: 2023-05-26. 2023. URL: https://docs.opengosim. com/theory/
mathematical_formulation_of_black_oil/.

[15] OpenGoSim. The Mathematical Formulation of GAS-WATER. Accessed:
2022-08-09. 2021. URL: https://docs.opengosim.com/theory/mathematical _
formulation_of_gw/.

[16] Auli Niemi, Jacob Bear, Jacob Bensabat et al. Geological storage of CO2
in deep saline formations. Vol. 29. Springer, 2017.

[17] Temitope Ajayi, Jorge Salgado Gomes and Achinta Bera. “A review of
CO2 storage in geological formations emphasizing modeling, monitoring
and capacity estimation approaches”. In: Petroleum Science 16.5 (2019),
pp. 1028-1063.

[18] PFLOTRAN. Method of Solution. Accessed: 2023-05-29. 2022. URL: https:
//www.pflotran.org/documentation/theory_guide/appendixB.html.

[19] Peter C. Lichtner et al. PFLOTRAN Web page. Accessed: 2022-08-04.
2020. URL: http://www.pflotran.org.

[20] Peter C. Lichtner et al. PFLOTRAN User Manual. Tech. rep. Accessed:
2022-08-04. 2020. URL: http://documentation.pflotran.org.

[21] Aziz S Odeh. “Comparison of solutions to a three-dimensional black-oil
reservoir simulation problem (includes associated paper 9741)”. In: Journal
of Petroleum Technology 33.01 (1981), pp. 13-25.

[22] OpenGoSim. CO2 Database. Accessed: 2023-10-25. 2023. URL: https://
bit.ly/477aXps.

[23] Glenn E Hammond, Peter C Lichtner and RT Mills. “Evaluating the per-
formance of parallel subsurface simulators: An illustrative example with
PFLOTRAN”. In: Water resources research 50.1 (2014), pp. 208—-228.

