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Abstract. Cheap, capable processors are becoming readily available,
and these are being deployed to a wide variety of applications, ranging
from internet-enabled refrigerators to swarms of specialised drones. As
often is the case with innovations, security lags behind. We aim to in-
troduce the �elds of cryptography and swarm modelling to each other,
and present a selection of security de�nitions and existing schemes that
satisfy these. Such schemes are seen in context of di�erent scenarios to
increase security where it matters. To this end, we further develop a
swarm model to identify when di�erent key structures should be used.

Keywords: adversarial models · autonomy · lightweight

1 Introduction

For small, autonomous devices, the path from novelty to household item has
been short. Anyone can come up with a potential application for a small sensor,
smart device, drone or even underwater vehicles. Some of these applications are
so vital or sensitive that the security requirements should be correspondingly
strong. However, previous surveys [9,19] have made it clear that the foundation
for secure designs for wireless sensor networks (WSN), internet of things (IoT)
or mobile ad-hoc networks (MANET) is in its infancy.

The challenge in this domain is the multitude of constraints that may ap-
ply to our devices: battery life, computing performance, weak transmitters, low
bandwidth, short transmission windows, limited storage, and so on. Many of
the problems are solved for ordinary networks, but those solutions may not be
applicable for this setting. For example, asymmetric cryptography is often too
computationally expensive.

The intention of this work is to contribute to bridging the gap between real-
life constraints and cryptography theory by building on rigid de�nitions from
the latter, and suggesting ways these de�nitions could be satis�ed while ac-
knowledging the particular and unique limitations that make it hard to deploy
existing security practices to small devices. We want to introduce two exciting
�elds to each other. In one direction by curating and presenting highly successful
cryptographic models and de�nitions to a wider security audience. In particular,
we have tried to not provide unecessary novelty in this respect. For the other
direction, by keeping a critical eye to those de�nitions as they meet the world
of practical considerations, this work is intended to be a part of the feedback
loop to the theoretical side. The presentation is also intended to reach both
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cryptographers and practitioners in the domain of autonomous devices. We have
kept the formalism of the original de�nitions even though we are not using them
to prove concrete theorems in this work. The purpose of that is to provide a
complete reference when designing constrained systems.

Our primary contribution is an à la carte menu of security notions an au-
tonomous system could aspire to. We do not wish to add to the number of
competing de�nitions. Instead, we have chosen well-established de�nitions from
cryptography to �t reasonable requirements one could ask from such systems.
We also discuss compatibility between the notions.

A secondary contribution is a re�nement to how one can model a swarm of
autonomous devices using graph theory. This is again a useful tool to characterise
how the di�erent de�nitions should be applied. In addition, we provide examples
of how our contributions �t with existing solutions and scenarios.

The third pillar of this work is an introduction to challenges facing sys-
tems which may be deployed with secrets into an adversarial environment, but
are denied any form of communication. This implies a theoretically impossible
problem: encryption is worthless when the key is stored next to the ciphertext.
However, we show that there is some leeway once one considers time as well.

1.1 Adversarial capabilities

One cannot assess security without making assumptions about the adversary.
We generally assume the existence of a computationally bounded, active and
adaptive adversary. For non-cryptographers, that means:

� The adversary can spend at most a polylogarithmic amount of time and
space on computations, with respect to size of the keyspace. Conversely, an
unbounded adversary would for instance be able to try all keys from a key
space, and choose the correct one.

� An active adversary controls the network, and may read, inject, drop and
modify messages on the network. In contrast, a passive adversary may only
read the tra�c.

� The adaptivity means that the adversary can corrupt parties at will through-
out the execution, and then control their actions completely. A static adver-
sary has to choose the set of corrupted parties before the protocol starts. All
parties (or instances of such) have a freshness �ag which is set to false when
corrupted. We require that the �nal attack can only be mounted against
parties that are still fresh.

On the other hand, we do not make any assumptions on what the adversary is
trying to achieve. Loosely speaking, the adversary wins if it can make the system
behave in any other way than de�ned for each notion. The observant reader will
see that we have given the adversary the capability to drop all messages, and
that automatically makes the adversary able to run e�ective denial-of-service
(DoS) attacks. In order to avoid pathological cases like that, cryptographers have
designed a paradigm where we challenge the adversary to a game for each security
goal, and the adversary will win if it does better than a random algorithm.We
will later list the speci�c goals for the adversary to attack.
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1.2 Related work and IoT security

Previous work [9, 19] has surveyed the existing state of security modelling for
WSNs, IoT, and MANETs, with discouraging results. Do, Martini and Choo note
that �[o]ther security-based research should look to cryptographic protocols as
the gold standard for adversary models (...)�, and add: �IoT security, particularly,
is a research �eld in its infancy.� The earlier surveys cite a number of papers that
in total give the impression that even routine use of authentication is lacking in
many applications.

According to Silvio Micali in his IACR Distinguished Lecture at Crypto 2020,
models might be one of cryptography's strongest assets. Starting from mission
goals, and assumptions about the environment and adversarial capabilities, one
can formulate security requirements and reason about these. From the literature
we have previously reviewed, only two works are worth mentioning here. Sen [18]
gives a comprehensive overview of the �eld, and lists a number of security and
functionality requirements. The requirements are well-arranged: they formulate
guarantees one wants to make, rather than describing the inner workings of a
given system. Akram et al. [2] introduce an intriguing system with corresponding
security requrements. However, the requirements are in much greater extent tied
to the authors' suggested system.

1.3 Organisation of the paper

The paper is structured as follows. The following section introduces a new variant
of how to model a swarm. The model takes into account that the topology
can change over time. Section 3 introduces relevant security goals, of which
application to the model is further discussed in Section 4. We then follow up in
Section 5 with three di�erent examples of how one can prioritise the de�nitions
in practical cases. In Section 6, we discuss the related problem of protecting data
at rest in cases with a high risk of adversarial corruption. Finally, we conclude
in Section 7 and give an overview over some of the numerous open problems
regarding strong security under these challenging conditions.

2 What is a swarm?

The mission of cryptography can be formulated as ensuring that functionalities
can work even in the presence of a powerful adversary. In light of this view, a
secure channel has the same functionality as any reliable channel, but with the
extra property that Eve or Mallory are unable to eavesdrop or manipulate the
data without detection. Similarly, one can phrase our task here as taking the
de�nition of a swarm, and ensuring that the de�nition could be ful�lled, even in
an adversarial environment.

However, when researching a suitable de�nition of a swarm, we came across
the following statement by Hamann: �It is interesting to notice that there seem
to be no explicit de�nitions of swarms in the literature� [12, Sec. 1.1.1]. We
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cannot state precisely what a swarm is, but we can at least model it, with some
inspiration from Hamann. In his book, he describes a random graph G = (V,E)
as a viable model for swarms, where the nodes represents the devices and each
edge represent a communication connection. We re�ne the model slightly, by
instead applying directed random geometric graphs, �rst described by Michel et
al. [14]. The advantage is that we can model devices with non-uniform sending
and receiving levels. We present a simpli�ed version, which generalises random
geometric graphs in the natural way, but for which some of the results by Michel
et al. may not hold. In particular, we do not explicitly assume that the di�erent
radii are distributed according to a Pareto distribution.

De�nition 1. A directed random geometric graph is a graph G = (V,E) such
that each v ∈ V is a point in Rn and satis�es the following:

1. The nodes are randomly sampled from some distribution on a (potentially
bounded) region of Rn.

2. For each node v ∈ V there exists a radius rv.
3. Let d : Rn × Rn → R be a metric. There exists an edge e ∈ E for each pair

of nodes (v, w) with d(v, w) < rv.

The graph will model the communication capabilities in the collection of
devices at a given time t. Let v ∈ V be a node and de�ne the following two sets
relative to v:

� N t
v = {u ∈ V | (v, u) ∈ E} is the neighbourhood around v at time t, which

contains the nodes that can receive any messages directly from v.
� De�ne u to be reachable from v if there exists a path from v to u, and let

N̄ t
v = {u ∈ V | u reachable from v}, which we will call the swarm around v

at time t.

One can view the graph as a representation of a relation, and then let N̄ t
v be

the transitive closure of N t
v. This last item states that if two devices cannot even

communicate through proxies, then they are e�ectively not in the same swarm
at that moment.

Remark 1. We believe that this asymmetric de�nition may be a realistic model
of real challenges regarding devices in challenging environments. For instance,
some high-powered devices may be able to reach the whole network, but only
receive from its closest neighbours. However, we hypothesize that for most real-
life situations, the graphs will be undirected. This will simplify many aspects
that follows, but the reader should keep in mind that one should consider the
corner cases properly when designing protocols.

Next we must discuss the size of a swarm. Hamann [12] suggests between
102 and 1023, beyond which one should use statistics to analyse the system as
one would for a gas. However, Hamann remarks, one can also consider swarms
of three members, and for the purpose of our work: two will also be applicable.

Looking ahead, our model will allow us to create three di�erent scenarios, de-
pending on the size of the swarm and the computational resources of the devices.
The scenarios provide a trade-o� between complexity, security and resources.
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3 Security goals

Next, we provide a series of potential security goals. We stress potential, because
this list is intended to be used à la carte, depending on the concrete application.

When instantiating any of these notions, one must choose a target security
level and use that as input to the key generation algorithm. This security pa-
rameter is of particular importance to record the potential loss of security that
may come from reductions in proofs. This paper only contains one such proof,
and as that proof only contains a standard argument that halves the advantage,
we have opted to omit explicitly mentioning the security parameter to increase
readability.

3.1 Channel privacy

Our �rst de�nition is just the normal de�nition for IND-CCA2, message indis-
tinguishability under adaptive chosen ciphertext attacks.

De�nition 2 (Ciphertext indistinguishability, IND-CCA2). The adver-
sary should not be able to read the contents of a message in the channel. Let
ES = (KeyGen,Enc,Dec) be an encryption scheme.

1. The challenger runs ES.KeyGen and sets up two oracles OEnc,ODec. It then
chooses a bit b at random, and sends a signal to the adversary A.

2. A may send a large number of queries to OEnc,ODec. Eventually, the adver-
sary submits two messages m0,m1 of identical length.

3. The challenger encrypts c = mb, and returns it to the adversary.
4. The adversary may again query the oracles, except for decryption oracle calls

on the ciphertext c. Finally, the adversary submits a bit b′, and wins if b = b′.

The scheme ES is IND-CCA2-secure if the adversary's advantage

Advind-cca2ES (A) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
is negligibly small.

The de�nition of a negligible value or function may depend on the application.
For asymptotic arguments it is de�ned as a function eventually being smaller
than 1/p(λ) for any polynomial p in the security parameter λ. For example 1/2λ,
is a negligible function. On the other hand, concrete systems may de�ne anything
smaller than a given constant as negligible.

3.2 Swarm privacy

Now we discuss what we mean by swarm privacy. A swarm may consist of several
devices that leave and join during the mission. This problem is related to that
of broadcast encryption and multicast encryption [10].
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The fundamental goal is that any message sent within a swarm should be
readable for any active member, but not for outsiders and lost devices. This
means we have to be able to handle join and leave operations while the system
is online. An important question is how one can decide which devices should
be considered lost, and henceforth apply the leave operations on those. A more
complicated question is that of who: is this an individual decision, a swarm
consensus, or a question of hierarchy and hence trust?

Remark 2. The reader may at this point compare this problem to that of group
chats, and consider group key exchange protocols. Such protocols are outside the
scope of this work, as they demand too much network tra�c, constant liveliness,
and expensive computations. However, it is worth mentioning a recent preprint
by Weidner et al. [20], which aims to provide decentralised key agreement for
large groups. A special emphasis is placed on post-compromise security (PCS)
and forward secrecy (FS). Weidner et al. are discussing the di�cult problem of
how one should reach consensus about membership.

De�nition 3 (Swarm privacy). Only active, honest players may read broad-
cast messages. We set up a game between a challenger C and an adversary A.

� The challenger runs the setup and key generation algoritms for a system of
n users. It also chooses a bit b uniformly at random.

� The adversary may query the oracle multiple times, each time one of the
following queries
corrupt(i) The key material held by user i is revealed to A.
Enc(S,m) The message m is encrypted with the members of a subset S of
{1, ..., n} as intended receipients.

Dec(S, c) If S is the correct audience for the ciphertext c, then the oracle
outputs the decryption m.

� The adversary selects two messages m0,m1 of equal length and submits them
to C along with a set S∗. The challenger veri�es that S∗ does not contain
any user previously corrupted and only then responds with c′ = Enc(S∗,mb).

� The adversary may again provide new queries with two restrictions:
• any query corrupt(i) is on the condition that i /∈ S∗, and
• the adversary may not query Dec(S∗, c∗).

� The adversary submits a bit b′ and wins if b = b′.

We de�ne the advantage of A as

Advswarm(A) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
and say that the system is secure if Advswarm(A) is negligible.

This de�nition is intended to capture the essence of two previous de�ni-
tions by Gentry and Waters [11], and Panjwani [16], which were speci�c to the
asymmetric and symmetric cases respectively. We return to a more thorough
discussion of similarities and di�erences later.
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3.3 Authenticity

A swarm may be used to observe a large area and provide its sightings to a central
intelligence service. Recall that we assume that the adversary is able to inject
messages into the network. The adversary can then try sending false reports
to lure the others. We therefore want swarm members to be able to attribute
messages to their senders. This is known as authenticity, and is captured by
recalling the de�nition of ciphertext integrity (INT-CTXT):

De�nition 4 (Ciphertext integrity, INT-CTXT). An encrypted message
should be received as intended by its sender. Let ES = (KeyGen,Enc,Dec) be a
symmetric encryption scheme and let ⊥ denote error. We set up the following
experiment Expint-ctxtES (A):

� Generate a key K ← KeyGen, and set S = ∅.
� Give the adversary access to encryption and decryption oracles OEnc,ODec,

with the additional programming that:
• whenever the oracle OEnc responds with some ci when queried on some
message mi, S is updated as S = S ∪ {ci}

• when A queries ODec with c, let m be the output from decrypting c. If
m ̸= ⊥ and c /∈ S, halt and output 1

The encryption scheme ES is INT-CTXT-secure if

Advint-ctxt(A) = Pr[Expint-ctxtES (A) outputs 1]

is negligible for all adversaries A.

Note, however, that this de�nition does not protect against replay or re-
ordering attacks. For an example of a stronger notion, see Bellare, Kohno and
Namprempre's stateful de�nition INT-sfCTXT [4]. Furthermore, it does not tie
the concept of �sender� to a device identi�cation. Such binding may be done
implicitly by a key.

3.4 Anonymity

We also want messages to remain anonymous so that any adversary monitoring
the network can do no better than tra�c analysis to assess who sent which mes-
sage. We have reviewed two works that investigate this problem for symmetric
encryption, by Chan and Rogaway [6] (anonymous nonce-based authenticated
encryption, anAE), and Ban� and Maurer [3] (probabilistic authenticated en-
cryption, pAE). The latter considers the special case of probabilistic encryption,
while the �rst is more general, but has to add more machinery around the en-
cryption scheme in order to satisfy their own de�nition. Nonetheless, we opt
for the more general de�nition, as it is closer to the common use of symmetric
encryption. We give an informal presentation of the notion here, and refer to the
original work for the details1.

1 We justify this omission for two reasons: The whole description with proper context
�lls a complete section, and our presentation would not improve on Rogaway and
Chan's Figure 1, which we highly recommend to the reader.
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The adversary is challenged to distinguish between two games: one imple-
menting the real cryptosystem Π, and one implementing an ideal functionality.

The key di�erence between the two is that the ideal functionality replaces the
encryption oracle with one that returns a random string of equal length, while
storing the original request. This ensures that the ideal functionality provides
both con�dentiality and privacy, since the ciphertext is independent of both
the plaintexts and the identity. The ideal decryption answers with the error
symbol ⊥ unless the decryption request perfectly matches a record stored by
the encryption service, and the nonce is within some accepting policy Nx. The
adversary wins if it outputs 1 while interacting with the real game, and loses
otherwise.

Security is then de�ned as the quantity

AdvanaeΠ,Nx(A) =
∣∣∣Pr[Areal

anae

Π,Nx → 1]− Pr[Aideal
anae

Π,Nx ]→ 1
∣∣∣.

Interestingly, Rogaway and Chan's concept of nonce policies can also be used to
avoid replay attacks.

3.5 Topology hiding

As well as keeping each player anonymous, we would like to hide the network
topology from the adversary. We adapt a de�nition by Moran, Orlov and Richel-
son [15] to our concrete case. The de�nition is based on the assumption that any
node can detect all neighbours within its range, i.e. count its edges. Notice that
the following formulation is static in the sense that the adversary has to choose
which players to corrupt early in the game. This seems unavoidable, as adaptive
corruptions would essentially give the adversary a way to traverse the graph.

Recall that G = (V,E) is a directed graph, and that N t
v is the neighbourhood

around v at time t. Let G′ = (V,E′) be the associated undirected graph such
that for all v1, v2 ∈ V , let (v1, v2) ∈ E′ if either (v1, v2) ∈ E or (v2, v1) ∈ E. We
�x (and therefore omit) the time t for now, due to the non-adaptive nature of
this de�nition.

De�nition 5. Let G be a set of undirected graphs with at most n nodes, and
let Π be a protocol capable of running on all G ∈ G. Each player P1, . . . , PN is
equipped with key material k1, . . . kN .

� A chooses a corrupt subset S and learns the key material for all players
P ∈ S and two graphs G0 = (V0, E0), G1 = (V1, E1) such that S ⊆ V0 ∩ V1

and NP,G0
= NP,G1

for all P ∈ S, i.e. that all of the corrupted nodes have
equal neighbourhoods in both graphs. A sends (S,G0, G1) to the challenger.

� The challenger chooses a random bit b and runs Π on Gb. It interacts with
A for all tra�c involving P ∈ S.

� Finally, A outputs a bit b′, and wins if b = b′.
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The protocol Π is indistinguishable under chosen topology attack (IND-CTA
secure) over G if the quantity

Advind-ctaπ (A) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
is negligible.

The adversary sees all its neighbours at the physical layer. The consequence of
�xing the time is that one may be unable to guarantee anonymity if the network
topology changes. Honest parties beyond the range of the adversary may change
without impacting the gist of the de�nition. We have previously hypothesized
that most graphs will be undirected in practice. This de�nition will apply in
those cases. Applications must consider these limitations.

4 Applying the de�nitions to the swarm models

We will now bind the security requirements to our model of a swarm. Recall
that we de�ned the two sets N t

v and N̄ t
v, which are the devices that are directly

within range of v, and those reachable through relays. We de�ned the latter
as the swarm around v. Due to our restriction to constrained devices, we only
consider symmetric keys, and consider a device a member of the swarm if it has
a valid key.

From this, we consider three scenarios:

Individual keys All devices share keys pairwise. Hence, every message must
be sent to all other devices individually. This might be bene�cial for very
small swarms with low communication rate and high bandwidth, but limited
resources to negotiate group keys. In this case, N t

v and N̄ t
v exist only for

bookkeeping.
Local group keys The node v maintains a group key for the members of N t

v,
and updates it if N t

v ̸= N t+1
v . Limited group keys might reduce the conse-

quence if a device is lost, and may be a favourable choice for larger networks
with low mobility and a strong adversarial threat.

Global group keys The node v maintains a group key for N̄ t
v and updates if

necessary. If N̄ t
v = N̄ t

w for all w ∈ N̄ t
v, then a �xed v may if necessary act as

a key centre for the swarm.

For each of these, we must handle two operations: join and leave. This single
sentence is worth a series of papers by itself. A device may join if it can produce
valid credentials, i.e. having been keyed appropriately. Depending on the above
scenario, appropriate rekeying of the other devices in the swarm may follow.
Leave, on the other hand, is only somewhat easy if the device itself announces
its intention of parting. If the device leaving was still trusted, it could just be
asked to delete its keys, and the swarm would not have to replace keys held by its
former member. However, the leave operation should imply that the device is no
longer trusted, and quite possibly already have been corrupted by the adversary.
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The conditions on when the swarm should initiate a forced leave is outside the
scope of this work. We also acknowledge the multitude of problems connected
to just the four words �when the swarm should�, but have to postpone those to
future work.

Furthermore, we need to demonstrate whether it is feasible to satisfy the
security requirements we have stated above for the di�erent scenarios.

4.1 Individual keys

We start with the easiest case. Since all neighbours share individual keys, there
is no group, and so De�nition 3 and De�nition 5 are vacuously satis�ed. For
individual keys, join and leave is handled implicitly. One can choose to do key
exchange during operation, or pre-key the devices for all admissible pairs.

To satisfy channel privacy and device accountability we can use any standard
authenticated encryption, and the anonymity requirement can be satis�ed by
using Chan and Rogaway's protocol [6].

4.2 Group keys

We treat local and global group keys together. They di�er in scope, but not
necessarily in technique. To handle join and leave, we suggest using the protocol
of either Gentry and Waters [11], or Panjwani [16]. The former describe a public
key protocol: to send a message using the protocol, one speci�es a set S of
recipients and encrypts it using a function of every recipent's public key. A single
private key is su�cient (and necessary) to decrypt. We refer to the original paper
for the technical details. This protocol allows the group to distribute a new key
which can again be used for communication until the next topology change. The
authors prove that their protocol satis�es a security de�nition similar to ours.

Proposition 1. The Gentry-Waters system satis�es swarm privacy.

The proof is a simple composition of two de�nitions and a conversion between
real-or-random and left-or-right notions, and is included in the full version of the
paper.

One apparent drawback with the work of Gentry and Waters is that it is
based on a variant of the Di�e-Hellman problem and bilinear maps over elliptic
curves. While this is considered secure today, it will not be able to stand against
a quantum computer, and so there is a need to reinstantiate their concepts using
post-quantum techniques.

For the symmetric case, one can use Panjwani's improvement to the Logical
Key Hierarchy protocol [13]. The idea is that one builds a binary tree of keys
where each leaf node represents a device, and the root node holds the group key
for the complete set. All devices know the keys on the path between themselves
and the root node. In order to send a message (say, a group key) to a subset S
of the leaf nodes, one must choose the minimal set of keys held by members of
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S, but such that for any node v not in S, no key in the path between v and the
root is included.

The tree must be maintained by a key centre, which is then responsible for
distributing new node keys for each topology change, and a group key to the
active devices. De�nition 3 is an adaptation of the de�nition used by Panjwani.

In sum, these two approaches provide join/leave functionality. However, what
they have in common is that the topology is partly leaked every time it is invoked,
and any system employing either of these techniques cannot hope to be topology
hiding over time. Further research is needed to see if one can reconcile topology
hiding and group encryption.

5 Example applications

We can now apply our work to some real-world examples, for each highlighting
their unique limitations. Examples like these can be composed across domains
with the help of relay nodes.

5.1 Submarine communications

Consider a small set of autonomous underwater vehicles (AUV). Weight may not
be the primary issue, so we can assume su�cient computing abilities. However,
every transmission is through an acoustic channel whose bandwidth may only
be around 500 bit/s. This requires the overhead to be as small as possible. This
exact problem was analysed and tested by Dini and Duca [8]. Their work �ts
our model very well:

� In the simple case, there is a gateway g with N t
g = V , while for all other

nodes v, N t
v = {g}. Hence, nodes communicate directly with the gateway,

which in turn forwards the message to the intended receiver.

� Channel privacy is provided by AES used in CBC-CTS mode to avoid over-
head.

� The authors use a standard message authentication code (MAC) to provide
integrity. However, due to the low bandwidth, they truncate it down to 32
bits, noting that the same bandwidth makes an online attack extremely
time-consuming. Hence, the adversary's success probability is limited not
in having an overwhelmingly large denominator, but by realising that the
numerator is bounded by the physical surroundings. This can be modelled
by restricting the number of decryption oracle queries in the security game.

� Swarm privacy can be satis�ed due to their group key distribution and re-
vokation. Their key distribution is closely related to that of Panjwani.

� Topology hiding is not an issue considered by Dini and Duca. Recall also
that the methods we discussed earlier are incompatible with this notion.
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5.2 A swarm of drones

Small, airborne drones have a completely di�erent set of limitations. The band-
width is high, but the onboard computer should be small and use as little energy
as possible on computations.

A key feature of drone swarms is that its members can be replaced continu-
ously, and we must assume that the devices shift their position relative to each
other. We therefore �nd ourselves in a situation where group keys may be the
right choice.

� Channel privacy and ciphertext integrity can be achieved by using a suitable
authenticated encryption scheme.

� Swarm privacy follows the discussion of group keys, but is dependent on a
robust mechanism for deciding which members should be excluded.

� Anonymity and topology hiding may or may not be important for this sce-
nario, and may in fact be less important the more members of the swarm,
as each drone becomes less crucial. Hence, we expect swarm privacy to take
precedence.

In practice, such devices could be augmented with tamper-resistant crypto-
graphic modules, in which one can place a reasonable level of trust.

6 Data at rest

Small, resource constrained devices do not only pose a challenge for communi-
cation. One should also expect that such devices could be captured in a working
state and brought directly to a highly skilled laboratory: it may inject or extract
any instruction or data through means that the original designer could use2. For
this section, we no longer consider the graph of communicating devices, but focus
on one particular, possibly isolated, device. We describe three informal security
requirements, and then sketch how they could be satis�ed.

Data authenticity Only data from authenticated functionalities should be ac-
cepted by the device.

Data obsoletion Any data no longer needed for the mission should remain
unreadable.

Secure storage Data still needed for the mission should not be extractable by
the adversary.

Data authenticity suggests that the data stored on the device should only origi-
nate from pre-loading, communication channels or sensors, all of which could sign
the data before providing it to the on-board computer. The on-board computer
should then only use the data in computations after verifying the authentication
tags. While this may seem cumbersome for small devices, it has already been

2 In essence, a statement from the manufacturer like �it is theoretically possible, but
it would be very hard� here translates to �this lab can do it�.
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tried on a drone with fascinating success [7]. The advantage would be � given
certain assumptions � that the adversary could not insert malicious instructions
or data on a device and then release it back into operation. Note that we do
not consider the independent problem of the adversary exposing the sensors for
misleading surroundings or physical attacks on the device.

Data obsoletion includes data that could be useful after the mission, e.g.
sensor data stored on a device and only unloaded at a later stage. We propose
two simple strategies: either using public key cryptography where only the public
key is given to the device, or the perhaps more computationally friendly variant
where the device is equipped with a symmetric key K0. After each data object
has been encrypted using some key Ki, replace Ki with Ki+1 = f(Ki) for some
suitable one-way function f . Since Ki is deleted, all data protected by that key
can now be considered cryptographically deleted until paired with another device
that holds an Kj , j ≤ i. This idea is closely related to that of forward secrecy.

Secure storage is the most di�cult requirement of these. There is data that
the device may need to access again and therefore must be able to decrypt.
At a theoretical level, that means that the data could just as well have been
unencrypted: a key next to a locked chest is e�ectively an unlocked chest. It
becomes slightly more nuanced if one can include time in the picture.

In some sense, the main inspiration is again that of cryptographic deletion. If
data only exists in an encrypted form, and the key is destructed, then the data
can be considered deleted. In extension, data only comes into existence once the
appropriate key is reconstructed.

Correspondingly, our de�nition does not consider data. Assume that the pay-
load data has been logically structured by some directed graph, and that each
part is encrypted with a new key. Identify each key with the corresponding node,
so that reaching the node equals knowledge of the key, and hence the data.

Each node also contains information on all outgoing edges. Following the edge
should be computationally costly, and preferably non-parallelisable. Concretely,
every time the internal state reaches a node one can decrypt the corresponding
data packet. It contains one puzzle for each edge, and the key for the other node
of the edge can only be found by solving the puzzle. This idea motivates the
following de�nition:

De�nition 6. Let ES be an encryption scheme. Let G = (V,E) be a graph and
vi ∈ V . For each vi de�ne Li = (vj , auxvj ) as a list of all neighbouring nodes
along with auxilliary data for each neighbour. A Cryptographically Bounded
Bandwidth Channel consists of two algorithms (Setup,RecoverKey) with the fol-
lowing properties:

Setup An e�cient algorithm that takes in a directed graph G = (V,E) and a
delay t, and outputs a related graph (V ′,∅). For each vi, generate a key ski.
Each node v′i ∈ V ′ corresponds to a node vi ∈ V , and contains an encrypted
list of neighbours of vi, {ES.Enc(ski;Li)}, and the corresponding auxilliary
data.

RecoverKey Takes in the auxilliary data auxvj , and reconstructs the decryption
key skj for vj.
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The channel has a weakly (t, p)-bounded output rate if, with probability p, it
takes at least tn time to recover n nodes. The channel has strongly (t, p)-bounded
output rate if, with probability p, the time to recover each node is at least t.

Informally, view v′ as an encrypted version of v and its edges. Implicitly, we
assume that G is connected. If G has n > 1 components, one can simply consider
the case of n instances of the channel.

We now present a simple, informal example to demonstrate how to use this
de�nition. Assume Alice wants to navigate through an area without communi-
cating with others, but wants to keep as much as possible of the map obscured
at all times, yet get access every part of the map when necessary.

Divide the map into logical sections, and create a map graph: Each region
is a node, and neigbouring regions are connected with edges. Assume that each
area takes time t to traverse. Use the graph and time t as input to the setup
phase, and use the keys generated in the de�nition to encrypt each region. Before
starting the expedition, delete all keys but one, say sk1, and set o� in region 1.

Alice can see the labeling of the neighbouring regions, and choose one, say
2. In the time she needs to relocate to the next region, she reconstructs the
corresponding key, and is able to decrypt the next map section once she reaches
the border. She can then choose a new region to move into. Alice must now
delete all data from region 1: the map, the key and the reconstruction data for
other neighbours of region 1. She can only return to 1 if 1 is a neighbour of 2
(remember, G is a directed graph), or any of the other regions she will explore
during her expedition.

This notion can be instantiated using time-lock puzzles [17], whose objective
is to delay decryption. The problem is that such problems depend on CPU
time (hence, a data center would have a large advantage relative to a resource-
constrained device), whereas we would like a scheme that was able to keep the
lock until a certain amount of wall-clock time had passed. This is an intrinsically
hard problem given that we do not want to allow communication.

The best candidate so far is that of Abadi, Burrows, Manasse and Wobber [1].
In contrast to other candidates, Abadi et al. use memory latency to generate
a problem. This number depends on physics and is relatively constant across
platforms. The idea is to generate a problem such that the quickest way to solve
it repeatedly is by generating a table of all solutions and do lookups for each
instance. However, that table should be so large that it cannot �t in cache. For
each instance, a new portion of the table must therefore be loaded from memory
to cache, causing the delay.

The problem is typically to invert a hash function from a small domain. By
repeatedly hashing and xor-ing the preimage with a counter value, one is forced
to undo each step on the way. However, it has so far not proven suitable to gener-
ate a large key, and so we conclude that further work is needed, while also noting
that continuous computations are less than ideal for a resource constrained de-
vice. In lack of a sound cryptographic solution, we note that tamper protection
plays a crucial role in protecting data at rest.
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7 Conclusion

We have presented a selection of security de�nitions suitable for swarms of de-
vices with limited resources, possibly operating in hostile environments. Given
that this is highly relevant for governments, military applications and also com-
mercial interests, our hope is that this paper spurs a strengthened interest for
the features modern cryptography has to o�er the greater �eld of cyber security.

We have throughout this work pointed out loose ends and possibilities for
further research. We conclude the paper by summarising these.

Forced leave The swarm needs a mechanism to determine which devices to be
considered lost, and therefore exclude them. Given that we assume that the
adversary might control some of our devices, how can we avoid the adversary
trying to blame and exclude an honest (and possible crucial) device? In some
settings one might consider special devices with elevated rights. Other times,
one have to �nd a suitable approximation to a solution to the problem of
Byzantine agreement.

Anonymity and swarm privacy Can there exist notions that combine e�-
cient multicast with anonymity for any individual device in the network?

Quantum-safe broadcast and multicast Gentry andWaters' asymmetric mul-
ticast encryption scheme is based on classic cryptography. A quantum-safe
instantiation is an open problem.

Keys and data on the same device Is it possible to delay decryption in such
a way that it is at least highly correlated with o�ine wall-time?
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