Semantics-Based Version Control for
Feature Model Evolution Plans

Eirik Halvard Seether!, Ingrid Chieh Yu?, and Crystal Chang Din®

! Norsk Rikskringkasting (NRK), Norway
eirik.halvard.950gmail.com
2 University of Oslo, Norway
ingridcy@ifi.uio.no
3 University of Bergen, Norway
crystal.din@uib.no

Abstract. A software product line (SPL) models closely related soft-
ware systems by capitalizing on the high similarity of the products by
organizing them into common and variable parts. To ensure successful
long-term development, it is beneficial to not just capture the current
software product line, but also the planned evolution of the SPL as well.
Evolution planning of an SPL is often a dynamic, changing process due
to changes in product requirements. In addition, planning is typically
a collaborative effort with multiple engineers working separately and
independently of each other. To improve development, their individual
contributions would need to be unified. This can be a complex task,
especially without proper synchronization tools. In this paper, we pro-
vide a semantics-based merge algorithm for evolution plans. Given two
versions of an evolution plan and the common evolution plan they are
derived from, the merge algorithm attempts to merge all the different
changes from both versions. The merge algorithm will be an essential
component in a version control system, allowing several contributors to
unify their versions into a sound evolution plan.

Keywords: Software Product Lines, Software Evolution, Evolution Planning,
Version Control

1 Introduction

A Software Product Line (SPL) is a collection of closely related software prod-
ucts. The different software products leverage the high similarity by explicitly
encoding the common and variable parts [10/22]. As a software development
paradigm, SPLs allow the engineers to model the software’s commonality and
variability to facilitate large-scale reuse. The most common variability model,
feature models (FMs) capture the different aspects and visible characteristics of
a system in terms of features [23]. The feature model organizes the features in
a tree structure to capture the variability of the SPL. Each feature corresponds

2 Eirik Halvard Ssether et al.

to a certain increment in program functionality. The particular variant of the
software product line is defined by a unique combination of features [6].

Due to changes in product requirements, planning for a long-term SPL evolu-
tion is often crucial [BI7/9121]. Product-based evolving SPL was discussed in [11],
where the evolution first happened at the product level, and to be later merged
back into the SPL platform where the core assets reside. Hoff et. al. [I4] per-
formed semantics-based soundness checking on a given evolution plan defined as
a sequence of FMs. The plan captures not only the current FM but all intended
future FMs and checks if the plan will be applicable. However, planning the evo-
lution of an SPL before the product is built often involves multiple engineers and
the plan can be changed over time according to the updates of the product re-
quirements. Hence, enabling several engineers to work in parallel on the changes
of the same evolution plan can be beneficial in handling the dynamic nature
of evolution planning. This means that their individual contributions must be
unified into a sound evolution plan. Generic version control systems, such as Git,
have been extensively used to synchronize the efforts of multiple programmers.
It is a text-based approach and the semantics of the language is not considered
during merging. Naively merging multiple versions of an evolution plan easily
yields inconsistencies and conflicts. The semantic correctness of merging evolu-
tion plans is heavily dependent on time (e.g., which time window a future feature
must become (un)-available) and space (the structures of the FM in the future).
In this work, we investigate merging strategies that respect the structure and
semantics of evolution plans and can detect various merging errors, addressing
the limitations of current tools.

The paper is organized as follows: Section [I.T] defines feature model evolution
plans and their soundness, and Section provides a motivating example. Sec-
tion [2| describes the algorithm of our semantics-based merger for feature model
evolution plans. Finally, we discuss related work and conclude the paper in Sec-
tion Bl

1.1 Feature Model Evolution Plans

Software product line engineering is a discipline for efficiently developing such
families of software systems. Instead of maintaining potentially hundreds of dif-
ferent software variants, these engineering methods have ways of capitalizing
on the similarities and differences between each variant. Variants of a software
product line can be defined in terms of a feature model (FM). These models play
a central role in planning and are also used as a communications tool. A feature
model is a tree structure of features and groups. Features represent a concrete
aspect in an SPL. Features can be mandatory or optional and will contain zero
or more groups. Each group has a set of features and the type of the group
dictates which features in the group can be selected. In an and group, all the
mandatory features have to be chosen, while or groups have to select at least
one feature and alternative groups have to select exactly one feature. Therefore,
groups with types or or alternative must not contain mandatory features. We
use @ to indicate mandatory features, O to indicate optional features, A for and

Semantics-Based Version Control for Feature Model Evolution Plans 3

VendingMachine

®

O o)
Dollar | | Euro

Beverages

O

Fig. 1. Vending machine feature model

group, V for or group, and & for alternative group. Note that this explicit repre-
sentation of group types helps the users compare the group type differences and
see the result of merging. An example of a vending machine feature model can
be found in Fig. [} All the vending machines configured based on this feature
model should provide at least one type of the beverages (Cappuccino, Coffee or
Tea) for the customers to choose from. The features Dollar and Euro are in an
alternative group, indicated by the & symbol. This means either the vending
machine is designed to accept Dollar or is designed to accept Euro (but not
both).

Wellformedness Requirements The wellformedness requirements of a feature
model include not only the structural restrictions mentioned above but also the
following list of constraints. These wellformedness requirements define what is
considered to be a sound feature model: (1) feature model has exactly one root
feature, (2) the root feature must be mandatory, (3) each feature has exactly one
unique name, variation type and (potentially empty) collection of subgroups, (4)
features are organized in groups that have exactly one variation type, (5) each
feature, except for the root feature, must be part of exactly one group, and (6)
each group must have exactly one parent feature.

Definition 1 (A Sound Feature Model Evolution Plan). A paradoz is a
violation of the wellformedness requirements of feature models. A feature model
evolution plan, also called an evolution plan, can be presented as a sequence
of feature models, each assoctates with a time point. An evolution plan without
paradoxes is sound [T7]].

1.2 A Motivating Example

We exemplify our merger on an example of a vending machine software product
line. The evolution plans we present capture the planned changes of common
vending machine features, such as different kinds of beverages, different types of
currency, different sizes of cups, etc. The input to our merger contains a base
evolution plan (shown in Fig. , and two new evolution plans, each a modified
version of the base one.

4 Eirik Halvard Ssether et al.

Time 0

RootFeature

Time 2

VendingMachine

Time 1

VendingMachine

Beverages

Time 3

VendingMachine

O &)
Normal || Soy Milk || Lactose Free

Fig. 2. Vending machine - base evolution plan

The base evolution plan in Fig. [2| consists of four distinct time points. Each
time point is associated with a feature model and represents a milestone in the
development of the vending machine. At Time 1, we introduce a mandatory
Beverages feature, which means a vending machine has to provide the users an
option of a beverage. Due to its or-group, a vending machine can choose if it
wants to provide tea, coffee, none, or both. At Time 2, a collection of features
and groups are added which provides options for cup sizes of beverages. The Size
feature is optional, which means a vending machine does not have to provide
different sizes of cups. If the Size feature is chosen, the vending machine has to
supply large, small and regular cups. At Time 3, the Milk feature is introduced. If
a vending machine chooses to provide milk, it can choose to provide zero or more
of the features such as Normal, Soy Milk or Lactose Free. The base evolution plan
represented the original planned development of the vending machine software
product line. Since requirements often change, the plan can change. The changed
plan is encoded as a completely new sequence of FMs. Due to the limitation of
space, we describe how the updated evolution plans look in text rather than
visualizing them in this paper.

The version of contributor 1 with respect to the base version At Time 1, the
feature model looks the same as the one in the base plan at Time 1, except
the and group of VendingMachine contains a new mandatory feature Currency,
which has an alternative group containing two optional features Dollar and Euro.
At Time 2, the feature model looks the same as the one in the base plan at Time
2, except the and group of the Size feature now contains only Large and Regular.
In addition, the and group of VendingMachine contains a new mandatory feature

Semantics-Based Version Control for Feature Model Evolution Plans 5

Time 0

Time 1 RootFeature Time 2
VendingMachine VendingMachine

®

Dollar | | Euro Large | | Regular

Dollar | | Euro

Time 3

VendingMachine

e} O
e}
Cappuccino | | Coffee || Tea Dollar | | Euro Large | | Regular Milk Type

Beverages Beverages

o)
Coffee

O

Cappuccino

Fig. 3. Vending machine - the resulting evolution plan

Currency, which has an alternative group containing two optional features Dollar
and Euro. At Time 3, the feature model looks the same as the one in the base
plan at Time 3, except the and group of the Size feature now contains only Large
and Regular, the Soy Milk feature is removed, the group type under the Milk
Type feature is changed to and, and the feature types of Normal and Lactose
Free are both changed to mandatory. Besides, the and group of VendingMachine
contains a new mandatory feature Currency, which has an alternative group
containing two optional features Dollar and Euro.

The wversion of contributor 2 with respect to the base version The feature
models at Time 1~3 look the same as the ones in the base plan at Time 1~3,
respectively, except they all have a new optional Cappuccino feature in their
Beverages group. In addition, at Time 3, the group type under the Milk Type
feature is changed to and, and the feature types of Normal and Lactose Free are
both changed to mandatory.

The Resulting Evolution Plan Given these three evolution plans, our merger
will detect the changes made in each of the new versions at each of the time point
with respect to the base evolution plan and check if the changes are unifiable at
each time point, i.e., if soundness of feature models is preserved after merging
at each time point, respectively. In case paradoxes are detected, our merger will
throw out error messages explaining the reason for failing and immediately stop
the merging process. In this vending machine example, these three versions of
evolution plans are unifiable. The final merged version is shown in Fig. [3]

6 Eirik Halvard Ssether et al.

2 A Soundness-Preserving Merger for Evolution Plans

In this section, we present the algorithm of our merger for evolution plans. The
merge algorithm contains several distinct phases as illustrated in Fig. [4] Version 1
and version 2 represent inputs from two contributors, respectively. The algorithm
contains the transformation of the evolution plan representations, as well as the
detection of potential conflicts that could occur during the merging process. We
will explain each phase of the algorithm one by one.

2.1 Phase 1: Construct an Intermediate Representation for Merging

The inputs to the algorithm are three sound evolution plans: the base evolution
plan and two other re-planned versions from the collaborators. Each collaborator
needs to ensure the soundness of their own evolution plan before merging so that
we can leverage the soundness [I4] of the input in the design of the algorithm.
These three evolution plans inputted to the merger are defined as a sequence
of tree-based FMs as described in Section [[Il This tree structure works well
for capturing the essence of evolution plans and is closest to what users would
see and interact with. However, before merging the evolution plans, we need to
calculate (1) the modifications between two subsequent FMs in an evolution plan,
and (2) the changes between the evolution plans that will be merged at each time
point. The tree-based FM requires recursively traversing two subsequent trees in
an evolution plan to detect what modifications have been made between the two.
It also makes the later stage of merging and unifying several plans challenging.
A more suitable feature model representation is required.

The first phase of the merge algorithm, shown in Fig. [is performed by
the flattenEvolutionPlan function, which converts the evolution plan from
the TreeUserEvolutionPlan format to the FlatUserEvolutionPlan format. The
representation of the transformed evolution plan is still a list of FMs. However,
we transform the FMs from the tree structure to a map of features and a map
of groups indexed by the feature IDs and group IDs, respectively. The mapping
entry of a feature includes the feature name, feature type, and the ID of the group
it belongs to. The mapping entry of a group includes the group name, group type,
and the ID of the feature it belongs to. Since there is no parent-child hierarchy
in a mapping, we say the FM structures are flattened. The flattened structure
leverages the unique IDs to allow lookup based on IDs. Adding or removing a
feature or group is rather simple and requires only adding or removing an entry
in the mapping. Modifying the type of a feature or a group requires simply
a lookup based on the ID, and then changing the fields of the corresponding
mapping entry. Moving entire subtrees becomes straightforward with the use
of mapping structures. It requires updating only the group field of the feature
mapping entry.

2.2 Phase 2: Derive Modifications in a Plan

The goal of this phase of the algorithm is to make the modifications between sub-
sequent FMs in an evolution plan explicit. The function deriveModifications

Semantics-Based Version Control for Feature Model Evolution Plans

base

version 1 j rversion 2

'

'
| :: TreeUserEvolutionPlan H

""" [

[flattenEvolutionPlan]

' FlatUserEvolutionPlan H

NN

[deriveModifications]

FlatModificationEvolutionPlan |

Pl l _______ l _______ l _____

mergePlan

Merge result Error

Fig. 4. Outline of the merge algorithm.

8 Eirik Halvard Ssether et al.

Previous Feature Model : Current Feature Model

Features
("f1", (-, Mandatory, "F1"))

("£2", ("gl", Mandatory, "F2"))

Features

("f1", (-, Mandatory, "F1"))
("£3", ("gl", Optional, "F3"))

Groups Groups

("gi", ("f1", And)) ("gi", ("f1", 0r))

Features

("f2", FeatureRemove)
("£3", FeatureAdd ("gl", Optional, "F3")

Groups

("gl", GroupModification - (GroupTypeModification Or))

Fig. 5. The modifications between two subsequent FMs in an evolution plan.

transforms an evolution plan from the FlatUserEvolutionPlan representation to
the FlatModificationEvolutionPlan representation, which keeps the initial FM
but replaces each of the remaining FMs in the plan to a set of modifications
necessary to transform the previous FM into the next one.

Fig. [p| shows an example of the modifications between two FMs. The top
left represents the mapping of the previous FM and the top right represents the
mapping of the current one. Compare the differences between the mappings, we
can observe three modifications: (1) the mapping of feature "£2" is removed, (2)
a new mapping for feature "£3" is added, and (3) the group type in the entry
of mapping "g1" is modified from And to Or. The newly added feature mapping
entry expresses that the feature named "F3" is added to group "gl1", and its
feature type is optional. The bottom of Fig. [f] shows the three modifications
necessary to transform from the previous FM into the current one. With the
FlatModificationEvolutionPlan representation, the current FM on the top right
corner of Fig.[5]will be replaced with the set of modifications listed at the bottom.

2.3 Phase 3: Detect Changes Between Versions

Before attempting to merge the new versions into the base version, we have to
detect what changes have been made in each of the new versions with respect
to the base one at each time point. In order to explain it clearly, let us highlight
the difference between modifications and changes in this context again. With
modifications, we refer to the differences between two subsequent FMs in an
evolution plan as discussed in Section The modifications are a part of the

Semantics-Based Version Control for Feature Model Evolution Plans 9

evolution plan and have nothing to do with the changes between different ver-
sions. However, changes in a new evolution plan represent how the base evolution
plan should be revised. Changes are not about adding, removing, or changing
features and groups, but rather adding, removing, or changing the modifications.
These changes are performed at the meta-level, allowing us to represent changes
to the modifications. This distinction is subtle yet an important factor. If one of
the new versions tries to remove a feature at a time point that did not exist in
the modifications of the base version, this is represented as a change added to the
plan. This is because the feature removal is represented as a new modification
in the evolution plan, and we define this as “add” a new modification, which is
the feature removal.

In some cases, one of the new versions might introduce new time points. To
handle this, we collect the time points from all three inputted evolution plans
and add an empty list of modifications to each time point that was absent in a
given evolution plan so that the merging can be performed per time point.

The result of detecting the changes may have three different outcomes: There
might be No Change, i.e., a modification existed in the base version and was
not changed or removed in either version. It can be Change In One, i.e., a
modification changed in one of the new versions. This includes three scenarios:
(1) a modification did not exist in the base and was added in the new version,
(2) a modification existed in the base but was removed in the new version, and
(3) a modification from the base was changed to another modification in the new
version. It can also be Change In Both, i.e., a modification changed in both
versions. Similar to Changed In One, this includes changes where a modification
existed in the base and modifications that did not exist in the base.

To clarify the concept of detecting changes between versions, we present an
example in Fig. [6] Version 1 Evolution Plan includes two changes to the base
evolution plan: (1) at Time 1, add an optional Feature 4 to the and group, (2)
at Time 2, there was originally scheduled a modification of group type from
and to or, but this version revises the modification to create an alternative
group instead. Version 2 Ewvolution Plan includes only one change to the base
evolution plan. At Time 2, it was originally scheduled a renaming of the root
feature. However, in this version, the scheduled renaming is removed.

2.4 Phase 4: Merge Intended Changes

Once the changes have been detected between versions, the base evolution plan
is ready to be integrated with all the changes from version 1 and version 2, if
soundness is preserved. While merging the evolution plans, it is important to
ensure soundness at each time point, i.e., the merged plan should follow the
wellformedness requirements of an evolution plan. Even though all three given
evolution plans are sound, merging all changes from different versions might still
yield various conflicts, i.e., paradoxes. This phase of the algorithm is performed
by the mergePlan, integrateModifications, and checkModifications func-
tions. These three functions together ensure the soundness of a merged evolu-
tion plan by detecting any existing Merge Conflicts, Local Conflicts, and

10 Eirik Halvard Ssether et al.

Base Evolution Plan

__

Feature 2 Feature 3 Feature 2

Version 1 Evolution Plan

s
! | Feature 2 Feature 3

Feature 4

Version 2 Evolution Plan

Feature 1 | |

i | Feature 2 Feature 3 | |

Fig. 6. An example highlights the changes in Version 1 and Version 2 with respect to
the Base Evolution Plan in blue.

O

Global Conflicts in the merged plan. Note that there might be several changes
of modifications from different versions at each time point. Some conflicts can
be detected immediately and others can only be detected once all the changes
of modifications belonging to the same time point have been applied. We will
discuss them in detail below.

Detecting Merge Conflicts A merge conflict is raised due to diverging
changes for a specific feature or group. For example, a merge conflict could
happen if one version tries to remove a feature, while the other tries to change the
type of a feature. It could also happen if there originally existed a modification in
the base version, and one of the derived versions tries to change the modification,
while the other tries to remove the modification. The merge conflicts can thus

Semantics-Based Version Control for Feature Model Evolution Plans 11

be reported immediately without checking the rest of the modifications at the
time point.

Detecting Local Conflicts Local conflicts occur when we try to alter or
remove features or groups that do not exist, or when we try to add features
that already ezist at the same time points in different evolution plans. The
local conflicts can thus be reported immediately without checking the rest of the
modifications at the time point.

Detecting Global Conflicts While both merge conflicts and local conflicts are
specific to the single feature or group at hand and can be raised without knowing
what the rest of the modifications at the same time point are, some of the mod-
ifications rely on knowing the state of other features or groups, which prevents
us from reporting these kinds of conflicts immediately. For example, adding fea-
tures to parents that do not exist, removing groups that have children, or moving
features so cycles are formed. Other violations of well-formedness can be if we
change the type of a feature to something incompatible with its group type.
However, detecting such global conflicts relies on we have already applied
all the remaining modifications that belong to the same time point. For this
reason, we postpone the soundness checking until after every modification at a
time point has been included. Each modification yields a set of dependencies
depending on the potential conflicts (Table . We generate a list of affected
constraints we have to check for a given time point. A global conflict is raised if
one or more affected constraints are not met.

When merging fails, our tool implementation provides information specific
to the conflict, including the time point for the occurrence and the cause of the
failing. A merged evolution plan from three sound versions remains sound if no
conflicts are detected by the merger.

2.5 Phase 5: Unflatten the Representation

If no conflicts are detected, a successfully merged evolution plan will be the
output of the computation. The very last phase of the merge algorithm exe-
cutes the unflattenEvolutionPlan function, which converts the flattened FMs
back to the original tree-based representation for visualization. The final merged
evolution plan for the example in Fig. [6]is presented in Fig. [7]

3 Related Work and Conclusion

Several approaches and tools for planning the evolution of an SPL exist to this
day, but none of them investigated merging strategies for different versions of
updated evolution plans. DeltaEcore is a tool suite relying on Hyper-Feature
Models (HFMs) and evolution delta modules for the integrated management of
variability in space and time in SPLs [25]. DarwinSPL is a tool suite for modeling
evolving context-sensitive SPLs by extending DeltaEcore’s HFMs [20]. EvoFM

12 Eirik Halvard Ssether et al.

Modification Type |Affected Constraints
Parent GroupExists
Add Feature UniqueName
FeaturelsWellFormed
Remove Feature NoChildGroups
Parent GroupExists
Modify Feature Parent| NoCycleFromFeature
FeaturelsWellFormed
Modify Feature Type | FeaturelsWellFormed
Modify Feature Name UniqueName
Add Group ParentFeatureExists
Remove Group NoChildFeatures
. ParentFeatureExists
Modify Group Parent NoCycleFromGroup
Modify Group Type | GrouplsWellFormed

Table 1. Affected constraints

Merged Evolution Plan

A

e
! | Feature 2 Feature 3

O
O

Fig. 7. A visualization of the merged result

supports long-term feature-oriented planning and analysis of evolution plans [7].
FORCE [13], Feature-Driven Versioning [19], and SuperMod [24] also support
evolution planning of SPLs. A term rewriting system for soundness checking for
evolution plans was introduced and integrated in [I4].

Model-driven engineering (MDE) and graphical domain-specific languages
are related research areas. In MDE, models are the primary artifacts of the
software development process. There exists abundant work on model evolution
and version control. In the survey [26] one can find several model comparison
approaches and applications. Model differencing include calculation of matching
model elements, representation of differences, and visualization of the differences.
Works that describe how to compute the difference of models include EMF Com-
pare [12], DSMDiff [I7], and [I8] just to mention a few. Difference calculation
is often divided into phases: to detect model mappings, where all the elements
of the two input models are compared through metrics that are static identity-
based, signature-based, similarity-based [12], or language-specific [29], and to de-

Semantics-Based Version Control for Feature Model Evolution Plans 13

termine model differences, where all the additions, deletions and changes are de-
tected. Kolovos et al. [16] survey approaches for model matching. Several repos-
itories of version control systems for models have been proposed. Survey [4]
gives state-of-the-art versioning systems dedicated to modeling artifacts and
some solutions also provide resolutions for model conflicts, e.g., in [8]. EMFS-
tore [I5] and CDO [I] support collaborative editing and versioning of models and
are model repositories for EMF. Other commercial modeling tools include [213].
What makes our work immediately different is that the objects to be merged
are evolution plans and not single models. The version control system needs to
take into account the temporal aspect and work with multiple models that are
involved when planning evolution.

This work introduced a soundness-preserving merger for feature model evolu-
tion plans. We leverage the soundness of the input in the design of the algorithm:
the base evolution plan and two other re-planned versions from the contributors
are given to the algorithm. These plans are merged and soundness is preserved
in the resulting plan if no conflict exists. A tool implementation based on the
described algorithm has been implemented in Haskell and evolution plans can
be visualized [27)28]. We believe such a merge tool can give engineers a better
toolbox for dealing with the parallel development of evolution plans. We leave
the evaluation of the algorithm and its application to real-world scenarios for
future work.

References

1. CDO Model Repository. https://eclipse.dev/cdo/.

2. LabView. https://www.ni.com/en-us/support/documentation/supplemental/
21/managing-labview-vi-and-application-revision-history.html.

3. MetaEdit+. https://www.metacase.com/news/smart_model_versioning.html.

4. K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model versioning ap-
proaches. Int. J. Web Inf. Syst., 5:271-304, 2009.

5. V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. J. P. de Lucena.
Refactoring product lines. In Generative Programming and Component Engineer-
ing, 5th Int. Conf., pages 201-210. ACM, 2006.

6. D. S. Batory. Feature Models, Grammars, and Propositional Formulas. In Software
Product Lines, 9th Int. Conf., SPLC 2005, Rennes, France, Proc., volume 3714 of
LNCS, pages 7-20. Springer, 2005.

7. G. Botterweck, A. Pleuss, D. Dhungana, A. Polzer, and S. Kowalewski. EvoFM:
feature-driven planning of product-line evolution. In Proc. 2010 ICSE Workshop
Product Line Approaches in Software Engineering, pages 24-31. ACM, 2010.

8. P. Brosch, M. Seidl, and G. Kappel. A Recommender for Conflict Resolution
Support in Optimistic Model Versioning. New York, NY, USA, 2010. Assoc. for
Computing Machinery.

9. J. Biirdek, T. Kehrer, M. Lochau, D. Reuling, U. Kelter, and A. Schiirr. Reasoning
about Product-Line Evolution using Complex Feature Model Differences. In Soft-
ware Engineering 2017, Fachtagung des GI-Fachbereichs Softwaretechnik, volume
P-267 of LNI, pages 67-68. GI, 2017.

10. P. Clements and L. M. Northrop. Software product lines - practices and patterns.
SEI series in software engineering. Addison-Wesley, 2002.

https://eclipse.dev/cdo/
https://www.ni.com/en-us/support/documentation/supplemental/21/ managing-labview-vi-and-application-revision-history.html
https://www.ni.com/en-us/support/documentation/supplemental/21/ managing-labview-vi-and-application-revision-history.html
https://www.metacase.com/news/smart_model_versioning.html

14

11

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Eirik Halvard Ssether et al.

O. Diaz, L. Montalvillo, R. Medeiros, M. Azanza, and T. Fogdal. Visualizing the
customization endeavor in product-based-evolving software product lines: a case
of action design research. Empir. Softw. Eng., 27(3):75, 2022.

Eclipse. EMF Compare. https://eclipse.dev/emf/compare/.

D. Hinterreiter, H. Prahofer, L. Linsbauer, P. Griinbacher, F. Reisinger, and
A. Egyed. Feature-Oriented Evolution of Automation Software Systems in In-
dustrial Software Ecosystems. In 23rd IEEFE Int. Conf. on Emerging Technologies
and Factory Automation, pages 107-114. IEEE, 2018.

A. Hoff, M. Nieke, C. Seidl, E. H. Seether, I. S. Motzfeldt, C. C. Din, I. C. Yu, and
1. Schaefer. Consistency-preserving evolution planning on feature models. In 24th
ACM Int. Systems and Software Product Line Conf., pages 8:1-8:12. ACM, 2020.
M. Koegel and J. Helming. EMFStore: A Model Repository for EMF Models. New
York, NY, USA, 2010. Assoc. for Computing Machinery.

D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige. Different Models
for Model Matching: An Analysis of Approaches to Support Model Differencing.
USA, 2009. IEEE Computer Society.

Y. Lin, J. Gray, and F. Jouault. DSMDiff: A differentiation tool for domain-specific
models. Furopean Journal of Information Systems, 16:349-361, 08 2007.

S. Maoz and J. O. Ringert. A Framework for Relating Syntactic and Semantic
Model Differences. 17(3), 2018.

R. Mitschke and M. Eichberg. Supporting the Evolution of Software Product Lines.
In ECMDA Traceability Workshop, 2008.

M. Nieke, G. Engel, and C. Seidl. DarwinSPL: an integrated tool suite for mod-
eling evolving context-aware software product lines. In Proc. 11th Int. Workshop
Variability Modelling of Software-intensive Systems, pages 92-99. ACM, 2017.

A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski. Model-
driven support for product line evolution on feature level. J. Syst. Softw.,
85(10):2261-2274, 2012.

K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, 2005.

I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck,
A. Pathak, S. Trujillo, and K. Villela. Software diversity: state of the art and
perspectives. Int. J. Softw. Tools Technol. Transf., 14(5):477-495, 2012.

F. Schwégerl. Version Control and Product Lines in Model-Driven Software Engi-
neering. PhD thesis, University of Bayreuth, Germany, 2018.

C. Seidl, I. Schaefer, and U. Amann. DeltaEcore - A Model-Based Delta Language
Generation Framework. In Modellierung 2014, Wien, Osterreich, volume P-225 of
LNI, pages 81-96. GI, 2014.

M. Stephan and J. R. Cordy. A Survey of Model Comparison Approaches and
Applications. In Proc. 1st Int. Conf. Model-Driven Engineering and Software De-
velopment, pages 265-277. SciTePress, 2013.

E. H. Saether. Three-Way Semantic Merge for Feature Model Evolution Plans.
Master’s thesis, University of Oslo, 2021. http://urn.nb.no/URN:NBN:no-89666.
E. H. Saether, I. C. Yu, and C. C. Din. Software artefact for: "Semantics-Based
Version Control for Feature Model Evolution Plans", Ssether et al., NIK 2023,
2023. https://doi.org/10.5281/zenodo.10044858, original source at: https://
github.com/eirikhalvard/master-thesis|

Z. Xing and E. Stroulia. UMLDIiff: An Algorithm for Object-Oriented Design
Differencing. New York, NY, USA, 2005. Assoc. for Computing Machinery.

https://eclipse.dev/emf/compare/
http://urn.nb.no/URN:NBN:no-89666
https://doi.org/10.5281/zenodo.10044858
https://github.com/eirikhalvard/master-thesis
https://github.com/eirikhalvard/master-thesis

	Semantics-Based Version Control for Feature Model Evolution Plans

