
Trust as the Elephant in the Room – Security
Evaluation of Decentralized Online Social

Networks with Mastodon

Lea Laux1, László Erdődi2, and Kai Selgrad3

1 OTH Regensburg, Germany
lea.laux@st.oth-regensburg.de

2 University of Oslo, Norway
laszloe@ifi.uio.no

3 OTH Regensburg, Germany
kai.selgrad@oth-regensburg.de

Abstract. Federated online social networks are an alternative to cen-
tralized and often profit-driven social networks. Instead of providing ex-
actly one main platform, federated and decentralized approaches consist
of multiple platforms, nodes or instances, leading to new challenges for
guaranteeing confidentiality, integrity and availability. In addition, pri-
vacy is taken into close consideration due to the sensitive nature of pro-
cessed personal data and the purpose of online social networks as well
as the user behavior on social media. The recent popularity and broad
use of the federated micro-blogging platform Mastodon issues the mat-
ter of security and privacy challenges for this type of architecture and
the specific platform as well. Mastodon is part of a larger network called
Fediverse with several platforms with different purposes. Communica-
tion and interoperability between Fediverse platforms is mostly achieved
by ActivityPub protocol as standard for decentralized social networking,
defined by W3C. We analyze Mastodon as the currently most prominent
and largest example of a Fediverse platform. Therefore, we perform tests
for typical types of software vulnerabilities as well as evaluate common
security challenges built into its design. As a result, we identify trust as
security principle as critical issue, leading to multiple weak points such
as enabling attackers and malicious actors to spread misleading informa-
tion as well as network availability impacts. We suggest possible solutions
customized to our findings as well as general security recommendations
when building a federated online social network such as the Fediverse.

Keywords: Federated Online Social Networks · Security Evaluation ·
Security Design Review

1 Introduction

In recent years, online social media platforms became a major impact factor
on the digital life of every citizen by broad use of those services [3]. Due to the
nature and purpose of the platforms, they introduce novel challenges for security



2 L. Laux et al.

and privacy. They process personal data, initiating the need for proper data
protection instead of the need of exposure of sensitive as well as confidential
information to others. Centralized architectures lack sufficient mechanisms to
protect user data, yet they are processing and selling private information to third
parties to earn money out of it, for example by advertisements. In contrast to
profit-driven organizations with centralized platforms and the missing awareness
for personal data protection, decentralized online social networks claim to return
data control to their users, improving privacy as well as security [5,6]. As we
discuss in this work, decentralized architectures introduce additional challenges
for security as triad of confidentiality, integrity and availability and by processing
personal data also privacy. Challenges limited to the architecture are discussed,
especially for maintaining availability in the network as well as proper protection
of confidential data. The impact and responsibility of node providers is examined
further, since they donate a part of their infrastructure to the network. Various
architectural approaches for decentralized networks are compared regarding their
resource demands and obligation of their users. Examples are given by academic
work and popular networks for productive usage as real world implementations.
The term of decentralization is hereby used as an umbrella term for all non
centralized architectures according to the definition by Narayanan et al. [11]
Federated architectures are decentralized by nature and are introduced in detail
in Section 2.1 in distinction to peer to peer networks. The main focus of this
work specifies federated approaches, while our main assets to protect in terms
of security are federated networks as a whole, their single entities as instances
as well as users.

The growth factors for decentralized online social networks are evaluated,
especially regarding the current issues of popular centralized platforms. An ex-
ample is given by Twitter, losing a part of its user base after the acquisition of
the platform by Elon Musk [16]. This leads directly to the growth of the major
federated network of this work: Mastodon as a micro-blogging platform. It serves
as the currently most popular Fediverse example, which is introduced in detail in
Section 2.2. The results of an evaluation are not only limited to Mastodon, but
they are related to the design principles of the Fediverse directly. Therefore, our
conclusion includes a general advice for Fediverse platforms and the approach of
building decentralized online social networks. We also present a mechanism to
build a map of the Fediverse starting with a well known instance with the goal
to discover most of the instances by social relations.

Mastodon’s security is examined in detail: Its design is taken into close con-
sideration to discover potential entry points for attacks against single nodes as
well as the network as a whole. Furthermore, existing vulnerabilities are taken
into account to evaluate possible mitigation strategies and robustness of the net-
work against known attacks. Standard penetration testing procedures are per-
formed to evaluate Mastodon’s countermeasures against simple attack patterns.
The scope of this work includes the software and its design directly, as well as
its maintenance by instance providers and several third-party applications, while
legal observations are out of our scope. Third-party applications are examined, if



Trust as the Elephant in the Room 3

they have an impact on the network, for example by collecting information of the
network and publishing it, such as statistical services. They provide a source of
information for the network and they are therefore acknowledged and monitored
by Mastodon users, potentially leading to misinformation and confusion, if data
integrity is impacted. Finally, we present an evaluation of Mastodon’s current
security state and improvement recommendations based on our work.

2 Related Work

We provide an overview based on decentralized social network architectures, in-
cluding research prototypes as well platforms, which are productively used by
humans. Challenges for security and data storage, transfer and inter-connectivity
within a decentralized architecture are discussed. We present several decentral-
ized platforms, until we introduce Fediverse platforms and Mastodon.

2.1 Network Architectures and Implementations

From a historical point of view introduced by Baran [2], there is a distinction be-
tween centralized, decentralized and distributed networks. Centralized networks
consist of a main node with connections to several other nodes, henceforth re-
ferred to as secondary nodes. Decentralized networks consist of multiple main
nodes connected to each other, while secondary nodes are connected to a main
node. Distributed networks, also referred to as peer to peer networks, consider
all nodes as equal, allowing various connections across nodes. Main nodes offer
services such as data storage for secondary nodes to provide a coherent network.
The characterized architectures are illustrated in Figure 1. An alternate archi-

Main
Main

Main

Fig. 1. Various Network Architectures defined by Baran [2] are shown: Centralized –
Decentralized – Distributed

tectural distinction is proposed by Narayanan et al. [11]: Decentralization is an
umbrella term for all non centralized approaches, while distinguishing between
federated and distributed networks. According to Narayanan et al. [11], feder-
ated networks share a layer of interoperability, for example by implementing a
common protocol. Their federated networks are considered equal to Baran’s [2]
decentralized networks, while the definition for distributed approaches is similar.
As result of their work, we use the term of federated networks and raise aware-
ness for the distinction of architectural types. We consider the variety of features



4 L. Laux et al.

and add-ons of decentralized networks as reason to introduce a spectrum rather
than a binary decision.

Furthermore, there are several academic examples for decentralized online
social networks. We present a few of them as an overview of architectural charac-
teristics, possible challenges, arising pitfalls and issues for security. PeerSoN [5] is
a distributed network, supporting privacy and data control of users. Buchegger et
al. design a two tier architecture with a lookup service and peers with user data.
Their lookup service provides information about peers for initiating connections
without storing any sensitive information except for an encrypted message stor-
age. The open challenges of Buchegger et al. include long-term durability of data
and network availability. They raise attention to DoS attacks and mitigate them
by proposing a handshake before exchanging large data amounts. Safebook [6]
is motivated by the assurance of integrity and availability and possible threats
against privacy. It is a peer to peer network with additional storage nodes for
public data. Cutillo et al. identify attack scenarios based on known issues of cen-
tralized architectures, including, but not limited to spoofing and impersonation,
threats to privacy established by users and social network providers as well as
DoS attacks and content censorship by providers. SuperNova [13] has a federated
architecture with privileged and resourceful nodes. Sharma and Datta [13] use
storage and data replication to ensure availability. In addition to super nodes,
friend nodes as direct peers and stranger nodes are able to donate a part of their
resources to the network. By distinction between node types, trust to others
is introduced as design property. The main goal of SOUP [10] is to achieve a
level of availability similar to centralized networks. High availability and network
scalability with minimal replication of user data is a priority. Permanent online
storage of data by others is excluded, while every node selects a small set of
others as data mirror. Possible attack scenarios include malicious nodes abusing
the trust within the network as well as flooding attacks.

In addition to the hereby presented approaches of decentralized online so-
cial networks, there are several more similar prototypes. As examples with spe-
cial properties serve Cadros [8] by implementing cloud services for data storage
and BCOSN [9] by using blockchain technologies for ensuring data integrity. To
summarize the findings and insights of presented networks, categories of Koll et
al. [10] and their network SOUP are examined.

– Peer to peer nodes with sufficient resources: All nodes have sufficient re-
sources to ensure a permanent availability. Users of the network have to
provide the necessary infrastructure, resulting in a loss of network usability.

– Super nodes: Privileged and resourceful nodes, such as the architecture of
SuperNova [13] requires, are introduced. They are permanently online, de-
pending on either paid services or donors. Trust to the responsible maintain-
ers of super nodes is necessary.

– Temporary node cooperation: Nodes cooperate temporarily, which is also the
approach of SOUP [10]. Direct peers are preferred for cooperation: There is
already a certain level of trust between the involved nodes.



Trust as the Elephant in the Room 5

To our observations, the design phase often starts with a peer to peer architec-
ture. Purely peer to peer architectures are not able to ensure a sufficient level
of availability, hence, federated elements are introduced. In comparison to cen-
tralized networks, users of decentralized online social networks are required to
maintain at least a part of the network, persisting in their own node. Depending
on the implementation, it could be necessary to trust other entities and to take
responsibility for own data and data of others.

2.2 Fediverse

An ecosystem of federated online social networks is the so called Fediverse. Its
name is a portmanteau term of the two words federation and universe. Inter-
action between various platforms is established by common protocols [1]. For
a large and hereby considered most relevant part of the Fediverse, the proto-
col is ActivityPub, recognized as decentralized social networking standard by
the W3C [14]. It provides an API for clients and servers, manifesting the fed-
erated architecture of Fediverse platforms. Clients communicate with a server,
while servers communicate with each other. Communication between clients is
achieved by communication through servers. Every service implementing Activ-
ityPub can participate in the Fediverse, lowering the barrier to entry.

Applying the protocol to services results in an ecosystem of multiple plat-
forms for various purposes, such as Pixelfed for sharing photos or PeerTube for
sharing videos. Additional projects as third-party services are built around the
Fediverse, such as statistical resources, for example The Federation4, It supplies
a statistics hub to track the state of the Fediverse with its platforms, protocols
and user activity.

ActivityPub takes security considerations into account by addressing various
security-related topics and possible attack scenarios [14]. A requirement is the
implementation of authorization and authentication measures. OAuth 2.0 is rec-
ommended as authentication mechanisms for client to server communication and
HTTP Signatures for server to server communication. Extensions with Linked
Data Signatures are recommended for objects likely to be shared and federated.
Requests to localhost could result in unauthorized local machine access. Activity-
Pub handles with URIs, requiring sanitization and validation before processing.
Limiting recursion depth for object references is suggested as prevention of DoS
and spam attacks. Developers should implement filters for incoming content, tai-
lored to the level of trust. Extensive submission mechanisms should be avoided
to not overload other servers accidentally. Sanitanization of content applies in
general, especially when displayed to a user.

2.3 Mastodon

Mastodon is a micro-blogging service and part of the Fediverse. According to
its user number, it is currently the largest Fediverse platform. The number of

4 https://the-federation.info

https://pixelfed.org/
https://joinpeertube.org/en_US
https://the-federation.info


6 L. Laux et al.

users as well as nodes can be found in Figure 2 to estimate the growth of the
network. An important growth factor in 2022 was Elon Musk’s acquisition of

Fig. 2. Two graphs display the number of Mastodon users and the number of
available nodes between March 2022 and March 2023 based on the statistics of
https://the-federation.info/.

the micro-blogging service Twitter, examined by Zia et al. [16]. User number
and activity on Mastodon increased significantly, while most of the users of the
top 30 Mastodon instances joined after 26th October 2022. Furthermore, several
communities such as the scholarly community, show migration trends towards
Mastodon [4]. As a result, we consider Mastodon as currently most important
Fediverse platform and as research example for our security evaluation. Never-
theless, we raise attention to the fact that the Fediverse and Mastodon as social
media are not critical infrastructure, but a digital place for social relations.

The entry barrier to become an instance provider is low: Everyone with the
required computational resources and knowledge to understand the installation
manual is able to maintain an instance. Resources can be their own or supplied
by an external entity, such as cloud service providers. Mastodon is mostly run
by volunteers without any official qualification, which is an advantage for the
openness and usability of the platform. On the other side, the competence, or at
least its validation, is missing compared to a system mostly run by professionals
or a company as well as compliance checks by official authorities.

3 Reconnaissance in the Fediverse

The Fediverse consists of multiple platforms and various instances. Security flaws
can potentially affect them all, while testing for vulnerabilities requires a list
of available instances. Discovering Fediverse instances is not trivial due to its
federated design. The completeness of a list is limited by graph connectivity:
The set of known instances is only consisting of instances directly or indirectly
connected to the origin. In addition, an instance could exist, but is offline during

https://the-federation.info/


Trust as the Elephant in the Room 7

a search. The goal is to at least cover a large part of the Fediverse, which is
productively used by humans. Due to the limitation of this work to Mastodon,
an active scan is performed based on Mastodon instances.

Every instance can publish data about its peers, announcing them publicly as
default. This information is accessible by Mastodon’s instance API. The peer list
consists lifetime peers, hence, it can contain (permanently) offline instances. A
current overview of the network can be created by visiting the peers of instances,
starting with a large and well-known instance, for example mastodon.social.

1 starter_instance = large_instance

2 known_instances = []

3 unvisited_instances = [starter_instance]

4 while unvisited_instances:

5 instance = unvisited_instances [0]

6 known_instances.add(instance)

7 peers = instance.get_peers ()

8 unvisited_instances.add_unknown_peers(peers)

9 unvisited_instances.remove(instance)

10 return known_instances

Further instance information can be retrieved by its API to determine, if a
Mastodon instance is detected and to exclude other ActivityPub service. With
this approach, we are able to discover roughly 13.000 federated instances in
approximately two hours, depending on computational resources and mainly
internet connectivity.

4 Mastodon Design and Consequences

We evaluate Mastodon’s design regarding security and privacy properties to
find attack surfaces and entry points for exploits. Our attacker profiles include
malicious external entities against the Fediverse as a whole as well as against
single instances. Furthermore, we analyze the possibility of malicious instance
providers. Mastodon as social media platform is a digital social space and not
critical infrastructure. Therefore, it is necessary to provide a certain level of
security assurance, but the interest for an attacker to breach security is assumed
lower than for other web applications, since Mastodon is compared to other
social media applications in general a smaller approach. Breaking Mastodon’s
security by using large amounts of time or computational resources is therefore
considered rather unattractive. We introduce the structure of data storage and
flow, functionality as well as responsibilities across the network. The findings are
consequences of Mastodon’s architecture as federated social network or strategies
to deal with arising challenges. Therefore, the hereby presented topics do not
apply to centralized approaches.

4.1 Trust to Instance Providers

The major Fediverse entity is an instance, maintained by their provider. Instance
providers offer a platform for social relations by supplying the infrastructure for

mastodon.social


8 L. Laux et al.

content creation and user interactions. Further functionality include data storage
and federation with others. Users have to establish a certain level of trust to
their instance provider as they are the responsible entity for functionality and
data. Since user data is stored at the instance directly, the provider can control
it. Most of the data is unencrypted expect for credentials such as passwords.
Instance providers are also able to limit and suspend network traffic to other
instances. As a consequence, mature users, understanding Mastodon’s design
capabilities, are required. The skill to choose an instance with a trustworthy
provider and to adapt their usage behavior accordingly to Mastodon’s design
is recommended from our point of view. Compared to a centralized approach,
users are required to evaluate the trustworthiness of the responsible organization.
Compliance checks regarding laws and regulations are stricter in comparison to
a small Fediverse instance run by volunteers.

An additional consideration is mutual trust across the Fediverse and its in-
stances. Validation and verification mechanisms are not necessarily implemented
for all types of features. An example is information spread by instance API, such
as (active) user numbers: There is no further validation. Peers are propagated
through the network, while instances exchange their peer lists. If a previously
not known instance of the peer list responds with correct ActivityPub syntax
after probing, it is considered a valid peer now. It is appended to the lifetime list
of peers, which are not regularly validated, for example after a defined period
of time. The general level of trust applies to Fediverse platforms in general, not
only Mastodon instances.

4.2 Availability of Instances and Federation of Data

Permanent availability of instances cannot be guaranteed, hence, Mastodon im-
plements mechanisms to ensure a high level of data availability. A Mastodon
instance collects frequently data of its peers, such as user posts, storing it in the
instance database. If a peer experiences a downtime, peer data is still accessible
for users of the original instance.

The mechanism introduces a challenge for data integrity. If data changes af-
ter initial storing, an update process for collected data is necessary. Mastodon’s
current implementation is not able to track which instance has stored which
content with timestamps. Therefore, data currentness is impacted by its feder-
ated architecture. An impact on user privacy guaranteed by GDPR [7] could
arise, since a user has the right to have their personal data deleted on request. A
possibility to mitigate the issue could be the implementation of a data request
every time when necessary instead of storing it. Although, this would introduce
new challenges for availability by causing significantly more traffic. A request on
access mechanism without caching could overload instances with few resources,
resulting in DoS by accident.

Another consequence of federated data structures is the missing logging and
monitoring functionality. Atypical behavior against the Fediverse as single en-
tity cannot be detected fast. Instances can still detect local anomalies, but the



Trust as the Elephant in the Room 9

information is not merged and evaluated centrally compared to a centralized
platform.

4.3 Broad Compatibility of ActivityPub Services

In general, the Fediverse is mostly using a common protocol, ActivityPub, al-
lowing interoperability across platforms. As long as a software project supports
ActivityPub, it can participate actively in the Fediverse. Malicious services are
not excluded, because ActivityPub is simply a protocol, such as SMTP for mail.
Nevertheless, a certain awareness is required for incoming traffic and outgoing
information, relevant for federated networks in general. A protocol standard can
suggest security mechanisms for communication, for example by directly imple-
menting strong authentication and authorization principles as well as content
sanitanization.

5 Vulnerabilities and Exploits of Mastodon

We present carefully selected vulnerabilities and exploits of Mastodon as a result
of our security evaluation. Our selection is not complete due to the broadness of
vulnerability types and their relevance. There are several (fixed) vulnerabilities
available in related databases with various severeness, such as the National Vul-
nerability Database provided by NIST5. Furthermore, our findings include attack
patterns based on a design evaluation that not necessarily lead to vulnerabilities,
but to possibilities to abuse responsibilities. By abusing them, it is possible to
break confidentiality, integrity and availability for a sub set of users. Our main
entities and assets regarding security are the Fediverse network as a whole, single
instances as well as users, including their fundamental right of privacy, which
is also part of GDPR [7] as privacy regulation within the EEA. Therefore, we
describe our choice of reproduced and evaluated vulnerabilities with a current
and possible impact on single Mastodon instances or the Fediverse in general.

5.1 Denial of Service by Large Sidekiq Queue Generated by Bot
Account Follows

This attack type impacted the Fediverse platform Misskey6 initially. It is also
applicable to Mastodon: The attack relies on producing a large amount of traffic
by pull queues for Sidekiq [15,12]. To execute the attack, accounts on a victim
instance are created. The accounts follow other accounts on an attack server with
a wildcard DNS record to mimic a large number of unique accounts on multiple
separate instances. From the viewpoint of a victim instance, it appears to be
various other instances instead of only one. The attack server responds with
correct ActivityPub syntax to mimic a valid ActivityPub platform. Therefore,

5 https://nvd.nist.gov/vuln
6 https://misskey-hub.net/en/

https://nvd.nist.gov/vuln
https://misskey-hub.net/en/


10 L. Laux et al.

any kind of implementation, such as a static page returning the expected JSON
object, is sufficient. The attack server hosts a single user, hence, the accounts
on the victim instance can follow the user to achieve federation between the
involved instances. Based on federation, the attack server is frequently accessed
to index new data. This behavior is a mitigation strategy of Fediverse services
related to limited instance availability: They store the data of others to ensure
data availability for their own users. If the attack server is not available, the
victim instance starts to retry its pull attempts such as indexing new data,
resulting in multiple large Sidekiq queries. The behavior is impacting resources
and from a long term perspective availability of the victim instance. The attack

LegitimateMastodonInstance

LegitimateMastodonInstance

AttackerMastodonInstance

AttackerMastodonInstance

Wildcard DNS

Account Creation

Bot Account Creation

Bot Account Follow Activity

Message Pull Activity

Shutdown, Bot Account Deletion

loop

Message Pull Activity

Retry HTTP 521

Fig. 3. The bot attack based on an existing vulnerability [15,12] including Wildcard
DNS and retry queues is illustrated.

scenario in Figure 3 presumes an attacker’s access to an account on the victim
instance. This is trivial for an instance with open registrations, which applies to
the majority of Mastodon instances.

We do not only reproduce the initial CVE description, we extend it: Fediverse
instances start to federate with others, if they become aware of them, for example
by exchanging peer lists. Therefore, it is sufficient to be successfully probed
by a victim instance at least once as initial peering in contrast to the CVE
description refering to follow relations as necessary requirement to execute the
attack. During the attack, the attack server is probed by peers of the victim
instance, increasing its blast radius. To reproduce and observe the vulnerability
properly, we bypass the API limit for follow relations and insert them directly
into the database. Due to the insufficient description of the vulnerability, we
affect the productive Fediverse, leading to complaints within the network. Our
impact is considered low, since we are not able to detect any availability issues
such as offline instances. However, it is possible to execute larger attack attempts



Trust as the Elephant in the Room 11

with multiple attack servers with wildcard DNS, various victim instances and
installing malicious instances over a certain amount of time in the Fediverse.

Overall, there is no official software fix by Mastodon, but they claim to have
explicitly mitigated the exploit possibility. The security team of Mastodon was
contacted with the purpose to raise awareness to the extended attack vector. As
their answer points out, there is a limit for fetching accounts and posts with a
single request, implementing a kind of mitigation mechanism. Instance providers
can block attacker instances, if they notice a large amount of traffic and resource
usage.

5.2 Misconfiguration of Object Storage Domain

According to a mail from mastodon.social to their users in March, the object
storage domain of the instance was misconfigured with the consequence of world-
readability of the related directory. File access by anyone with knowledge of the
domain was possible. The provider clarifies that most of the data is publicly
available anyway, except for user archive data. User archives include their public
profile, their favorites and bookmarks as well as their posts, potentially with
media attachments. This does also apply to content with restricted visibility and
therefore non public data. The misconfiguration was exploitable during February
2023. They also claim to automatically check other instances now and inform
them in case of an issue.

files.<instance.domain> and <instance.domain>/system are known ob-
ject storage domains, therefore, it is possible to analyze the previously created
list of instances for known security bugs. S3 buckets can be misconfigured to have
the 1000 first files readable. Buckets in general can be misconfigured to serve all
files with a continuation token, usable with a query parameter. Independently
of the underlying storage solution, the system directory can be world-readable.
According to our findings, only a minor percentage of the overall Mastodon
network is affected, while the largest Mastodon instance, mastodon.social, was
vulnerable to this misconfiguration. To our knowledge, 54 instances, including
mastodon.social, were affected, resulting in potentially 997.000 affected users
(approximately) as a worst case estimation.

5.3 Direct Messages of Users – Confidentiality Impact by Instance
Provider

An instance provider is able to access all instance data. Content is stored without
any kind of encryption, including posts with restricted visibility and direct mes-
sages as posts with limited visibility to the conversation’s participants. Therefore,
an instance provider is able to access private messages of arbitrary users. This is a
break of confidentiality, hardly detectable for a user. A recommendation for users
is to not exchange private messages with confidential content in Mastodon, but to
switch to another service, preferably with encrypted messages. The attacker pro-
file is a malicious instance provider, collecting and analyzing social data, which
can be abused for social engineering attempts. Furthermore, instances are often

mastodon.social
mastodon.social
mastodon.social


12 L. Laux et al.

based on specific topics or provided for certain communities. Confidential infor-
mation can be misused to harm individuals within a community. Even though an
instance provider might not have a malicious intent, any attacker with database
access is able to break the confidentiality of private messages. This exploit possi-
bility illustrates the necessity for proper protection mechanisms of private data.
The underlying property is the assumed trust to instance providers. Users have
to be aware of the circumstance that all their Mastodon data does not meet the
requirement of full confidentiality and assume it is potentially publicly available
in a worst case.

5.4 Fake Mastodon Statistics

Several services publish statistics about Mastodon, based on data propagated by
instances. A relevant metric is the (active) user number to evaluate Mastodon’s
growth and its activity. Statistics services trust the information an instance
publishes, since Mastodon directly does not implement mechanisms to verify
data correctness.

Mastodon’s mutual trust can be misused to affect statistics, for example by
increasing the number of users. We deliver 300.000 users for a research instance,
which is accepted by several statistical sources, such as the-federation.info, with-
out any further validation. However, we are not able to influence the official
statistics of Mastodon nor other services such as a popular user count bot7.
Conclusively, there is some kind of validation in place. We assume that multiple
instances with a more organic looking user growth might be able to influence
additional statistical services. We launch multiple instances comparable to our
attack server already used during the reproduction of the DoS attack in Sec-
tion 5.1. To achieve an impact, we increase the user count of each instance by
500 users per 15 minutes. Again, we do not affect official statistics of Mastodon,

Fig. 4. The user count bot is monitored during the fake statistics attack: https:
//mastodon.social/@mastodonusercount/110536086578315894 before starting the in-
crease, https://mastodon.social/@mastodonusercount/110539860472044294 during the
increase and https://mastodon.social/@mastodonusercount/110602145657111403 after
shut down

7 https://mastodon.social/@mastodonusercount

the-federation.info
https://mastodon.social/@mastodonusercount/110536086578315894
https://mastodon.social/@mastodonusercount/110536086578315894
https://mastodon.social/@mastodonusercount/110539860472044294
https://mastodon.social/@mastodonusercount/110602145657111403
https://mastodon.social/@mastodonusercount


Trust as the Elephant in the Room 13

but the user count bot, displayed in Figure 4. The hourly user increase changes
to roughly 3.000 new users per hour and drops to roughly 500 users per hour
after swapping to a static user number of 42 users per instance. Since the bot is
relatively popular, there are several reactions, trying to explain the fluctuations.
Third-party services are considered a trustworthy source by several Fediverse
users. Therefore, the reputation of statistical services and Mastodon are affected
by this type of attack. If Mastodon appears to be larger than it actually is, it is
an impact on data integrity of the project and might mislead to false conclusions
as well as overall confusion.

5.5 Fake Likes for Posts

Mastodon as micro-blogging platform provides a like functionality for content.
The number of favorites as well as the list of who marked a post as favorite is
collected by the instance of the original post. Hence, a complete list of persons
liking a post is only available at the original instance. Accessing the post from
another instance, the persons liking the post from the same instance of the user
are displayed. An instance provider is able to add arbitrary likes to a post, caused

Fig. 5. A fake like is demonstrated by an example post and the list of likers, containing
Eugen Rochko as main developer of Mastodon as well as the official Mastodon account,
available at https://daystorm.netz.org/@admin/110621211857643127

by missing validation mechanisms for likes. An abuse example is illustrated in
Figure 5. This is especially critical for controversial posts, affecting integrity of
data. An example of a threat is a scenario of political posts: If controversial
politicians and their parties run instances controlled by them, they are able to
fake as many likes as they want, potentially confusing people during elections
and spreading fake news. This is rather a social issue than a technical one. As
a countermeasure, it would be possible to implement a verification mechanism,
such as it is available for posts and replies in general. The mitigation strategy
might come with a price for availability and general data traffic in the Fediverse:
The signature of every like would need to be verify at least two instances.

5.6 Failed Attempts

In addition to our successful attacks and reproductions, we try several stan-
dard techniques of penetration testing. To display Mastodon’s robustness against

https://daystorm.netz.org/@admin/110621211857643127


14 L. Laux et al.

them, we summarize our failed attack attempts. As a social network, Mastodon
provides several input fields for user-controlled content. Input fields apply to
classical features of social networks in general, such as the one for posting new
content. There are several more, for example in settings and moderation tools,
taking Mastodon’s role concept of administrator, moderator and normal users
into account. Tests for SQL injections and XSS in all interfaces are unsuccessful.
They are tested with manual tries in the web interface as well as hand-crafted
and automated HTTP (POST) requests. In addition, directory scans do not
reveal any further information to misuse. Attempts to break API authentica-
tion to bypass Mastodon’s role concepts and visibility of content is not suc-
cessful. Furthermore, basic attempts to find and abuse existing session cookies,
such as accessing session storage and API endpoints, remain unsuccessful. Our
attack to bruteforce registration links for instances with account registration
limitation is unsuccessful due to the amount of possibilities with the pattern
/invite/[a-zA-Z0-9]^8. Further simple exploit possibilities are not discovered
by using standard penetration testing techniques. As a consequence, attacks need
to be more sophisticated than standard procedures, for example by abusing mul-
tiple weaknesses in the Mastodon technology stack, including infrastructure as
well as supporting applications and their weaknesses. The task to detect further
vulnerabilities in Mastodon requires technical knowledge, penetration testing ex-
perience and a deep understanding of either web applications or Fediverse and
ActivityPub architecture. In addition, we assume that the task is time consum-
ing in a manner that it would not be beneficial for an attacker regarding the
current state of Mastodon as social media network. Furthermore, we asked the
security team of Mastodon for permission to start a phishing attack to include
a social engineering aspect. Permission was denied, but we mention it here as a
potential attack vector.

6 Conclusion

We give an architectural overview of online social networks and focus on fed-
erated platforms. Based decentralized architectures, we analyze existing aca-
demic approaches and observe their properties, challenges and impact on secu-
rity. By introducing the Fediverse, we concentrate on federated architectures.
Mastodon serves as prominent platform with ActivityPub as protocol. To eval-
uate Mastodon’s general state of security, we identify design challenges, entry
points for attacks and possible exploits. Our exploits are either reproduced based
on previously published vulnerabilities or results of our design evaluation. Our
findings can still impact Mastodon and the Fediverse. Furthermore, we use stan-
dard procedures of penetration testing to show Mastodon’s robustness against
simple attack patterns.

The most critical design issue is the high level of trust established between
Fediverse entities. In general, peers of an instance are considered trustworthy,
allowing broad communication with low or missing validation and verification
mechanisms. An example is the frequent exchange of peer lists: The only val-



Trust as the Elephant in the Room 15

idation mechanism is the delivery of correct ActivityPub syntax after initial
instance probing. Malicious intents are not anticipated, therefore sanity checks
are missing. Information given by an instance, including but not limited to in-
stance statistics, are not validated further. Validation functionality could restrict
ActivityPub compliance, requiring to maintain trust as major design decision or
to implement well-designed solutions. Examples of trust abuse are given by DoS
attacks and faked statistics. The current mitigation strategy is only reactive
instead of proactive by blocking malicious instances. Therefore, it would be ad-
visable to balance out the two considerations and to develop components to fit
them both: Validation and verification mechanisms for information from others
and ActivityPub compliance. Future work can include further protocol testing
directly.

A user’s point of view shows the necessity of trust to their instance provider.
Providers have full control over their instance data and therefore the ability to
abuse their power and responsibility. An example is given by breaking confiden-
tiality of private messages, therefore the level of trust to an instance provider
needs to be high. Users should have a certain awareness of this circumstance. It
would be beneficial for their privacy and security, if they are mature and well-
educated, understanding the consequences of Mastodon’s design for their indi-
vidual use. Users uncomfortable with the required trust to instance providers
can host their own instance, optionally enabling single user mode. In addition,
Mastodon provides a functionality to relocate accounts to another instance. Nev-
ertheless, content with limited visibility is stored unencrypted in the database
of related instance peers.

Overall, considering the current growth of Mastodon and the Fediverse, fur-
ther functionality and mechanisms to decrease the necessity of trust are required
to prevent its abuse. Reviews of design and of the current implementation can
help to increase security by validation and verification of external information. In
addition, the power of instance providers is considered particularly high. Lower-
ing their power is advisable, for example by implementing mechanisms to demon-
strate users that their data cannot be abused or is less likely to be abused. A
possible solution is the introduction of verified builds, reducing the risk of secretly
implemented backdoors, as well as message encryption or the recommendation
to use external services for messaging. In general, it is open to debate how large
federated online social networks can and should grow depending on the current
level of trust. With a growing network, there is a higher probability to introduce
users that are less mature and less educated about the functionality and design
of the network they choose. Accordingly, instances and their providers are in the
need of stronger defenses. The maturity and competence of instance providers
would need to grow as well as the popularity of the platform. Therefore, an open
question is how large can a network reasonably grow and which amount of trust
between its various entities is appropriate. A more general question is the user
base Mastodon and the Fediverse want to attract and to integrate, including
considerations about their maturity and usage behavior.



16 L. Laux et al.

References

1. Anderlini, J., Milani, C.: Emerging Forms of Sociotechnical Organisation: The
Case of the Fediverse, pp. 167–181. University of Westminster Press (11 2022).
https://doi.org/10.16997/book54.m

2. Baran, P.: On distributed communications: I. introduction to distributed commu-
nications networks. Tech. rep., RAND CORP SANTA MONICA CALIF (1964)

3. Bell, G.: Building Social Web Applications: Establishing Community at the Heart
of Your Site. O’Reilly Media (2009)

4. Brembs, B., Lenardic, A., Murray-Rust, P., Chan, L., Irawan, D.E.: Mastodon
over mammon: towards publicly owned scholarly knowledge. Royal Society Open
Science 10(7), 230207 (2023). https://doi.org/10.1098/rsos.230207

5. Buchegger, S., Schiöberg, D., Vu, L.H., Datta, A.: Peerson: P2p social networking:
Early experiences and insights. In: Proceedings of the Second ACM EuroSys Work-
shop on Social Network Systems. p. 46–52. Association for Computing Machinery,
New York, NY, USA (2009). https://doi.org/10.1145/1578002.1578010

6. Cutillo, L.A., Molva, R., Strufe, T.: Safebook: A privacy-preserving online social
network leveraging on real-life trust. IEEE Communications Magazine 47(12), 94–
101 (2009). https://doi.org/10.1109/MCOM.2009.5350374

7. European Parliament, Council of the European Union: Regulation (EU) 2016/679
of the European Parliament and of the Council, https://data.europa.eu/eli/reg/
2016/679/oj

8. Fu, S., He, L., Liao, X., Huang, C., Li, K., Chang, C., Gao, B.: Cadros:
The cloud-assisted data replication in decentralized online social networks. In:
2014 IEEE International Conference on Services Computing. pp. 43–50 (2014).
https://doi.org/10.1109/SCC.2014.15

9. Jiang, L., Zhang, X.: Bcosn: A blockchain-based decentralized online social net-
work. IEEE Transactions on Computational Social Systems 6(6), 1454–1466
(2019). https://doi.org/10.1109/TCSS.2019.2941650

10. Koll, D., Li, J., Fu, X.: Soup: An online social network by the peo-
ple, for the people. In: Proceedings of the 15th International Middle-
ware Conference. p. 193–204. Association for Computing Machinery (2014).
https://doi.org/10.1145/2663165.2663324

11. Narayanan, A., Toubiana, V., Barocas, S., Nissenbaum, H., Boneh,
D.: A critical look at decentralized personal data architectures (2012).
https://doi.org/10.48550/ARXIV.1202.4503

12. National Institute of Standards and Technology: Cve-2022-46405 detail, https://
nvd.nist.gov/vuln/detail/CVE-2022-46405

13. Sharma, R., Datta, A.: Supernova: Super-peers based architecture for decen-
tralized online social networks. In: 2012 Fourth International Conference on
Communication Systems and Networks (COMSNETS 2012). pp. 1–10 (2012).
https://doi.org/10.1109/COMSNETS.2012.6151349

14. Social Web Working Group of WC3: Activitypub, https://www.w3.org/TR/2018/
REC-activitypub-20180123/

15. @za6-weO-Qp2hnlXTYhjdqw Tani: Context attack on instances by troll accounts,
https://hackmd.io/rD9nsTz1QeuPT-erxqjY-A

16. Zia, H.B., He, J., Raman, A., Castro, I., Sastry, N., Tyson, G.:
Flocking to mastodon: Tracking the great twitter migration (2023).
https://doi.org/10.48550/arXiv.2302.14294

https://doi.org/10.16997/book54.m
https://doi.org/10.1098/rsos.230207
https://doi.org/10.1145/1578002.1578010
https://doi.org/10.1109/MCOM.2009.5350374
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1109/SCC.2014.15
https://doi.org/10.1109/TCSS.2019.2941650
https://doi.org/10.1145/2663165.2663324
https://doi.org/10.48550/ARXIV.1202.4503
https://nvd.nist.gov/vuln/detail/CVE-2022-46405
https://nvd.nist.gov/vuln/detail/CVE-2022-46405
https://doi.org/10.1109/COMSNETS.2012.6151349
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://hackmd.io/rD9nsTz1QeuPT-erxqjY-A
https://doi.org/10.48550/arXiv.2302.14294

	Trust as the Elephant in the Room – Security Evaluation of Decentralized Online Social Networks with Mastodon

