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Abstract. This work examines the detection of ridge orientation pat-
terns, also referred to as level 1 features, from contactless fingerprint
images and their classification. We trained two Convolutional Neural
Networks (CNNs) to classify fingerprints based on their ridge orienta-
tion patterns. Our models were trained on synthetic data generated by
SynCoLFinGer. Afterwards, we conducted various experiments for classi-
fying these patterns and evaluated our trained models on four real-world
databases: PolyU CB2CL, ISPFDv1 contactless fingerprint database,
and two in-house databases.

We report the classification accuracy in terms of Classification Error Rate
(CER). We achieved CERs between 28% and 38% considering all sam-
ples. Due to the amount of low-quality samples included in the database,
we use NFIQ 2.2 to iteratively exclude samples from the databases and
report the corresponding CER. We then used NFIQ 2.2 scores to it-
eratively exclude samples and hence report the impact of low-quality
samples.

By excluding the lowest scoring 10% of all samples within each database,
we achieve CERs of 24% to 35% depending on the databases. While these
error rates are still high, they show promise compared to the original val-
ues. Although further research is needed to improve results, we show that
combining quality-score-based exclusion of images with CNNs trained on
synthetic contactless data is a promising method to classify fingerprint
patterns.
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Extraction - Level 1 Features - Convolutional Neural Networks

1 Introduction and Related Work

Fingerprints have been accepted as an unchangeable, unique biometric charac-
teristic allowing human recognition since the 1890’s and have been in use by
law enforcement ever since [19]. From that point on, fingerprint recognition has
evolved and has been in operational use for decades. Most modern smartphones
have fingerprint capturing devices and many restricted areas are protected using
fingerprints as a means of identification.
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(a) Contact-based (b) Contactless

Fig. 1: Different capturing methods for contact-based and contactless fingerprint
samples. (From: [22])

In recent years, especially with the spread of the COVID-19 pandemic, the
need for more hygienic alternatives has gained awareness. One of those alter-
natives is the field of contactless fingerprint recognition [7]. Although this field
was thoroughly researched over the years, most feature extraction algorithms are
still designed for the contact-based domain. Contactless fingerprints differ from
contact-based ones. Contact-based fingerprints are acquired using a capturing
device which needs to be touched. By pressing the fingertip onto a capturing
device, it undergoes temporary elastic deformations. These deformations do not
occur for contactless fingerprints. However, contactless fingerprints can be cap-
tured in unconstrained environments and can be rotated around every axis.
Examples for contactless and contact-based capturing approaches can be seen
in Figure 1.

To ensure that contact-based feature extraction algorithms also function with
contactless fingerprints, contactless fingerprint images need to be preprocessed.
Feature extraction is one of the most crucial processing steps in fingerprint recog-
nition. Robust feature extraction strategies allow biometric systems to operate
at low error rates. Fingerprint features are typically divided into three levels
[19]:

— Level 1: the general orientation flow of the ridge pattern

— Level 2: minutiae features, special points e. g. bifurcations or ridge endings
in the ridge pattern

— Level 3: fine-grained patterns like sweat pores

In 2D contactless fingerprint recognition using commodity devices, level 3 fea-
tures are in general hard to extract since the resolution of capturing the sub-
system is mostly insufficient. Therefore, most proposals focus on level 2 features
e.g. [6,9].

Most contactless recognition workflows use feature extractors from the contact-
based domain, which are applicable for contactless fingerprint but lead to inferior
performance. On the other hand, elaborated feature extraction algorithms for
specific contactless capturing subsystems show a high performance [17]. How-
ever, no broad evaluation has yet been conducted in order to showcase feature
extraction performance on databases obtained from various capturing devices.
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Contactless fingerprint recognition is a complex and active field of research.
Chowdhury et. al conducted a review of deep-learning algorithms in the area
of contactless fingerprint recognition [5] and more recently, Mohamed-Abdul-
Cader et. al [20] presented a comparative overview of contact-based as well as
contactless 2D and 3D approaches with a focus on capturing and interoperability.

Several works propose dedicated contactless feature extractors. With Scat-
Net, Sankaran et. al [24] and Malhotra et. al [17] proposed a feature extractor.
They used group-invariant scattering networks [18], which refer to a filter bank
of wavelets that produce a representation which was shown to be robust to local
affine transformations. The authors extended the approach and compared their
ScatNet approach to a minutia-based baseline using VeriFinger SDK [21] and
Minutiae Cylinder Code [3] for feature extraction. They concluded that their
algorithm performed slightly better than the others.

Yin et. al [28] proposed a distortion-free feature representation using the
ridge count as a feature. While Kumar and Zhou [14] suggested a feature ex-
traction based on level 0 features, such as local texture patterns. However, most
literature still refers to only level 1, 2, and 3 features. In a more recent work,
Vyas and Kumar [26] suggested an improved scheme using minutiae comparison.

Jung and Lee introduced an approach to classify noisy and incomplete fin-
gerprints using local ridge distribution models. They divide the images into four
regions along the detected core blocks and use the distribution of the directional
values in each region. The fingerprint classification is conducted using local mod-
els [11].

Most existing proposals focus on level 2 features or define a new feature
level. While some level 3 feature proposals exist, they are unsuited for contact-
less fingerprints, since the needed resolution and quality are not yet achievable
for general contactless fingerprint recognition. To boost level-2-based fingerprint
recognition, level 1 features can be used. By determining if two samples belong
to the same level 1 characteristic, we can support level 2 match decisions in
case of uncertainty. There are some advantages of level 1 features that enable
their usage as support for level 2 match decisions. They are scale- and rotation-
invariant. Furthermore, level 1 features are extractable even from challenging
fingerprint images.

The ridge orientation flow feature is seen to have several advantages compared
to minutiae features [19, 13]. Level 1 features are rotation and scaling invariant.
This aspect is in particular relevant for unconstrained capturing scenarios where
rotations around every axis are possible. Level 2 features suffer from an inferior
performance caused by a high spatial distance between mated minutiae due to
differences in terms of scaling or rotation.

Furthermore, level 1 features are more robust against low-quality images
which are only partly captured, as long as the general pattern is discernible. Es-
pecially if the intersecting area between two mated samples is small, the number
of mated minutiae is small, thus the obtained comparison score is low. Here, the
recognition can benefit from level 1 feature analysis.
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Fig. 2: Examples of the five most common level 1 features. Samples are captured
using a contact-based capturing device. (From [19])

The ridge orientation flow as property of the entire fingertip area is less af-
fected by insufficiently captured or rotated fingerprint images. Most notably, this
feature extraction method is generally applicable without extensive preprocess-
ing or fine-tuning to a specific capturing setup. However, level 1 features cannot
be used as a standalone feature extractor rather than as an auxiliary metric
in addition to a level 2 feature extractor. So far, no proposal to level 1 feature
extraction in the contactless domain is known. For contact-based fingerprints, a
few investigations have been conducted [27]. To the best of our knowledge, no
proposal for level 1 feature extraction in the contactless domain with CNN-based
classification exists.

Therefore, we decided to explore level 1 features for contactless fingerprint
recognition using CNNs. Figure 2 depicts the five main level 1 characteristics, left
loop, right loop, whorl, arch and tented arch. It should be noted that some works
also consider double loops, or variations of whorls as level 1 characteristics [4,
19]. However, the fraction of double loops and other accidental patterns relative
to all fingerprint is very low. For further information the reader is referred to
[12].

We train two CNNs to classify real-world datasets and use NFIQ 2.2 scores to
iteratively exclude the lowest scoring samples. To use CNNs we need a balanced
training dataset. However, as the five level 1 base-characteristics are not uni-
formly distributed, finding suitable training datasets is hard. One of the biggest
challenges for contactless fingerprint recognition is the lack of sufficient training
data [16]. Hence, we decided on synthetic training data.

This paper is structured as follows: In section 2 we will introduce our pro-
posed method. In section 3 we elaborate the experimental setup and introduce
the real world databases used for testing our approach. section 4 will present our
results and explain the limitations of our approach. Finally, in section 5 we will
present our conclusion and possible future work.

2 Proposed Method

This section provides information on fingerprint recognition, CNNs and the Syn-
CoLFinGer algorithm.
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2.1 Used Convolutional Neural Networks

Our approach evaluates the performance of two CNNs — ResNet18 and SqueezeNet
which we are going to introduce in more detail.

ResNet The ResNet models are based on the approach introduced by Deep
Residual Learning for Image Recognition [8]. The authors point out the advan-
tages of residual representation for other research fields in computer science e. g.
low-level vision and computer graphics and conclude that residual representa-
tion might also simplify the optimisation for CNNs. They construct a residual
network by inserting so-called shortcut connections into a plain CNN. They im-
plemented various residual networks with different amount of layers: 34, 50, 101,
and 152. The 50, 101, and 152 layer models are more accurate than the 34 layer
one. Furthermore, the PyTorch library offers an implementation of a ResNet
model with 18 layers!. After running some test, we decided on ResNet18, as it
yielded the most promising results on our training data.

SqueezeNet SqueezeNet is a CNN that tries to achieve competitive accuracy
while keeping the network itself small [10]. The authors point out three advan-
tages of smaller models: First, they require less communication across servers
during distributed training. Second, they require less bandwidth to export a
new model to a client — e. g. from cloud to an autonomous car. And third, they
are more feasible to deploy on hardware with limited memory. They conclude
their work stating that they achieved their intended accuracy. They note that
SqueezeNet uses 50 times fewer parameters than other CNNs achieving this ac-
curacy.

2.2 Training Data Preparation

We decided to use synthetically generated contactless fingerprints as training
data to examine the usability of synthetic data as training data and ensure
a balanced training set for our experiments. To generate synthetic contactless
fingerprint images we used the SynCoLFinGer algorithm.

SynCoLFinGer is an algorithm introduced in 2022 [23]. It is based on SFinGe
[2] and transforms synthetic contact-based ridge line patterns into synthetic
contactless fingerprints. Shortly after the original algorithm was published, Syn-
CoLFinGer was extended to include the most frequent imperfections of con-
tactless fingerprints[23, 16]. In a first step, the SFinGe ridge line patterns are
deformed and transformed to the contactless domain through rotation and ridge
line thinning. The second step adds the subject characteristics to the ridge line
pattern, such as skin colour, skin tone variance, wounds, scars, or other derma-
tological issues which are longer lasting and do not change or disappear quickly.
During the third step, environmental influences such as shadow or illumination

! nttps://pytorch.org/vision/stable/models/resnet.html
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Fig. 3: Original SynCoLFinGer example images (From [23])

variance, dirt, sensor noise or ink stains are added. Dirt and ink stains can be
washed off easily, and shadows and illumination can change very quickly, e.g. if
one is on a train passing trees, while sensor noise is unique for each sensor and
therefore, changes every time a different sensor is used.

SynCoLFinGer images can be generated in different quality settings, enabling
the generation of a diverse training dataset with low- and high-quality images
[23]. Examples for these classes and qualities can be seen in Figure 3. We chose
SynCoLFinGer due to its fine-granular adjustability and its ability to generate
more than one sample for each subject.

However, SynCoLFinGer faces some limitations. E.g. the limited data valiance
and the current inability to generate only the upper part of the top phalanx.

3 Experimental Setup

This section will introduce the databases used for evaluating our experiments
and explain the experimental setup. We generated 12500 samples with 2500
images for each level 1 class. When training CNNs it is necessary to use uniform
distributed training data to avoid a training bias towards one of the classes.
Since level 1 features are not uniformly distributed it is hard to use real-world
databases for training.

3.1 Databases used for Evaluation

First, we will introduce the databases used for testing. Namely: ISPFDv1, PolyU
CB2CL, and two in-house databases: HDA and HDA-UniCa.

ISPFDv1 The ISPFDv1 database consists of four subsets: natural indoor, nat-
ural outdoor, white indoor, and white outdoor. Natural and white refer to the
background of the images. The white background is achieved by having a white
paper behind the photographed fingers [25]. Each of these four subsets is based
on 64 subjects with roughly eight samples per subject. From each subject, two
instances were captured: right index and right middle finger. The natural indoor
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Fig. 4: ISPFDv1 example images. (From [25])

(b) Left (c) Right ) Tented ) Whorl

Fig.5: PolyU CB2CL example images. (From [15])

subset consists of 1,010 samples of 64 subjects and their two entities, while nat-
ural outdoor consists of 1,016 images. White indoor has eight samples for each
instance (1,024 samples) while white outdoor consists of 1.015 images. Examples
for these images can be seen in Figure 4.

PolyU CB2CL The PolyU CB2CL database contains two sessions of both
contact-based and contactless fingerprints of up to 336 subjects. For each in-
stance, there are six samples per session [15]. As we are only interested in the
contactless data for this work, we focus on the 2016 contactless images in the
first and 960 images in the second session. PolyU CB2CL is the database with
the highest overall image quality, of those used for this work. The images do
not show the outline of the fingers but rather focus on the ridge line pattern.
Examples for these images can be seen in Figure 5.

HDA Database The HDA database [22] consists of contactless samples cap-
tured in two different setups: a constrained box-setup and an unconstrained
tripod-setup. For the capturing, the authors used two different smartphones. An
application automatically captured the four inner-hand fingers and processed
them to fingerprint samples. Both setups have 28 subjects, but the number of
instances and samples varies, resulting in 452 samples in the constrained subset
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Fig.6: HDA example images. (From: [22])

(b) Left Loop  (c) Right Loop (d) Tented (e) Whorl

Fig. 7: HDA-UniCa example images (preprocessed).

and 445 samples in the unconstrained subset. Example images? can be seen in
Figure 6.

HDA-UniCa Database The HDA-UniCa Database includes two subsets: The
first subset is captured using the same setup like the HDA database. Here, 17
subjects were captured in five sessions using a smartphone. The capturing was
carried out in an attended scenario where a second person handles the capturing
device. The second subset is a contactless stationary dataset which was captured
using a Secugen Hamster Air capturing device. Here, all ten fingerprints were
captured in five sessions per fingerprint. Samples from 21 subjects were captured
in 5 sessions resulting in 1.050 samples. Examples of these images can be seen
in Figure 7.

Each database is captured in different environments and the quality of the
databases varies. While PolyU CB2CL is constrained in its capturing, resulting
in higher quality images, ISPFDv1 is more challenging. As mentioned, ISPFDv1
consists of indoor and outdoor subsets. The outdoor images are challenging due
to their difference in lighting and shadows, while the indoor images are taken in
an environment with less light, which the camera has to compensate for. The
HDA database is also divided into a constrained and unconstrained subset, of
which the unconstrained one is more challenging. For the HDA-UniCa database,

2 No subject with arch or tented arch characteristics consented to their pictures being
published.
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some samples have a darker area in the center of the ROI on most fingerprints,
as can be observed in Figure 7.

3.2 Preprocessing

All fingerprint images are preprocessed using the same preprocessing method.
We use the Contrast Limited Adaptive Histogram Equalization (CLAHE) on a
grey scale converted fingerprint image to emphasise the ridge-line characteristics.

Experiments have shown that some feature extractors might detect many
false minutiae at the border region of contactless fingerprint samples. Therefore,
we crop approx. 15 pixel of the border region. Furthermore, the segmentation
mask is dilated in order to reduce the size of the fingerprint image [22].

3.3 Convolutional Neural Networks

We tested the two previously introduced CNNs for general purpose image classifi-
cation and fine-tuned them to the special purposes of fingerprint ridge orientation
flow classification.

In comparison to other CNNs, rather shallow networks like the considered
SqueezeNet and ResNet18 have shown to achieve a higher accuracy on a rela-
tively small amount of training data [1]. As mentioned in section 2, SynCoLFin-
Ger was used to generate the training data. Using this algorithm it was possible
to generate disjoint sub-databases for each of the five level 1 feature classes. De-
spite the fact that level 1 characteristics are not equally distributed in real finger-
prints, we train the algorithms on uniformly distributed sub-databases in order
to avoid a bias to a certain class. We evaluated our methods on the ISPFDv1,
PolyU CB2CL, and the two in-house databases. The evaluation databases were
labelled manually. It should be noted that all databases also contain a contact-
based subset and have a 6 — 10 samples per fingerprint instance. This makes a
manually labelling precise and efficient, since more reference images are available
if one sample is of such low quality that it becomes indiscernible.

All considered databases are pre-processed using the same method. In addi-
tion, we cropped a centred patch of 224x224 pixels from every sample in order
to make the data suitable for the chosen CNNs. Figure 8 presents a sample
training-image for every class.

The training and validation is exclusively conducted on synthetic samples
whereas the methods are only tested on real data. The database which performs
best contains 2,500 training samples per class which results in a total size 12,500
samples. The SynCoLFinGer parameters are set to generate final samples of
rather heterogeneous quality. Since SynCoLFinGer already uses slight rotations
in its generation process only a zooming augmentation is added to the images.
The models are trained for up to 30 epochs using a learning rate 0.001. During the
training ResNet18 achieves a validation accuracy of 96.96% whereas SqueezeNet
has a validation accuracy of 97.16%.
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Fig. 8: Example images of correctly classified (a — e) and incorrectly classified
images (f — j) using ResNet18. It should be noted that both samples from the
class "arch” (d) and (i) are from the same subject. (From: [25])

4 Results

This section will introduce our results and used metrics. We report our results
as Classification Error Rate (CER) which is computed as follows:

CER = sic/5an
where s;. refers to incorrectly classified samples and s,;; refers to all samples in
the test set.

It should be noted that the classification error is reported over all classes.
Further, we use the NFIQ 2.2 quality assessment algorithm to identify samples
of low quality. In our experiments, we iteratively exclude samples with the low-
est quality score and report the classification error on the remaining subset. In
comparison to reporting the accuracy, the CER can precisely analyse the impact
of low sample quality on the classification accuracy and hence define opera-
tional thresholds. If the whole database is considered, both evaluated algorithms
achieve a rather low classification accuracy. In general, SqueezeNet achieves more
stable results on all databases than ResNet18. However, the ISPFDv1 database
performs better with ResNet18. The largest difference can be observed from the
PolyU CB2CL database. In general the PolyU CB2CL database has a high sam-
ple quality and should be rather easy to classify. However, it should be noted that
the synthetic training database is not designed to represent the samples included
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in the PolyU CB2CL database which, as previously mentioned, are captured by
a stationary differential light method.

The HDA database shows high CERs. Here again, SqueezeNet performs
slightly better but a CER around 0.4 is in general too high to have a positive
effect on a recognition system. It should be noted that especially the ISPDFv1
and the HDA database contain many samples which are considered challeng-
ing due to their low image quality. For this reason, we use NFIQ 2.2 scores to
exclude samples of low quality from the experiment and explore how the CER
changes. From Figure 9 we can observe that there is a strong correlation be-
tween NFIQ 2.2 scores and the CER. Specifically meaning, the CER decreases
once lower quality samples are excluded. From this observation we can conclude
that the proposed algorithm is in general functional but faces challenges, espe-
cially to correctly classify samples of low quality. Therefore, a quality threshold
should be defined to reject low-quality samples. In an operational scenario, this
threshold should be selected carefully in order to not force too many capturing
attempts while maintaining a low CER.

Table 1 and Table 2 show CER and fraction of rejected samples for distinct
NFIQ 2.2 scores. We observe, that the NFIQ 2.2 threshold is varying between the
different databases which due to the different capturing methods and the general
usability of the samples. Additionally, the tested algorithms perform differently.

Figure 9 illustrates the correlation of CER and excluded samples. Further-
more, by visualising the trade-off over the NFIQ 2.2 scores, feasible NFIQ 2.2
score thresholds for each database become more apparent.

Considering the SqueezeNet algorithm tested on the ISPFDv1 database, at
a NFIQ 2.2 score of 10, already 16% of the samples are excluded whereas 78% of
the samples are correctly classified (CER = 22%). Here, higher NFIQ 2.2 values
lead to a large portion of excluded samples and hence to a low benefit in an
application scenario. However, considering the challenging characteristic of the
database, the method could support a minutia-based recognition workflow.

The HDA database in general consists of images with slightly better qual-
ity scores compared to the ISPFDv1 database. However, the classification ac-
curacy is relatively low until 35% of the samples are excluded, which is then
22% (at NFIQ 2.2 of 30). Here, the proportion between the excluded samples
and correctly classified samples is not sufficient to have a positive effect on the
recognition accuracy.

For the PolyU CB2CL database only a very few samples are excluded until a
NFIQ 2.2 score of 20. This indicates that the capturing process is rather robust.
The CER remains over 20% until more than 30% of the samples are excluded.
Which is double the fraction of excluded samples in comparison to ISPFDv1,
but still outperforms the HDA database. It should be noted that the impression
of the samples included in the training database is highly different compared to
the PolyU CB2CL database and for this reason, the classification performance
is inferior compared to the other databases.

The HDA-UniCa database has a more uniform distribution of NFIQ 2.2
scores, which is indicated by the almost linear line of fraction excluded samples
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Fig.9: Classification error which is made by excluding samples according to
NFIQ 2.2 score. The ”fraction excluded” indicates the fraction of excluded sam-
ples. The CER indicates the classification error made considering only samples
with a NFIQ 2.2 score above the threshold.

in Figure 9. It performs similar to PolyU CB2CL with our trained SqueezeNet
model, achieving a CER of roughly 20% when excluding approximately 30% of all
samples. Due to its automated capturing method several samples are only partly
captured while the image is still focused. Although level 1 feature classification is
relatively robust to partly captured images, if only the upper part of the fingertip
is captured, no level 1 characteristic can be derived from that image forcing the
trained model to guess.

ResNet18 performs better for ISPFDv1, but worse for all other databases. In
detail, the ISPFDv1 database performs slightly better with the ResNet18 algo-
rithm (17.93% CER and 15,89% excluded samples at a NFIQ 2.2 score of 10). In
contrast, both other databases perform slightly worse compared to SqueezeNet.
The CER of the HDA database is 25.75% (35.34% excluded samples, NFIQ 2.2
score of 30) and the PolyU CB2CL shows a CER of 20.33 with 56.96% of ex-
cluded samples (NFIQ 2.2 score 50). Here, the HDA-UniCa database performs
close to HDA database. From this we can summarise that the combination of
database and classification algorithm should be selected carefully.

As it was shown in Table 1 and Table 2 this approach still faces many limi-
tations.

The first notable limitation is the lack of variety in our training data. While
SynCoLFinGer is able to generate a variety of different quality presets and also
models the most common imperfections, all of these images show complete fin-
gerprints. In reality, at least some images show only partial fingerprints and in
case of PolyU CB2CL, all images are cropped to the region of interest. There-
fore, an algorithm capable of generating more diverse images in terms of partial
visibility or cropped region of interest might improve the results.
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Table 1: Overview on the number of excluded samples, fraction of excluded
samples, the number of false classified samples and the classification error at
certain NFIQ 2.2 scores using SqueezeNet.

NFIQ 2 Score 0 10 20 30 40 50 60 70 80 90 100
 No. Excluded 0 646 2,112 2,884 3,311 3,625 3,861 4,012 4,061 4,064 4,065
A False Classified 1,159 914 438 248 151 87 33 6 1 1 0
E Frac. Excluded 0.00 15.89 51.96 70.95 81.45 89.18 94.98 98.70 99.90 99.98 100.00
2 CER 28.51 22.48 10.77 6.10 3.71 2.14 0.81 0.15 0.02 0.02 0.00

No. Excluded 0 19 105 317 579 754 822 862 885 895 897
g False Classified 345 334 297 201 93 39 12 4 1 0 0
T Frac. Excluded 0.00 2.12 11.71 35.34 64.55 84.06 91.64 96.10 98.66 99.78 100

CER 38.46 37.24 33.11 22.41 10.37 4.35 1.34 0.45 0.11 0.00 0.00
5 No. Excluded 0 2 27 256 822 1,695 2,589 2,941 2,976 2,976 2,976
>, False Classified 1,028 1,026 1,009 831 607 309 86 12 0 0 0
E Frac. Excluded 0.00 0.07 0.91 8.60 27.62 56.96 87.00 98.82 100 100 100
CER 34.54 34.48 33.90 29.60 20.40 10.38 2.89 0.40 0.00 0.00 0.00
s No. Excluded 9 103 207 314 444 592 751 910 1,011 1,050 1,050
O False Classified 376 319 267 212 154 106 68 31 10 0 0
= Frac. Excluded 0.86 9.81 19.71 29.90 42.29 56.38 71.52 86.67 96.29 100 100
= CER 35.81 30.38 25.43 20.19 14.67 10.10 6.48 2.95 0.95 0.00 0.00

(a) Blurry (¢) Third

Fig. 10: Bad fingerprint examples

The second notable limitation is derived from the first. Since many images
only show partial fingerprints, the region of interest might not be visible. If only
the upper half of the fingerprint is captured, it might not be possible to classify
these samples. Examples for partial fingerprints can be seen in Figure 10b and
Figure 10c, while Figure 10a shows a blurry image. As already mentioned, the
HDA-UniCa database contains many partial fingerprints which are the result of
the automatic capturing approach. However, these images can still have a high
NFIQ 2.2 score since the score is related to the image quality (like sharpness)
instead of image completeness. Therefore, another quality measure might be
needed to be able to exclude all unclassifiable images without excluding images
that can be classified.

5 Conclusion and Future Work

Level 1 classification is a viable tool to support contactless fingerprint recogni-
tion. Our first investigations into the topic showcase that deep-learning methods
like CNNs are able to classify the five main orientation flow patterns. Especially
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Table 2: Overview on the number of excluded samples, fraction of excluded
samples, the number of false classified samples and the classification error at
certain NFIQ 2.2 scores using ResNet18.

NFIQ 2 Score 0 10 20 30 40 50 60 70 80 90 100
= No. Excluded 0 646 2,112 2,884 3,311 3,625 3,861 4,012 4,061 4,064 4,065
A False Classified 953 729 354 208 138 76 28 4 0 0 0
E Frac. Excluded 0.00 15.89 51.96 70.95 81.45 89.18 94.98 98.70 99.90 99.98 100
2 CER 23.44 17.93 871 5.12 3.39 1.87 0.69 0.10 0.00 0.00 0.00
No. Excluded 0 19 105 317 579 754 822 862 885 895 897
é False Classified 399 383 339 231 106 41 18 6 1 0 0
T Frac. Excluded 0.00 2.12 11.71 35.34 64.55 84.06 91.64 96.10 98.66 99.78 100
CER 44.48 42.70 37.79 25.75 11.82 4.57 2.01 0.67 0.11 0.00 0.00
No. Excluded 0 2 27 256 822 1,695 2,589 2,941 2,976 2,976 2,976
’2 False Classified 1,491 1,490 1,473 1,317 1,013 605 184 20 0 0 0
E Frac. Excluded 0.00 0.07 0.91 8.60 27.62 56.96 87.00 98.82 100 100 100
CER 50.10 50.07 49.50 44.25 34.04 20.33 6.18 0.67 0.00 0.00 0.00
< No. Excluded 9 103 207 314 444 592 751 910 1,011 1,050 1,050
O False Classified 446 405 354 304 246 171 103 48 13 0 0
= Frac. Excluded 0.86 9.81 19.71 29.90 42.29 56.38 71.52 86.67 96.29 100 100
P CER 42.48 38.57 33.71 28.95 23.43 16.29 9.81 4.57 1.24 0.00 0.00

the low CER for the ISPFDv1 database tested on ResNetl8 demonstrates the
functionality of the methods.

However, the classification accuracy in our case is at the current state of re-
search not sufficient to benefit in an operational scenario. The results obtained so
far indicate that a more detailed understanding of the issue is required. This in-
cludes a proper configuration of the SynCoLFinGer generated training database
in order to support an effective learning process. Also further investigations
should focus on a deeper understanding of the problem, e.g. the number of er-
rors made by the individual classes and types of error the systems make, and if
a general trend is observable. We have shown that samples of the classes arch
and tented arch can be rather similar and are hard to distinct even though the
general sample quality is high. Here, it might be feasible to investigate a fusion
of classes to create a more robust system. However, with this work, we have
shown that using CNNs trained on synthetic contactless fingerprint samples is
a feasible approach for level 1 feature classification.

We mentioned the limitations of our approach, which coexist with possi-
ble future work and research directions. Especially, alternative quality measures
for excluding low-quality samples should be explored. Additionally, more di-
verse training data could prove beneficial. Using other generation algorithms
like StyleGAN or adjusting the preprocessing of SynCoLFinGer to achieve a
broader variance in training data, will most likely have a positive effect on the
trained models. Therefore, augmenting the data with real data could also be
a promising approach. Furthermore, using other CNNs might also be feasible.
While ResNet18 and SqueezeNet have shown to achieve good performances with
limited training data, SynCoLFinGer is able to generate bigger training sets if
needed.
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