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Abstract. In realistic mathematics education students expand their
common sense through guided reinvention, aiming to prevent the di-
chotomy between what the students experience as real and the asso-
ciated mathematical model. The mathematics curriculum is, however,
often comprehensive and ambitious, and many students will find it chal-
lenging to develop the required skills and knowledge. In order to solve
the complicated problems required at exams, students and teachers will
yield to memorizing formulas and procedures, letting large parts of math-
ematics education reside in the formal mathematical model. In this paper
we propose to utilize programming as an intermediary between the real-
world problems and formal mathematics, not merely as a tool to solve the
problems or find approximate solutions, but to increase understanding
and to guide the student’s mathematical reinvention.

Keywords: Realistic Mathematics Education · ICT in Education · Pro-
gramming in Mathematics · Programming for Relational Understanding

1 Introduction

Skills and knowledge about digital tools, algorithmic thinking and programming
are recognized as vital in many subjects, including science, technology, engineer-
ing, and mathematics [14]. Programming is introduced in school curriculum on
a national or regional level in many countries, aiming to develop the student’s
analytical abilities and problem solving skills necessary to learn, work and live in
the society of the future [19]. Skills in computational thinking helps the students
approach problems with a computational perspective, adapting their thinking
processes to align with the algorithms of a computer [1]. Some schools include
programming in the curriculum as a separate subject or study discipline, while
others include it as part of other subjects, often mathematics. In addition to
programming, various digital tools and games can be utilized in mathematics
education such as for example the game Dragonbox which is used to teach equa-
tions [25], spreadsheets such as Microsoft Excel which is used to teach diagrams
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and graphs, how to sort and structure information, budgeting and accounting
[24], GeoGebra which is used as a graphic calculator including CAS and a dy-
namic tool for drawing geometric figures in the plane. Various programming
languages, both text based and block-based, can be applied for teaching various
topics in mathematics and solving problems.

The value of programming and computational thinking in school curriculum
has been argued for by many [28]. However, this paper proposes that program-
ming can be used as an intermediary for understanding classical school math-
ematics (such as calculus and geometry). We argue that programming has the
potential to facilitate new connections between formal mathematics and the real
world [9], contributing to bridge the gap between reality and the mathematical
model. Programming is a powerful tool to derive the results of many mathemat-
ical problems, such as applying numerical methods for computing quantities like
the derivative and the integral, but the computational perspective can also be
useful for understanding and comprehending the fundamental concepts.

In the following section, we first discuss the gap that can arise between the
island of formal mathematics and the mainland of real human experiences [18]
affecting both motivation and mathematics performance. We explain how pro-
gramming can be used as an intermediary to bridge or diminish this gap. The
use of simulators and simulation for teaching purposes are discussed in Section 3.
We present an example of a mathematical simulator which calculates compound
interest by ”walking through” a scenario one year at the time. We also provide
an example to illustrate how a coin-toss simulator can facilitate the reinvention
of the law of large numbers. Through repeated simulations, the students can
experience and observe how the results develop when the number of iterations
increases. In Section 4, challenges related to how students deal with infinity and
the concept of limits are also discussed, and we provide examples of simple algo-
rithms to calculate definite integrals. In Section 5, we explain how mathematical
objects can have different representations, and argue that an algorithmic ex-
pression can be a useful supplement to the other more common representations
such as graph, table and formula. Finally, challenges and limitations with pro-
gramming in mathematics education are discussed in Section 6, and concluding
remarks are offered in Section 7.

2 The Island Problem

Kaput [18] emphasizes the gap between the island of formal mathematics and the
mainland of real human experiences (see Figure 1) and discusses how authentic
experiences can be linked with formal representations. The translations between
the student’s real-world environment and the mathematical model environment
are often non-trivial, and challenges associated with this translation is perhaps a
contributing factor to a large part of mathematics education resides in the formal
mathematical model. Education focuses on manipulations of formulas failing to
convey the basic concepts which are non-trivial [6,5]. Students end up being able
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to solve complicated mixed differentiation problems, and at the same time being
unable to apply differentiation to simple real-world situations.

Fig. 1: Kaput [18] emphasizes the gap between the island of formal mathematics
and the mainland of real human experiences.

Realistic mathematics education (RME) [10] aims to let formal mathematics
emerge through mathematical activity, exposing students to problems which are
experimentally real to them [12]. This includes pure mathematical problems
as long as the problem offer the student a context making it experimentally
real for the student. Through mathematical activity, students can expand their
common sense and reinvent mathematical theory. Common sense is (in a sense)
the primordial certainty, Freudenthal [10, p. 6] explains. But one should be
careful not to be deceived by it. Based on a few datapoints, humans very quickly
find patterns which are useful and prove to be correct in some cases, but does
not hold generally [17].

To bridge or diminish the gap between everyday experiences and formal
mathematics, we propose to use a programming environment as an interme-
diary. The assumption is that a translation from the real-world environment to
a programming environment can be easier to implement and comprehend. When
the student is able to formulate and solve the problem or find an approximate
solution in the programming environment, it can be translated and represented
as a mathematical model.

A sketch of the proposed approach is shown in Figure 2. The figure is partly
adapted from Wubbels et al. [29], which includes both the real-world and the
mathematical model environment. Wubbels’ model illustrates the mathemati-
cal inquiry process where a real-world problem is translated to a mathematical
model where it is solved using mathematical techniques. The solution is then
translated back to the real-world environment, and the student reflects on mer-
its and restrictions associated with the problem [29]. We add a programming
environment to this model as a proposed intermediary in the translation be-
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Fig. 2: A model of problem solving which encompasses the translation of a real-
world problem to a mathematical formulation, with programming as a potential
intermediary. The diagram is adapted from Wubbels et al. [29] which does not
include the programming environment.

tween reality and the mathematical model. In the following, we illustrate the
presented model by presenting a set of classical mathematics problems, and
show how programming can be utilized to solve these problems by repeatedly
performing simple operations.

3 Simulation and Simulators

The use of high fidelity simulators for training and education is well-established
in many areas such as for example driving or surgery. But can we benefit from
utilizing simulators in mathematics education? Driving or surgery simulators
offers realistic replication of the real-world environment [4]. Here, students face
real-world-like problems which they solve in a real-world-like environment. As
long as the simulators are sufficiently realistic, the transfer of learning between
the simulator environment and real-world is straightforward. In mathematics
education, however, the translation is not always apparent.

3.1 Example: Computer-Simulated Vehicles

Kaput [18] investigates how computer-simulated vehicles with velocity and/or
position versus time displays can be utilized to link the phenomenological ev-
eryday experience of motion in a vehicle to more formal representations. He
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explains how the students can utilize the computer-simulated vehicles and their
associated graphs to answer questions regarding distance measurement and area
estimation. Generalizing the acquired knowledge to answer other problems such
as comparing the motion graphs to that of pay raises [18] is perhaps possible,
but far from trivial.

3.2 Example: Compound interest

Calculation and understanding of compound interest is another topic where stu-
dents can benefit from programming activity. In a mathematical model, com-
pound interest can be expressed as

c = p ·
(

(1 + r)n − 1
)
, (1)

where c is the compound interest, p is the principal loan, r is the interest rate
and n is the number of compounding periods. To many students, this expression
resides on an isolated island of formal mathematics. Even students who can easily
calculate the interest rate for one period, will not perceive compound interest as
common sense.

By simulating this scenario, ”walking through” each period and performing
the calculations step by step, the student can gain understanding and connect
the mathematical problem to the real-world problem. This simulation can be of
various forms and a range of tools can be applicable including mental models
and pen and paper. Spreadsheets are also well suited for this problem, however
translating the acquired understanding and knowledge to the mathematical for-
mal model is challenging. To solve this problem in a programming environment,
a loop can be applied simulating each period performing the ”common sense”
calculations repeatedly. Text-based programming can be used (see Algorithm
1 for a Python implementation) as well as block-based environments such as
Scratch [22]. A ”walk” from period to period can be simulated, allowing the
student to observe the effect of the compound interest.

3.3 Example: Coin toss simulator

When introducing probability, a coin toss experiment can be conducted where
a (fair) coin is tossed repeatedly. Through this experiment, the student can
experience that the probability of heads approaches 0.5. However, a student
will often need to toss the coin many times before she is convinced that the
number of heads divided by the number of tosses will converge at 0.5. With 100
coins flipped, the probability of less than 40 or more than 60 heads is 3.5 %.
Hence, after 100 trials, many students will not have experienced a convergence
towards the true probability. A solution, of course, is to increase the number of
trials in the experiment. This is time consuming, but practically feasible through
collaboration. If now it is common sense to the student that the probability of
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Algorithm 1: Calculating compound interest: Simulating a walk
through each year, adding interest

1 nof_years = 10 # number of iterations

2 interest = 0.04 # interest rate

3 principal = 5000 # loan in year 0

4 current = principal # loan in year n

5

6 for n in range(0, nof_years): # loops through all iter.

7 new = current*interest # additional this year

8 current = current + new # updates loan

9

10 print(’Loan after year’, n+1, ’is: ’, current)

heads in one coin toss is 0.5, will it be straight forward to calculate the probability
of two heads in two tosses? Or three heads in five tosses, given that the first one
is heads? We cannot repeat the physical experiment again for each new problem.
But programming can help us out. With a few simple lines of code, the student
can implement this experiment and increase the number of iterations until she
is convinced that the theoretical probability equals the result in the simulated
experiment.

Algorithm 2: Tossing one coin

1 from random import randrange

2

3 nof_trials =10000 # number of iterations

4 nof_heads =0 # counts the number of heads

5

6 for n in range(nof_trials): # loops through all iter.

7 coin=randrange (0,2) # returns random 0 or 1

8 if coin ==1: # if coin is heads

9 nof_heads +=1 # updates the counter

10

11 print(nof_heads/nof_trials) # prints the result

Algorithm 2 shows how the experiment with one coin can be modelled in the
programming language Python. In line 1, the randrange function is imported
from the random package. This function allows us to pick the integers 0 and 1
randomly, and we let 1 represent heads and 0 represent tails. The program is
initialized with the number of tosses specified by the user (line 3) and number
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Algorithm 3: Tossing two coins

1 from random import randrange

2

3 nof_trials =10000 # number of iterations

4 nof_heads =0 # counts the number of heads

5

6 for n in range(nof_trials): # loops through all iter.

7 coin1=randrange (0,2) # returns random 0 or 1

8 if coin1 ==1: # if coin is heads

9 coin2=randrange (0,2) # returns random 0 or 1

10 if coin2 ==1: # if coin is heads

11 nof_heads +=1 # updates the counter

12

13 print(nof_heads/nof_trials) # prints the result

of heads are set to zero (line 4). The program loops through all tosses (line 6 -
9) and in each iteration a coin is tossed, and the function randrange returns an
integer 0 or 1 (in the range [0, 2)) and the number of heads are updated when
the random number is equal to 1. Finally, the results are printed. By slightly
changing the lines of code, we can calculate the probability of two heads in two
tosses (Algorithm 3). If the first coin is heads, we toss the coin one more time
(line 9), and if this is heads as well, we update the counter (line 11).

Following this algorithmic approach, it is easy for the student to build a
mental version of the situation [13]. The code loops through the experiment in
a way that correspond to the real-world situation, such that all steps remain
common sense to the student. In contrast, explaining that the probability of two
coins in two tosses equals the probability of heads in toss one multiplied by the
probability of heads in toss two is more challenging.

4 Dealing with infinity and infinitesimals

Although we find physical meaning to many natural numbers, such as the number
of fingers on your hand, Hersh [15] argues that if you pick a very large natural
number (such as 2 to the power of a very large number raised to the power of
a very large number), it is questionable what physical meaning such a number
has. Hence, the natural numbers are part of an abstract theory. Yet, as long
as the students can relate mathematics to the physical world, connecting the
number to a physical observation, most students will experience it as ”common
sense”. Ernest [8] argue that ”If you value mathematics as we know it [...] you
cannot help maintaining that infinitely many mathematical objects exist, and
some of them may justly be described as infinitely large or infinitely small,
infinitely far or infinitely near.” But what would you answer if someone ask
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where and how all these infinities are piled up? Understanding and working
with the concept of infinity (a quantity that is larger than any standard real
number) and infinitesimals (a nonzero quantity that is closer to zero than any
standard real number) is challenging for many students.

Inspired by the history of mathematics, Gravemeijer and Doorman [12] ex-
plain how the development of calculus started with modeling everyday problems
of the real-world concerning distance and velocity. These problems were initially
solved using discrete approximations and discrete graphs, which later were gen-
eralized for the continuous case, forming the basis of calculus. A key challenge for
many students is the translation of a discrete real-world problem to the math-
ematical modeling environment where the problem is solved using methods for
continuous mathematics (calculus). Gravemeijer and Doorman [12] explain that
the discrete functions played a key part as intermediary in the original develop-
ment, and hence argue that this should be essential in the students’ reinvention.
However, at some point the discrete or approximate solution must be translated
to the mathematical formulation of continuous mathematics, a translation which
is challenging to many. Programming is a powerful tool that can aid the student
in testing many more cases than what is practically feasible with manual calcula-
tions. It is easy to increase or decrease the number of iterations, and to visualize
how this affects the results. Altogether, this mathematical activity can aid the
student in understanding, or at least accepting, the translation from the discrete
to the continuous case.

4.1 Example: Definite integrals

Let us illustrate with an example. To approximate a definite integral of f(x)
from a to b of a real-valued function f(x), we can sum rectangles under the
curve. We let the width of the rectangles approach zero, and the the number
of rectangles approach infinitely, which gives the definite integral defined as the
limit of a Riemann sum;∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

(
f(xi)

b− a

n

)
. (2)

It is not possible to calculate the area of these rectangles, even if we continue
forever. A computer cannot compute an infinite number of operations or deal
with infinitesimals. It can, however, compute an arbitrary large or arbitrary small
number. Hence, algorithms can find approximate solutions. We can approximate
the definite integral, following the approach of summing rectangles, but now we
sum finitely many. In general, we will not find the exact solution, but we can
get arbitrary close by increasing the number of rectangles (n) and reducing the
width of the rectangles (b− a).

When introducing students to the derivative or integral, tall [27] explains
that many would argue that first the limit concept must be understood. But in
the student’s mind the introduction of the limit concept would appear for no
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Algorithm 4: Numeric integration of
∫ b

a
x2dx for a = 3 and b = 5 using

the rectangle method

1 a=3 # starting point

2 b=5 # ending point

3 n=100 # number rectangles

4

5 def f(x): # defining the functions

6 return x**2

7

8 width=(b-a)/n # the width of all rectangles

9 A=0

10

11 for i in range(0,n):

12 height= f(a+width*i) # the height of this rectangle

13 A=A+height*width # add rectangle to total area

reason at this point. Alternatively, the student can first be exposed to a more
qualitative, global introduction of the mathematical concepts [12]. For example,
the student can first calculate the distance covered by a car traveling at constant
speed, experiencing that this equals the area under the speed curve which can be
found by calculating the area of a rectangle. Expanding the students’ common
sense, the students can gradually be exposed to more complicated speed graphs.
In the most trivial cases with constant speed (and zero acceleration) setting up
a physical experiment is quite easy. Many students will also be able to create
a mental model [13] of such situations. However, if the acceleration is different
from zero, or even dynamic, the speed can change throughout the experiment,
and many students will struggle to construct accurate mental models. Here pro-
gramming can be a powerful aid. The students can model and visualize the
situation, and results and parameters can be updated simultaneously, allowing
the student to ”experience” or ”witness” how it all interconnects. The students
can play with the parameters of the model and see how changes in one parameter
affects the results. The rectangle method used to approximate definite integral
is fairly straight-forward to implement, see Algorithm 4. With this method at
hand, the students can experience how changes in the speed curve affects the
calculated distance between a and b and experience that this equals the area
under the curve. Furthermore, they experience how the width of the rectangles
((b− a)/n) influences the accuracy of their estimates.

5 Algorithmic Representations

Duval [7] explains how, in other fields of knowledge such as physics, astron-
omy and geology, we can often gain perceptual and instrumental access to the
phenomena we study without the use of semiotic representations. Formulas and
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graphs can certainly be useful when we describe the motion of a car, but it is also
possible to study the car’s motion by driving. In mathematics, however, there
is ”no other ways of gaining access to the mathematical objects but to produce
some semiotic representations” [7].

When teaching and studying functions, in school textbooks and other teach-
ing materials, it is common to explore different representations [11]. Janvier [16,
Ch. 3] identifies four different representations commonly used in teaching situ-
ations, that is verbal situation, table, graphs and formula. “Translation skills”
required in order to move from one representation to another are also identified
[23, p. 58]. Gagatsis and Shiakalli [11] argue that most researchers agree that
translation ability is important for the learning of mathematics. In their study,
they find that the ability to translate between the different representations of a
function is associated with success in problem solving.

Some students fail to translate between the different representations because
they lack the fundamental understanding of what a function is. Sometimes, how-
ever, the challenges with translating from one representation to another is not
not due to lack of understanding, but rather due to complexity of the function.
In statistics and machine learning, when regression or data-driven methods are
used to identify the relationship between variables based on a dataset, the rela-
tionship can be very complicated making it impossible for humans to understand
or predict the outcome [2], although various methods from the field of explain-
able artificial intelligence [3] are developed to help the user to gain insight into
the model.

In addition to the four representations described by Janvier [16, Ch. 3] (situ-
ation, table, graph and formula) a function can be formulated in a programming
language. Our belief is that in some situations this expression can be easier to
identify. For example the area A of a square with side lengths i ∈ {1, 2, . . . , N}
can be calculated by adding 2i− 1 to the previously calculated area. For exam-
ple, the area A of a square with side length N ∈ N can be calculated by adding
2N−1 to the area of the square with side lengths N−1. From this, we can obtain
an incremental algorithm for calculating the area, as shown in Algorithm 5 and
Figure 3.

Algorithm 5: Area of a square for i ∈ {1, 2, . . . , 100}

1 A=0

2 for i in range (1 ,100):

3 A=A+i*2-1

4 print(A)

Although it is considered useful to work with different representations, stu-
dents are of course not faced with all representations in every situation. Some-
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(a) i = 1 (b) i = 2 (c) i = 3 (d) i = 4

Fig. 3: Area of a square with side lengths i. For each increment of i, the area
increases by 2i− 1.

times, for example at an introductory level, focusing on a table and situation,
and the translation between these two representations, can be suitable.

6 Discussion

If the goal of introducing and teaching programming is increased performance
in mathematical relational understanding [26] and ability to solve problems in
a traditional mathematics curriculum, is it then worthwhile? Will programming
benefit student achievement in mathematics more than traditional mathematics
education? For future research we intend to explore this by conducting compara-
tive experiments. This is challenging, and although previous studies have shown
positive effects on mathematics performance, the results are difficult to gener-
alize [9]. As programming and mathematics are tightly interconnected, activity
in one domain will often influence performance in the other. Hence, it is not
enough to measure a positive correlation between programming activities and
mathematical knowledge and skills. We also have to consider to what degree the
programming activity and teaching contribute to relational understanding, and
compare the effectiveness of programming as a strategy to increase mathematical
performance.

Several studies indicate that programming and computer games activities
lead to positive effects on the students’ attitudes, including self-confidence, value,
enjoyment, and motivation, towards mathematics [20]. Based on a review of 15
selected articles, Forsström and Kaufmann [9] argue that some studies found that
programming improved the students’ motivation. It was however not possible to
generalize these results. This was partly because the programming activities
reported in the studies were different from regular classrooms activities. Fur-
thermore, they did not report how motivation developed when the programming
activity was integrated into normal classrooms routines.

Lindh and Holgersson [21] studied the effect of a one-year regular robotic
toys training and found no obvious over-all effect on the pupils’ ability to solve
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mathematical and logical problems, although significant positive effects for sub
groups of pupils were reported. Different programming activities will affect the
students’ mathematics performance differently. How programming is introduced
and taught is also of importance.

7 Conclusions

In the beginning of this paper, we discuss challenges related to the gap between
formal mathematics and the learner’s real-world experiences. We also argue that
mathematical activity and guided reinvention can facilitate new knowledge and
skills. Nevertheless, teachers will experience that when guiding students in their
reinvention, many students will fail to reinvent formal mathematics, and formal
mathematics can be perceived as an island which is separated from the mainland
of real-world experiences.

This paper proposes that programming can be utilized in bridging this gap.
This is illustrated by a set of classical mathematics problems which we solve
using algorithms consisting of non-complex operations which are performed re-
peatedly. For example when teaching probability, the students can toss a set of
coins repeatedly to estimate its probability distribution (equal probability for
heads and tails). But the number of times a student can toss a set of coins is
limited. Computers, however, don’t get bored or tired, and we can utilize this to
perform simple tasks or instructions repeatedly. Similarly, students can experi-
ence and observe how the sum of rectangles under a curve will converge to the
area under the curve as the number of rectangles is increased (and the width
of each rectangle is decreased). Integrals are perceived as abstract and complex,
but the rectangle method is only a collection of non-complex operations which
are performed repeatedly.

Through programming, the students can experience and observe how the
results develop when the number of iterations increases. Our proposal is that
this repetition can serve as a powerful didactic technique which can facilitate
understanding and comprehension of formal mathematical concepts.
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