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Abstract

In the last decades, emerging techniques for face Presentation Attack Detection (PAD)
have reported a remarkable performance to detect attack presentations whose attack type
and capture conditions are known a priori. However, the generalisation capability of PAD
approaches shows a considerable deterioration to detect unknown attacks. In order to
tackle those generalisation issues, several PAD techniques have focused on the detection of
homogeneous features from known attacks to detect unknown Presentation Attack Instru-
ments without taking into account how some intrinsic image properties such as the image
resolution or biometric quality could impact their detection performance. In this work, we
carry out a thorough analysis of the sensitivity of several texture descriptors which shows
how the use of images with varying resolutions for training leads to a high decrease on the
attack detection performance.

1 Introduction

Recently, face-based biometric systems have experienced a large development due to their user
convenience and their ability to provide a security level higher than traditional credential-based
access control systems. In spite of those advantages, they are still vulnerable to Presenta-
tion Attack Instruments (PAIs) which can be easily created by a non-authorized subject by
downloading a photo or video of a given person from any social network. The attacker can sub-
sequently use the PAI to gain access to several applications such as bank accounts, to unlock
smartphones, and border controls, where face biometric systems are frequently employed.

To address those security threats, numerous software-based Presentation Attack Detection
(PAD) approaches have been proposed. Those techniques try to determine whether a face
sample stems from a live subject (i.e., it is a bona fide presentation, BP) or from an artificial
replica (i.e., it is an attack presentation, AP). Several face PAD techniques have reported a
high detection performance to identify attack presentations under the so-called “known attacks”
scenario, where AP properties such as PAI species and capture conditions are known a priori.
However, most PAD approaches suffer a high accuracy decrease to detect unknown attacks. In
particular, PAD techniques based on one-class classifiers [2, 15, 7], AutoEncoders [24], Gaussian
Mixture Models [15], tree decision-based models [14], and end-to-end deep learning schemes [20,
9] have reported a high detection performance degradation to detect PAIs when they are trained
with a large set of face samples. On the other hand, when they only employ images with a
particular quality, an improvement on the performance can be perceived, as shown in Tab. 1.
Therefore, one main question still remains unanswered: could the utilisation of images with
varying resolutions affect the detection performance of any PAD method? In other words,
to which extent are PAD approaches sensitive to training sets containing images of varying
quality? And how could this difficulty affect the PAD generalisation capabilities?
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Table 1: Benchmark of state-of-the-art approaches in terms of classification accuracy (%) under
the Quality Test and Overall Test protocol in [25].

method low normal high overall

LBP+SVM [19] 83 78 90 80
Network A [21] 84 91 79 80
Network B [21] 86 93 80 81
Network C [21] 94 94 82 87
ShallowCNN [20] 93 92 84 88

Very few works have addressed these issues so far. Back in 2013, Galbally et al. [8] evaluated
the potential of general Image Quality Assessment (IQA) as a protection tool against PAIs and
showed that a face sample acquired in an attack attempt has different quality than a BP image.
Following that idea, Bhogal et al. [3] also explored six non-reference IQA metrics to detect
attack presentations on iris, fingerprint, and facial characteristics. As a result, the authors found
that the best quality measure and classification setting highly depends on the target database,
thereby recommending its optimisation for each particular application. More recently, Agarwal
et al. [1] showed how several image transformations such as gamma correction, log transform,
and brightness control can help a non-authorised subject to circumvent a PAD algorithm. In
addition, the authors demonstrated that such image transformations decrease the detection
performance of handcrafted- and deep learning-based PAD approaches.

In spite of those valuable efforts, the aforementioned questions are still partially unanswered.
For that reason, we study in this work both handcrafted and deep learning features and analyse
the impact of training with images with varying quality on the PAD performance. In order
to allow the reproducibility of our results, the experimental evaluation was conducted over the
freely available CASIA Face Antispoofing database [25] following the metrics included in the
international standard ISO/IEC 30107-3 on biometric PAD [12].

The remainder of this paper is organised as follows. The PAD methods studied in our work
are presented in Sect. 2. Sect. 3 describes the experimental evaluation and results. Finally,
conclusions and future work directions are presented in Sect. 4.

2 Presentation Attack Detection Approaches

In order to address the questions posed in Sect. 1, we analyse PAD methods which follow
the three-step overview depicted in Fig. 1: i) to remove non-useful information, faces are first
detected with the Tensorflow1 Face Detection method, ii) a global texture descriptor is then
extracted per image, and iii) a BP or AP decision is finally taken by a linear Support Vector
Machine (SVM). Linear SVMs are popular classifiers since they perform well in high-dimensional
spaces, avoid over-fitting, and have good generalisation capabilities. To extract global features
from images, we select three well-known texture descriptors: Local Binary Pattern (LBP) [16],
Local Phase Quantization (LPQ) [17], and Binarized Statistical Image Features (BSIF) [13],
and five deep learning approaches (i.e., MobileNet [10], MobileNetV2 [22], InceptionV3 [23],
Xception [4], and DenseNet121 [11]). All of these descriptors have been widely employed for
face PAD [2, 15, 5] and are summarised in Tab. 2.

1https://github.com/yeephycho/tensorflow-face-detection
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Figure 1: General diagram of the PAD approaches analysed.
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Table 2: Summary of the descriptors studied in this work.

Handcrafted descriptors Deep learning descriptors
descriptor parameters length architecture length

LBP [16]
R = {1, 2, 3}

59
MobileNet [10] 7× 7× 1024 = 50176

P = {8, 16, 24} MobileNetV2 [22] 7× 7× 1280 = 62720

LPQ [17]
R = {3, 5}

256
InceptionV3 [23] 5× 5× 2048 = 51200

α = 1 Xception [4] 7× 7× 2048 = 100352

BSIF [13]
N = {5, 6, 7, 8, 9, 10, 11, 12}

2N DenseNet121 [11] 7× 7× 1024 = 50176
L = {3, 5, 7, 9, 11, 13, 15, 17}

The proposed pipeline was entirely implemented in python. The Scikit-learn and Keras
frameworks are employed for the linear SVM and deep learning architectures, respectively. In
addition, we use the ImageNet [6] pre-trained deep learning models, and the final descriptor is
computed from the last layer after removing the fully connected classification layers.

3 Experimental Evaluation

3.1 Experimental Protocol

The experimental evaluation was conducted over the freely available CASIA Face Anti-spoofing
database [25], which contains 600 short videos of bona fide and attack presentations stemming
from 50 different subjects and acquired with three different devices with varying quality: low
(L), medium (M), and high (H). The dataset comprises three PAI species as shown in Fig. 2:
i) Warped photo attacks, in which the attackers place their face behind the hard copies of
high-resolution digital photographs; ii) Cut photo attacks, where the face of the attacker is
placed behind the hard copies of photos, from which eyes have been cut out; and iii) Video
replay attacks, where attackers replay face videos using iPads.

In order to evaluate the sensitivity of the current descriptors to images of varying resolutions
for the detection of known attacks, we augment the Quality and Overall test protocols in [25]
by including new attack-resolution configurations, where a given attack, acquired with a fixed

3



Evaluating face PAD sensitivity to images of varying resolutions Gonzalez-Soler, Gomez-Barrero, Busch

Figure 2: CASIA Face Antispoofing database, which includes images of varying resolutions,
stemming from three PAI species.

a) low-quality

b) medium-quality c) high-quality

resolution capture device, is known on training.
The experimental results are analysed in compliance with the ISO/IEC 30107-3 on biometric

PAD [12] using the following two metrics:

• Attack Presentation Classification Error Rate (APCER), or proportion of attack presen-
tations misclassified as bona fide presentations;

• Bona Fide Classification Error Rate (BPCER), or proportion of bona fide presentations
misclassified as attack presentations;

We also report the Detection Equal Error Rates (D-EER), which is defined as the error rate
value at the operating point the APCER and the BPCER match. In addition, we present the
Detection Error Trade-off (DET) curves between APCER and BPCER.

3.2 Results and discussion

3.2.1 Known Attacks: analysis of a single image resolution

The first set of experiments evaluates the PAD performance under three resolution settings.
The corresponding D-EER values are reported in Tab. 3. We can first note that for each
particular PAI species the error rates attained depend on the image resolution being evaluated.
Specifically, D-EERs of 18.01 ± 1.67, 16.82 ± 2.67, and 15.65 ± 6.08 are reported on average for
Cut, Warped, and Video attacks, respectively, hence indicating that PAD approaches widely
depend on both the PAI species used (different average D-EER) and the resolution settings
employed to acquire them (up to 6% standard deviation in the D-EER).

In addition, it can be observed that the error rates for each PAI species follow different
trends depending on the resolution of the images used. Whereas the Cut and Warped photo
attacks achieve their best detection performance on average across all descriptors for face images
acquired with low-resolution capture devices (i.e., D-EERs of 16.49% and 13.91 for Cut and
Warped, respectively), the Video replay shows its best D-EER for high resolution images (i.e.,
9.37%). However, taking a closer look we can note that the handcrafted descriptors LBP and
BSIF do perform better with high quality images not only for Video but also for Warped attacks.
In contrast, the deep learning-based techniques achieve their best detection performance for low
to medium quality images for Cut and Warped attacks, and also for Medium quality images
for Video attacks. To shed some light into these differences, we investigated some intrinsic
image properties and confirmed that the screen projection of the Video replay attacks on a
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Table 3: Average D-EER (%) values under the known attack protocol.

Attack Cut Warped Video
L M H L M H L M H

LBP 20.00 16.67 17.78 17.78 18.89 10.00 18.89 21.11 4.44
LPQ 20.00 15.00 20.00 13.33 21.67 16.67 22.50 20.00 1.67
BSIF 18.61 23.56 20.56 16.83 26.03 12.19 17.28 20.86 2.17

MobileNet 23.33 26.67 23.33 16.67 33.33 36.67 23.33 13.33 10.00
MobileNetV2 16.67 13.33 13.33 10.00 16.67 10.00 23.33 6.67 16.67
InceptionV3 6.67 20.00 16.67 16.67 13.33 16.67 33.33 33.33 16.67
Xception 16.67 16.67 26.67 10.00 16.67 26.67 20.00 10.00 16.67
DenseNet121 10.00 10.00 20.00 10.00 6.67 10.00 13.33 3.33 6.67

avg. 16.49 17.74 19.79 13.91 19.16 17.39 21.50 16.08 9.37

Figure 3: Bona fide and attack presentation samples with their corresponding blurriness values.

Blur = 103.87 Blur = 87.56 Blur = 64.96Blur = 11.43Blur = 8.78 Blur = 9.31

Bona fide Bona fide Bona fideAttack 
presentation

Attack 
presentation

Attack 
presentation

high-resolution capture device unveils several blurriness and sharpness artefacts, which are
successfully detected by all PAD techniques. In Fig. 3 we show some BP and AP samples with
their blurriness values, which were computed as the variation of the Laplacian [18].

3.2.2 Known Attacks: analysis of images of mixed resolutions

We present in Tab. 4 a joint evaluation of the proposed descriptors over several PAI species
combinations, which were simultaneously acquired with different resolution capture devices. We
can observe that the D-EER values for multiple resolution images are up to seven times higher
than the ones achieved for the best single image quality (e.g., 3.00% for high image quality vs.
19.85% for L ∪ M). In contrast, similar D-EER values are reported when several PAI species
are employed for training over face images acquired by a single capture device (e.g., 17.94% for
Cut photo attacks vs. 16.37% for cut ∪ warped). Thus we can highlight how the utilisation
of images of varying resolutions leads to a high PAD performance deterioration across different
PAI species.

Finally, it should be also noted that the PAD approaches can be circumvented by launching
Cut photo and Warped photo attack samples which were recorded with medium and high-
resolution capture devices: a high mean D-EER of 28.40% is attained for that configuration.

5
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Table 4: Average D-EER values under the known attack protocol.

PAI species
Quality Single Multiple

L M H L ∪ M L ∪ H M ∪ H L ∪ M ∪ H

S
in
g
le cut 17.94 21.71 19.64 21.82 24.27 27.16 24.22

warped 16.02 24.03 12.41 23.49 19.74 24.92 24.60
video 17.49 19.64 3.00 19.85 14.64 14.67 18.43

M
u
lt
ip
le cut ∪ video 19.31 25.06 16.47 22.57 23.80 28.19 25.44

cut ∪ warped 16.37 21.19 16.95 21.47 23.62 28.40 26.61
warped ∪ video 19.43 23.45 12.73 22.52 19.42 24.31 24.08

cut ∪ warped ∪ video 16.25 24.83 15.11 22.15 23.01 26.48 25.74

Table 5: D-EER (%) values for single and multiple attack-resolution settings.

Attack
Quality

Single Multiple

Single 16.88 ± 6.17 21.48 ± 4.06
Multiple 18.93 ± 3.99 24.24 ± 2.45

Following those observations, we tried to determine which of these two image properties (i.e.,
PAI species or image resolution) produces the greatest PAD performance deterioration. To that
end, we compute in Tab. 5 the average for each single and multiple combination depicted in
Tab. 4. On the one hand, for a configuration where either several PAI species or images of
varying resolutions are employed, a high performance decrease can be seen. In particular, a
mean D-EER of 21.48% is reported when PAD approaches are trained with a single PAI species
which was acquired under several resolution settings. This number is in turn worse than the
one achieved when the PAD methods are trained with multiple PAI species with a single image
resolution (18.93%). On the other hand, as it could be expected, a high mean D-EER of
24.24% is attained for the worst case where the PAD approaches are optimised utilising several
PAI species which were acquired with varying-resolution capture devices. We thus conclude
that the utilisation of images with varying quality produces the greatest PAD performance
deterioration. In addition, we confirm the PAD performance decrease reported by state-of-the-
art algorithms in Tab. 1 and answer the question launched in Sect. 1: PAD techniques based
both on handcrafted and deep learning features are sensitive to images with varying resolutions,
which lead to a high accuracy decrease in the detection of APs.

3.2.3 Known Attacks: a deeper PAD performance analysis

Finally, we show in Fig. 4 the DET curves for the best handcrafted and deep learning approaches
over the Quality test and Overall test protocols from [25]. As it can be observed, the joint
training for the analysed PAI species, which were acquired with three varying-resolution capture
devices (i.e., thick red line), yields on average a high BCPER of 67.23% for any APCER ≤ 1%.
This is in turn higher than the ones attained for each single resolution. In addition, the BSIF
descriptor reports its best BPCER value for high-resolution images. In contrast, the deep
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Figure 4: DET curves for the best handcrafted and deep learning-based approach over the
known attack scenario. For the BSIF computation, we use N = 10 filters of size l = 13.
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learning approach achieves its best BPCER for images of medium quality. In this context, we
can conclude that either a down-sampling or up-sampling step performed by the deep learning-
based descriptors for fitting the size of a given image into the input layer can lead to an
information loss for low and high quality input images. In particular, for a database as CASIA
whose cropped face images pose an average size of 180 × 157 and 644 × 545 pixels for low and
high resolution settings, respectively, an up-sampling and down-sampling procedure to fit the
image size to 224 × 224 pixels (input layer size) can approximately affect on average a 65%
of pixels of a given face image. This could in turn remove several artefacts produced in the
creation of PAIs. In contrast, this re-sizing procedure affects only 37% of the pixels of medium
resolution images, thereby leading to a higher detection performance.

3.2.4 Unknown Attacks: in depth generalisation capability analysis

Once the image resolution issues have been evaluated, we selected the worst case scenario
from the previous experiment (i.e., several PAI species acquired under numerous image quality
conditions are employed for training) and assessed the generalisation capability of the PAD
approaches in Fig. 5. To that end, we follow the leave-one-out protocol in [2] where two PAI
species are used for training and the remaining species for testing.

We can observe in Fig. 5 a high D-EER variance for each unknown PAI species evaluated,
which confirms the high impact degree of the image resolution on the PAD generalisation
capabilities. Unlike the known attack scenario, error rates achieved by handcrafted descriptors
tend to increase as the image quality improves, with the exception of Video replay attacks
(i.e., D-EER of 21.36% for a high-resolution images). Specifically, a mean D-EER of 24.57%
± 8.64 indicates that the handcraft-based PAD approaches perform better for low-resolution
samples stemming from unknown PAI species. In contrast, no such trend can be seen for the
deep learning approaches. Depending on the given PAI species, the detection performance
attained for low-resolution unknown PAIs outperforms the one reported for medium-resolution
samples (e.g., 13.33% ± 4.08 vs. 17.33 ± 6.41 for Warped photo attacks). On the other hand,
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Figure 5: Handcrafted vs. Deep Learning performance on the detection of unknown attacks.
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Figure 6: DET curves for the best handcrafted and deep learning-based approaches over the
unknown attack scenario. For BSIF computation, we use N = 10 filters of size l = 13.
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the error rates yielded for high-resolution images lead to a considerable detection performance
deterioration, thereby resulting in a mean D-EER of 34.14%. Therefore, we conclude that the
resolution variation is not the only external factor which affects the detection performance of
PAD methods. Other acquisition conditions such as the distance between the PAI and capture
device, which differs for different samples on the CASIA database, can also produce a accuracy
decrease on facial PAD.
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To conclude our analysis, we show in Fig. 6 the DET curves for the best handcrafted and
deep learning approaches over the unknown attack scenario. First, we can note that there is a
correlation between the error rates represented in Fig. 5 and the detection performance attained
by a particular handcrafted and deep learning descriptor: the BSIF descriptor shows its best
detection performance for a low-resolution setting, thereby resulting in a BPCER20 of 16.67%
for entire set of PAIs. Similarly, the DenseNet descriptor for medium-resolution configuration
attains on average a BCPER20 of 6.67% which outperforms the BPCER values achieved for
the remaining resolution settings (i.e., a BPCER20 of 13.44% and 35.55% for low and high
resolution samples, respectively). These results confirm that the deep learning approaches
report an accuracy decrease when the images’ size at hand is not close to the size of their input
layer. In addition, they reveal that the PAD methods highly depends on the resolution of the
capture device and hence should be carefully optimised for each particular application.

4 Conclusions

In this work, a new study on the sensitivity of the eight well-known facial PAD techniques
to images with varying resolution is carried out. Experimental results, conducted over the
freely available CASIA Face Antispoofing database [25], unveiled that i) the utilisation of
images of varying quality for the facial PAD produces a high PAD performance decrease, which
can be even greater than the use of numerous PAI species; ii) the current deep learning-based
descriptors report the worse PAD performance deterioration for face images whose size is widely
different from the input layer size; iii) Video replay attacks, screened on a high-resolution
capture device, unveil several blurriness and sharpness artefacts, which can be successfully
detected by PAD techniques; and iv) training PAD methods with several PAI species which are
acquired with varying-resolution capture devices appears to be the worst case for the face PAD
task, thereby resulting in a D-EER of 24.24% and a joint BPCER100 of 67.23%. Therefore,
we can confirm that the image resolution is a requirement which must carefully be taken into
account in order to build a secure and reliable face PAD module.

In addition to the aforementioned findings, we can also point out that PAD methods could
suffer a detection performance decrease for a scenario, namely cross-database, where different
resolution capture devices might be used for training and testing at the same point in time.
This scenario is likely to happen in a long-time deployment where the face capture device might
age and eventually stop working. Therefore, we think that the findings in this work must be
carefully taken into account for that challenging scenario.

As future work directions, we plan to tackle the impact of the analysed image transforma-
tions on the performance of facial PAD methods.
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