
Linear MIM-width of the Square of Trees

Svein Høgemo

University of Bergen

Abstract. Graph parameters measure the amount of structure (or lack
thereof) in a graph that makes it amenable to being decomposed in a
way that facilitates dynamic programming. Graph decompositions and
their associated parameters are important both in practice (as a tool for
designing robust algorithms for NP-hard problems) and in theory (relat-
ing large classes of problems to the graphs on which they are solvable in
polynomial time).
Linear MIM-width is a variant of the graph parameter MIM-width, in-
troduced by Vatshelle [24]. MIM-width is a parameter that is constant
for many classes of graphs. Most graph classes which have been shown to
have constant MIM-width also have constant linear MIM-width. How-
ever, computing the (linear) MIM-width of graphs, or showing that it
is hard, has proven to be a huge challenge. To date, the only graph
class with unbounded linear MIM-width, whose linear MIM-width can
be computed in polynomial time, is the trees [12]. In this follow-up, we
show that for any tree T with linear MIM-width k, the linear MIM-width
of its square T 2 always lies between k and 2k, and that these bounds are
tight for all k.1

1 Introduction

Divide-and-conquer is a tried and true strategy for obtaining fast algorithms. In
addition to its classical use for polynomial-time algorithms, it is also a valuable
tool for designing parameterized algorithms for NP-hard problems. For problems
on graphs, this strategy often manifests in the form of graph decompositions.

A graph decomposition is a tree structure that relates to the graph in such
a way that one can solve any of a number of problems on the graph by execut-
ing dynamical programming on the decomposition. However, not all graphs will
be equally suitable for a given decomposition (nor should we expect them to
be, as we assume NP-hard problems are hard to solve on some instances). The
width of a decomposition is a number k that measures how badly a graph fits
the decomposition – the lower the k, the better the structure of the graph fits
the particular decomposition technique. The goal is to solve the problem in time
polynomial in the size of the graph, but exponential in k. The arguably most
famous decomposition technique, tree decomposition, and its associated parame-
ter treewidth works well on many classes of sparse graphs – trees have treewidth
1, and in general graphs with low treewidth have a “tree-like” structure. Due to

1 This research is supported by a PhD grant from UiB.

the large role treewidth has played in structural graph theory, and its usefulness
in designing algorithms for a plethora of problems [10, 19, 20, 22], the problem of
computing tree decompositions of decent treewidth has received great attention,
and several algorithms, both exact and approximating, have been proposed, with
varying usability in practice [4, 8, 9, 17]. The different uses of treewidth are well
explained in Bodlaender’s series of surveys on the matter [5–7, 18].

Since tree decomposition only works well for sparse graphs, several other
decomposition techniques have been proposed. One quite versatile technique
is branch decomposition, where the vertices (or in some cases, the edges) of the
graph are mapped to the leaves of a tree of maximum degree 3. Each edge in this
tree corresponds to a cut of the graph (defined by which side of the edge the leaf
corresponding to each vertex lies on), and there have been defined several width
measures on these decompositions, based on functions on the cuts. One such
width measure that has garnered significant theoretical interest is MIM-width.
“MIM” stands for “maximum induced matching”, and MIM-width measures
the biggest induced matching in any of the bipartite graphs induced by the
cuts defined by the decomposition. MIM-width was introduced by Vatshelle [24]
where its strongness and algorithmic properties were expounded.

The significance of MIM-width lies in how veritably strong it is. Several im-
portant graph classes have constant MIM-width, among them interval graphs
and circular arc graphs, permutation graphs, complements of graphs with con-
stant degeneracy, graphs with constant treewidth [24], and powers of graphs with
constant MIM-width [14]. The trade-off is a worse dependence on the parameter
than in most other types of decomposition – typical running times of algorithms
parameterized by MIM-width are nO(k) or nO(k2) for graphs with MIM-width
k, given a decomposition (see e.g. the algorithms given in [3, 15, 16]). In other
words, for any constant k a polynomial time algorithm exists, but the larger k is,
the higher the degree of the polynomial is (this is called an XP algorithm). Still,
obtaining an algorithm parameterized by MIM-width means that the problem
is solvable in polynomial time for many graph classes.

For all width measures of branch decompositions, one can define a “linear”
variant, where the allowed decompositions are restricted to linear layouts of the
graph. Linear graph parameters are interesting, both as a sort of test-bed for
proving things about the decompositions (as they are easier to reason about),
but also because algorithms that work on linear layouts are faster in practice
than algorithms that work on trees. Furthermore, MIM-width and linear MIM-
width have the peculiar relationship that most graph classes that have constant
MIM-width also have constant linear MIM-width. In fact, of the graph classes
that have unbounded treewidth or clique-width, only the class of leaf powers
and some of its subclasses, such as the so-called rooted directed path graphs, are
known to have bounded MIM-width and unbounded linear MIM-width [13].

Without doubt, the greatest challenge regarding (linear) MIM-width is the
problem of computing it on arbitrary graphs. Several hardness results exist: In
[23], it was proved that it is at least as hard to compute the (linear) MIM-width
of a graph, or an optimal branch decomposition, as it is to compute the MIM of

a graph. Maximal induced matching is itself a hard problem in several ways; in
addition to being NP-complete, it is hard to approximate to a constant factor in
polynomial time [11], and also it is hard for the parameterized complexity class
W [1], meaning that we likely will never find any algorithm that decides whether
an arbitrary graph has a maximal induced matching of size at least k in time
bounded by f(k) · nO(1) [21]. All of these barriers carry over to the problem of
computing (linear) MIM-width. This is coupled with a lack of positive results:
To date, no algorithm has been found that in polynomial time decides whether
an arbitrary graph has (linear) MIM-width at most k, for any constant k. Even
for (linear) MIM-width 1, no algorithm has been found that in polynomial time
outputs a decomposition of any constant width, or concludes that the graph has
width > 1. It is not implausible that recognizing graphs with (linear) MIM-width
k is NP-complete for some (small) k, especially in light of a recent, similar result
regarding twin-width, another strong parameter [2]. If this turns out to be true,
it would naturally be a huge disadvantage, although not taking away from its
proven usefulness for the many graph classes with bounded MIM-width.

Regarding positive results, for all graph classes with proven bounded (linear)
MIM-width, there is an easy way of finding a good layout or decomposition; for
example, an optimal layout of an interval graph is found by ordering the vertices
in order of the left endpoints of their respective intervals [1, 24]. Beware that
for graph classes with a higher bound than 1, the decompositions may not be
optimal, they are only guaranteed to be bounded. To date, the only polynomial-
time algorithm for computing (linear) MIM-width on a class of unbounded width
is the one given in [12] for the linear MIM-width of trees (the MIM-width of
trees is 1). On the class of trees, the linear MIM-width is at most logarithmic
and within a constant factor of their pathwidth (the linear variant of treewidth).

This discrepancy between the use of MIM-width in designing robust graph
algorithms and how little we know about its computability, makes it hard to
gauge the exact potential of this parameter. Studying the linear MIM-width of
simple graph classes, like the squares of trees, can help illuminating what makes
the problem difficult to solve in the general case, and find out when the structural
tools we have for analysing trees break down. Indeed, if deciding (linear) MIM-
width ≤ k for some constant k actually proves NP-complete, it will likely be
proved by restricting the problem to some graph class on which the problem is
also NP-complete. This is not unusual, as restricting the problem to a special
case makes reductions easier to find (see e.g. the classic result for the the NP-
completeness of chordal completion [26]).

Following the result in [14], any power of a graph Gk has at most twice the
(linear) MIM-width of the original graph G. Therefore powers of trees have at
most logarithmic linear MIM-width. This is in stark contrast to e.g. pathwidth,
since the square of a star is a complete graph and therefore has linear pathwidth.
Furthermore, for any graph G, Gdiam(G) is a complete graph and therefore has
linear MIM-width 1. Squares of trees are a simple graph class that nevertheless
have more going on than trees themselves, and therefore serves as a natural class
to extend the research from [12] in.

The rest of the paper is organized as follows: Section 2 introduces the notation
necessary to follow the paper; Section 3 contains the main result and the previous
results that we use in order to prove the main result; and finally, Section 4
concludes with a short discussion on its implications (if any).

2 Preliminaries

All graphs considered are finite and simple. V (G) and E(G) denotes the sets of
vertices and edges in the graph G, respectively.

NG(v) denotes the open neighborhood of the vertex v in the graph G, i.e. the
set of vertices with which v shares an edge. NG[v] denotes the closed neighbor-
hood, i.e. NG(v)∪{v}. For a set of vertices S ⊆ V (G), NG[S] =

⋃
v∈S NG[v], and

NG(S) = NG[S]\S. Subscripts are omitted whenever G is obvious from context.
Let S, T be two disjoint subsets of V (G). G[S, T] is the bipartite graph in-

duced by S and T , i.e. the subgraph consisting of all edges with one endpoint in
S and the other in T .

If T is a rooted tree, the notation T [v] for some node v refers to the subtree
rooted in v, i.e. the rooted tree consisting of v (as root) and all its descendants.

The distance between two vertices u, v ∈ V (G) is the length of a shortest
path between u and v. Given two subgraphs H,H ′ ⊆ G, the distance between
H and H ′ is the minimum distance between any vertex in H and any vertex
in H ′. For example, the distance between H and H ′ is at least 1 iff H and H ′

are disjoint. The diameter of G, diam(G), is the length of the longest distance
between any two vertices in G.

Definition 1 (graph power). Given a graph G and some integer k ≥ 1, the
k-th power of G, denoted Gk, is the unique graph that has V (Gk) = V (G), and
the additional property that for any two vertices u, v, u and v are adjacent in Gk

if and only if they have distance at most k in G. If we consider every vertex in G
“adjacent to” itself, we have that G1 = G, and furthermore, given the adjacency
matrix of G as a boolean matrix A, the adjacency matrix of Gk is given by Ak.

We define the square of G as G2, the second power of G.

Definition 2 (linear layout). A linear layout of a graph G is a bijection σ :
V (G) → {1, . . . , |V (G)|}, i.e. a total order on the vertices of G. We will routinely
use vi as a shorthand for σ−1(i) when G and σ are given.

The next three definitions are found in [12]:

Definition 3 (maximum induced matching, MIM-width of a layout).
For a graph G on n vertices, we denote by mim(G) the size of its maximum
induced matching (MIM), the largest number of edges whose endpoints induce
a matching. Let σ be a linear layout of G. For any index 1 ≤ i < n we have
a subset of V (G), V σ

i = {v1, . . . , vi}. We call the partition (V σ
i , V σ

i) a cut of
G. The maximum induced matching width, or MIM-width of G under layout
σ is denoted mw(σ,G), and is defined as the maximum, over all 1 ≤ i < n, of
mim(G[V σ

i , V σ
i]).

Fig. 1. The ”house graph” G, and two linear layouts. In the top layout, the edges bd
and ce (colored red) induce a matching in the graph G[{a, b, c}, {d, e}], therefore this
layout has MIM-width 2. Note that these edges do not induce a matching in G itself,
since there are edges bc and de going between them. In the bottom layout, there are
no two edges that induce a matching at any cut, therefore this layout has MIM-width
1. For example, in the cut G[{a, b, e}, {c, d}], the edges bd and ce are present, but in
this case also bc and de cross the cut, so they do not form a matching here.

a

b c

d e

a b c d e

a b e c d

Definition 4 (linear MIM-width). The linear maximum induced matching
width – linear MIM-width – of G is denoted lmw(G), and is the minimum value
of mw(σ,G) over any possible layout σ of the vertices of G.

Note: When talking about a cut (V σ
i , V σ

i) in a graph G, a vertex v is said to
lie to the left of the cut if v ∈ V σ

i ; otherwise, v is said to lie to the right of the
cut.

Definition 5 (k-neighbor). Let x be a node in the tree T and v a neighbor of
x. If v has a neighbor u ̸= x such that the component of T \ vu containing u has
linear MIM-width at least k, then we call v a k-neighbor of x.

3 Results

The result of this paper shows that the linear MIM-width of the square of a
tree is never smaller than that of the tree. Nor can it be more than twice as
high, thanks to a general result from [14]. But within these confines, it can be
whatever. To show this, we build two infinite families of trees, L and H, whose
squares have linear MIM-width that is equal and twice as high, respectively.

To prepare the proof, we first repeat two structural results from [12] here.
The first lemma bounds the linear MIM-width of a tree from above and the
second one bounds it from below:

Lemma 1 (path layout lemma ([12], Lemma 1)). Let T be a tree. If there
exists a path P = (x1, . . . , xp) in T such that every connected component of
T \N [P] has linear MIM-width ≤ k, then lmw(T) ≤ k + 1.

Lemma 2 ([12], Theorem 1). Let T be a tree. lmw(T) ≥ k+ 1 if and only if
there is a node x ∈ T that has at least three k-neighbors.

Lemma 2 will be our main tool for recursively generating trees with a spe-
cific value of their linear MIM-width. The next lemma is a generalization of its
backwards direction, which we can use in the case of squares of trees, where the
previous lemma is not applicable:

Lemma 3 (due to V̊agset [25]). Let G be a graph, and let C1, C2 and C3

be connected induced subgraphs of G with pairwise distance at least two. Let k
be the minimum linear MIM-width of these three subgraphs. If, for each pair
of subgraphs Ci, Cj there exists a path Pi,j that runs from Ci to Cj without
intersecting the closed neighborhood of the third subgraph, then the linear MIM-
width of G is strictly greater than k.

Proof. To prove this lemma, we assume towards a contradiction that there exists
a linear layout σ of G with MIM-width k.

By definition of linear MIM-width, σ must contain three cuts V σ
i1
, V σ

i2
and V σ

i3
,

such that G[V σ
i1
, V σ

i1
] contains an induced matching M1 with k edges from C1;

likewise there exists an M2 of size k in C2, and M3 in C3. Since the subgraphs
have distance at least 2, any edge from (say) C2 can increase the size of the
matchings M1 or M3. Assuming that (G, σ) has MIM-width k, it must thus be
the case that either, for every vertex x ∈ C2, σ(x) ≤ i1, or that, for every vertex
x ∈ C2, σ(x) > i1. These facts are obviously also true of every other pair of
subgraphs.

Now we assume w.l.o.g. that i1 < i2 < i3. This implies that some vertex in
C1 lies to the left of the cut V σ

i2
and that some vertex in C3 lies to the right of the

cut. From the previous fact, we can directly infer that all vertices of C1 (resp.
C3) lie to the left (resp. right) of V σ

i2
. This means that some edge e on the path

P1,3 must cross the cut. But the path has also distance at least 2 to C2, thus e
can be taken into M2; this implies that mw(G, σ) ≥ k+1. By contradiction, the
above lemma is true. ⊓⊔

The last lemma we will use is a special case of Theorem 5 of [14], stated
in terms of linear layouts; in the original paper this result is given in terms of
branch decompositions.

Lemma 4. Given a graph G and a layout σ such that G has MIM-width k
under σ, then for any power Gm of G, Gm has MIM-width at most 2k under σ.
Therefore, lmw(Gm) ≤ 2 · lmw(G).

Proof. This follows directly from [14], Theorem 5, that states that the property
holds for any cut of the graph. Therefore it must hold also for linear layouts. ⊓⊔

Now, we are ready to state our result.

Theorem 1. For any tree T with lmw(T) = k, k ≤ lmw(T 2) ≤ 2k. These
bounds are tight for every k ≥ 0.

Proof. To prove the first inequality, we use induction to prove that for every tree
T , if lmw(T) ≥ k, then lmw(T 2) ≥ k.

For the base case, it is trivial to see that if T has linear MIM-width at least
1 (that is, if T contains at least one edge), then T 2 must also have linear MIM-
width at least 1.

For the inductive step, we fix a k ≥ 1, and assume that for every tree T with
lmw(T) ≥ k, lmw(T 2) ≥ k. We show that for any tree T ′ with lmw(T ′) ≥ k+1,
lmw(T ′2) ≥ k + 1 as follows:

Let T be a tree with lmw(T) ≥ k + 1. From Lemma 2, we know that there
must exist a node x ∈ T that has at least 3 k-neighbors in T , i.e. x has neighbors
v1, v2, v3 such that there are three subtrees S1, S2, S3 ⊆ T \N [x] adjacent to v1,
v2 and v3 respectively, with lmw(S1), lmw(S2), lmw(S3) ≥ k.

By the inductive assumption, lmw(S2
1), lmw(S2

2), lmw(S2
3) ≥ k. S2

1 , S
2
2 and

S2
3 are three connected induced subgraphs of T 2, all of distance at least two from

each other. Furthermore, between each two of the subtrees – say S2
1 and S2

2 –
there exists a path in T 2 that does not intersect the closed neighborhood of the
third subtree, in this case N [S2

3]. By Lemma 3, T 2 must have linear MIM-width
at least k + 1.

The second inequality follows directly from Lemma 4.

Next, we show the downward tightness of the bound; that is, that there exists
an infinite family of trees

L = (L(0), L(1), . . .)

where lmw(L(k)2) = lmw(L(k)) = k for every k ≥ 0. For ease of notation, we
will define each tree in L as a rooted tree.

L(0) is defined to be the singleton K1. For every k ≥ 0, L(k+1) has a root u
with three children, v1, v2, v3. Each vi in turn has one child that is the root of a
copy of L(k), which we call Si. This recursive structure enables us to show that
between any two trees L(k) and L(k + 1), the linear MIM-width must increase
with at least 1, due to Lemma 2. On the other hand, between any L(k)2 and
L(k+1)2, the linear MIM-width must increase with at most 1. This is shown by
constructing a layout of L(k + 1)2 of MIM-width k + 1; this layout is identical
to the one given in the proof of the Path Layout Lemma (see [12] for details).

We prove the following claim by induction: For any tree L(k) ∈ L, lmw(L(k)2) =
lmw(L(k)) = k.

The base case is the trivial observation that lmw(K2
1) = lmw(K1) = 0.

For the inductive step, we assume that lmw(L(k)2) = lmw(L(k)) = k for
some k ≥ 0, and show that lmw(L(k+1)2) = lmw(L(k+1)) = k+1. From the
structure of L(k+ 1) and the induction hypothesis, it is evident that the root u
has three k-neighbors, namely all its children.

By Lemma 2, we can conclude that lmw(L(k + 1)) ≥ k + 1. Regarding
L(k + 1)2, by the induction hypothesis there exists a layout of L(k)2 that has
MIM-width exactly k. We thus have optimal layouts σS2

1
, σS2

2
, σS2

3
available. We

construct a layout σL(k+1) that has MIM-width exactly k + 1 as follows:

σL(k+1)2 = (u)⊕ σS2
1
⊕ (v1)⊕ σS2

2
⊕ (v2)⊕ σS2

3
⊕ (v3)

Fig. 2. The tree L1. Dashed lines are in L2
1.

u

v1

v2
v3

S1 = L0

S3 = L0

S2 = L0

where ⊕ signifies concatenation.
For any cut (V σ

i , V σ
i), a maximum matching contains at most k edges from

within some S2
a. How many edges from outside S2

a, i.e. in the graph

G′
i := L(k + 1)2[V σ

i , V σ
i]− E(S2

i)

can be taken into a matching? We see that every vertex in V (G′
i) ∩ V σ

i is in
{u} ∪ {v1, . . . , va−1} ∪ (Sa ∩ V σ

i), or has no neighbors. Every vertex in Sa ∩ V σ
i

only has at most va as neighbor, v1, . . . , va−1 have va, . . . , v3 as neighbors, and
finally u has all of these and possibly also one vertex in each of Sa, . . . , S3 as
neighbors. This implies that G′

i is a bipartite chain and has MIM 1. Thus, no
induced matching in L(k + 1)2[V σ

i , V σ
i] can have size more than k + 1.

Now we have that lmw(L(k + 1)2) ≤ k + 1 ≤ lmw(L(k + 1)). But, as we
have proven above, lmw(L(k + 1)2) ≥ lmw(L(k + 1)). Thus, lmw(L(k + 1)2) =
lmw(L(k + 1)) = k + 1, and every tree in L has the same linear MIM-width as
its square.

Finally, we show the upward tightness of the bound; that is, that there
exists an infinite family of trees H = (H(0), H(1), . . .) where lmw(H(k)2) =
2 · lmw(H(k)) = 2k for every k ≥ 0. We will also define each tree in H as a
rooted tree.

H(0) is again the singleton K1 = u0. For every k ≥ 0, H(k + 1) has a root
uk+1 with three children, v1, v2, v3. Each vi in turn has three children, each of
which is the root uk of a copy of H(k). We call these three trees Si,1, Si,2 and
Si,3. This recursive structure enables us to show that between any two trees
H(k) and H(k+1), the linear MIM-width must increase with at most 1, due to
Lemma 1: Taking the path to be (uk+1), we see that all the subtrees that remain
after removing the neighborhood of uk+1 are the Si,a for 1 ≤ i, a ≤ 3. Since, by
assumption, Si,a has linear MIM-width k, lmw(H(k + 1)) ≤ k + 1. And in fact,
it is exactly k + 1 since H(k) is a supertree of L(k) for every k.

Fig. 3. The tree H1. Dashed lines are in H2
1 .

u1

v1

v2

v3

S1,2

S3,2S2,2

S2,1

S2,3

S3,1

S3,3

S1,1
S1,3

On the other hand, between any H(k)2 and H(k+1)2, the linear MIM-width
must increase with at least 2. This is shown by applying Lemma 3 twice. To this
end, we must show that the linear MIM-width of H(k)2 does not decrease when
removing its root uk; this trick is to ensure that the subgraphs we consider are
situated far enough apart that Lemma 3 is applicable.

We will now prove the following claim by induction: Given that uk is the root
of some tree H(k), lmw(H(k)2) = lmw(H(k)2 \ {uk}) = 2 · lmw(H(k)) = 2k.
Note that the graph H(k)2 \ {uk} is still a connected graph.

For the base case, it is clear that lmw(H(0)2) = lmw(K1) = 0 = 2 ·
lmw(H(0)).

Fig. 4. A subgraph of the graph H(k + 1)2. Dashed lines indicate power edges. The
triangles at the bottom represent the Si,a’s.

For the induction step, we assume that lmw(H(k)2) = lmw(H(k)2 \{uk}) =
2·lmw(H(k)) = 2k for some treeH(k) with root uk, and show that lmw(H(k)2) =
lmw(H(k + 1)2 \ {uk+1}) = 2 · lmw(H(k + 1)2) = 2(k + 1). We know from the
induction hypothesis that for every (Si,a)

2, the graph S′
i,a = (Si,a)

2 \ {uk} is a

connected subgraph of H(k)2 with linear MIM-width 2k. Thus, the three graphs
S′
i,1, S

′
i,2 and S′

i,3 are three connected subgraphs with pairwise distance two in

the graph T ′
i = (H(k + 1)[vi])

2 \ {vi}. Furthermore, for each pair of subgraphs
S′
i,a and S′

i,b, there is a path between them that does not intersect the neigh-
borhood of Si,c (the red path in Figure 3). By Lemma 3, the linear MIM-width
of every T ′

i is at least 2k + 1. (In the case k = 0, the notion of paths between
S′
i,a and S′

i,b, which are empty sets, does not really make sense. In this case, just
note that T ′

i contains at least one edge and thus must have linear MIM-width
at least 1.)

We use the same argument one more time: T ′
1, T

′
2 and T ′

3 are three connected
subgraphs with pairwise distance two in the graph H ′ := H(k+1)2 \{uk+1}. For
each pair T ′

a and T ′
b, there is a path between them that does not intersect the

neighborhood of the third subgraph T ′
c (the blue path in the illustration below).

Thus, lmw(H ′) ≥ 2k+2. Since H ′ is an induced subgraph of H(k+1)2, we have
the situation that

lmw(H(k + 1)2) ≥ lmw(H ′) ≥ 2(k + 1) = 2 · lmw(H(k + 1))

But, as we have noted above, lmw(H(k + 1)2) ≤ 2 · lmw(H(k + 1)). Thus,

lmw(H(k + 1)2) = lmw(H(k + 1)2 \ {uk+1}) = 2 · lmw(H(k + 1)) = 2(k + 1)

and every tree in H has half the linear MIM-width of its square. ⊓⊔

Corollary 1. For any k ≥ 0 and any k ≤ q ≤ 2k, there is a tree T with
lmw(T) = k and lmw(T 2) = q.

Proof. The procedures for generating H(k + 1) from H(k) and L(k + 1) from
L(k) make a tree whose square has linear MIM-width two or one (respectively)
higher than the square of the previous tree. In fact, they do not depend much
on the specifics of the previous tree. So, to make a tree with linear MIM-width
k and linear MIM-width of its square q, we can start with H(q − k) and apply
the procedure to make L(k + 1) from L(k) 2k − q times on that base. ⊓⊔

4 Conclusion

We have shown that there is little connection between the linear MIM-width of
a tree and that of its square, except the fact that it cannot decrease. This fact is
interesting, as it implies that taking the square of a tree does not make its vertices
more well-connected than in the original tree. As we know, there must, for any
tree T with lmw(T) ≥ 2, be an exponent k such that lmw(T k) < lmw(T), since
for any finite graph G, Gdiam(G) is a complete graph and thus has linear MIM-
width 1. How high this exponent must be to decrease the linear MIM-width (or
bring it down to 1), and whether there exists a poly-time algorithm to evaluate
the linear MIM-width of powers of trees, are left as open problems.

5 Acknowledgements

The author would like to thank O-joung Kwon for the initial discussion of this
topic.

References

1. Belmonte, R., Vatshelle, M.: Graph classes with structured neighborhoods and
algorithmic applications. Theoretical Computer Science 511, 54–65 (2013)

2. Bergé, P., Bonnet, É., Déprés, H.: Deciding twin-width at most 4 is np-complete. In:
49th EATCS International Colloquium on Automata, Languages and Programming
(ICALP 2022) (2022)

3. Bergougnoux, B., Kanté, M.M.: More applications of the d-neighbor equivalence:
Acyclicity and connectivity constraints. SIAM Journal on Discrete Mathematics
35(3), 1881–1926 (2021)

4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. In: Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing. pp. 226–234 (1993)

5. Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Interna-
tional Symposium on Mathematical Foundations of Computer Science. pp. 19–36.
Springer (1997)

6. Bodlaender, H.L.: Treewidth: characterizations, applications, and computations.
In: International Workshop on Graph-Theoretic Concepts in Computer Science.
pp. 1–14. Springer (2006)

7. Bodlaender, H.L.: Treewidth: Structure and algorithms. In: International Col-
loquium on Structural Information and Communication Complexity. pp. 11–25.
Springer (2007)

8. Bodlaender, H.L., Koster, A.M.: Treewidth computations i. upper bounds. Infor-
mation and Computation 208(3), 259–275 (2010)

9. Bodlaender, H.L., Koster, A.M.: Treewidth computations ii. lower bounds. Infor-
mation and Computation 209(7), 1103–1119 (2011)

10. De Givry, S., Schiex, T., Verfaillie, G.: Exploiting tree decomposition and soft local
consistency in weighted csp. In: AAAI. vol. 6, pp. 1–6 (2006)

11. Elbassioni, K., Raman, R., Ray, S., Sitters, R.: On the approximability of the
maximum feasible subsystem problem with 0/1-coefficients. In: Proceedings of the
2009 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 1210–
1219 (2009)

12. Høgemo, S., Telle, J.A., V̊agset, E.R.: Linear mim-width of trees. In: Graph-
Theoretic Concepts in Computer Science: 45th International Workshop, WG 2019,
Vall de Núria, Spain, June 19–21, 2019, Revised Papers 45. pp. 218–231. Springer
(2019)

13. Jaffke, L.: Bounded Width Graph Classes in Parameterized Algorithms. Ph.D.
thesis, University of Bergen (2020)

14. Jaffke, L., Kwon, O.j., Strømme, T.J., Telle, J.A.: Mim-width iii. graph powers
and generalized distance domination problems. Theoretical Computer Science 796,
216–236 (2019)

15. Jaffke, L., Kwon, O.j., Telle, J.A.: A unified polynomial-time algorithm for feedback
vertex set on graphs of bounded mim-width. In: 35th Symposium on Theoretical
Aspects of Computer Science. vol. 7148, p. 23 (2018)

16. Jaffke, L., Kwon, O.j., Telle, J.A.: Mim-width i. induced path problems. Discrete
Applied Mathematics 278, 153–168 (2020)

17. Korhonen, T.: A single-exponential time 2-approximation algorithm for treewidth.
In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS). pp. 184–192. IEEE (2022)

18. Koster, A.M., Bodlaender, H.L., Van Hoesel, S.P.: Treewidth: computational ex-
periments. Electronic Notes in Discrete Mathematics 8, 54–57 (2001)

19. Madani, R., Sojoudi, S., Fazelnia, G., Lavaei, J.: Finding low-rank solutions of
sparse linear matrix inequalities using convex optimization. SIAM Journal on Op-
timization 27(2), 725–758 (2017)

20. Maniu, S., Senellart, P., Jog, S.: An experimental study of the treewidth of real-
world graph data. In: 22nd International Conference on Database Theory (ICDT
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

21. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching prob-
lem. Discrete Applied Mathematics 157(4), 715–727 (2009)

22. Ordyniak, S., Szeider, S.: Parameterized complexity results for exact bayesian net-
work structure learning. Journal of Artificial Intelligence Research 46, 263–302
(2013)

23. Sæther, S.H., Vatshelle, M.: Hardness of computing width parameters based on
branch decompositions over the vertex set. Theoretical Computer Science 615,
120–125 (2016)

24. Vatshelle, M.: New width parameters of graphs. Ph.D. thesis, The University of
Bergen (2012)

25. V̊agset, E.R.: Unpublished result. (2018)
26. Yannakakis, M.: Computing the minimum fill-in is np-complete. SIAM Journal on

Algebraic Discrete Methods 2(1), 77–79 (1981)

