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Abstract
We have used automatic programming to improve the hysteresis thresholding
stage of the popular Canny edge detector—without increasing the compu-
tational complexity or adding extra information. The F-measure has been
increased by 1.8% on a test set of natural images, and a paired student-t test
and a Wilcoxon signed rank test show that the improvement is statistically
significant.

This is the first time evolutionary computation and automatic program-
ming has been used to improve hysteresis thresholding. The new program
has introduced complex recursive patterns that make the algorithm perform
better with weak edges and retain more detail.

The findings provide further evidence that an automatically designed
algorithm can outperform manually created algorithms on low level image
analysis problems, and that automatic programming is ideally suited for
inferring suitable heuristics for such problems.

1 Introduction
Edge detection is a fundamental image processing step, and there are a number of
algorithms available that attempt to solve the problem. The Canny edge detector [3] is
a popular edge detector available in most image analysis platforms. The algorithm offers
great runtime performance, but it is inferior to more complex algorithms [1, 19] in terms
of accuracy. Textured regions are typical problem areas, where either edges are found
within a texture or missed between two textures.

There have been proposed several improvements to the Canny edge detector. Surround
suppression was added to improve the performance in textured regions [5]. An adaptive
filter has been proposed that could be used in the first stage of the algorithm [18], and
there has been proposed an improvement to nonmax suppression, the second part of the
algorithm [4]. Common for all the proposed improvements are that extra processing is
required.

Automatic programming is a machine learning technique related to Inductive Logic
Programming (ILP) and Genetic Programming (GP). Automatic Design of Algorithms
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Through Evolution (ADATE) [14, 15] is a state-of-the-art automatic programming system
that employs an evolutionary computation strategy, in the form of a systematic search
process, to create new programs or improve existing ones. The system has been used to
infer novel heuristics for image analysis algorithms [12, 13, 11, 7, 2] and other complex
algorithms [9, 16] in the past.

We have employed automatic programming and the ADATE system in order to
improve hysteresis thresholding, the third stage of the Canny edge detector. Others have
used evolutionary computation to improve the filter used in the first stage of the algorithm
[6], and it has been used to generate logic to identify edges in sliding windows [17, 20].
This is the first time the strategy has been used to improve hysteresis thresholding. We
have successfully used a similar approach to improve other aspects of the Canny algorithm
[12, 13] already, but improving hysteresis thresholding is more challenging.

The remainder of this paper is structured as follows. Section 2 gives an introduction
to the inner workings of the ADATE system, and Section 3 describe the relevant parts of
the Canny edge detector. Section 4 provide the details relating to how we conducted the
experiments. Section 5 presents the results of the experiments, and Section 6 contains the
conclusions that can be drawn from our findings.

2 ADATE
ADATE is a general system for evolutionary computation that can be used both to create
new algorithms and to improve existing algorithms. The algorithms are synthesized
using a minimal purely functional subset of Standard ML called ADATE ML. The
target algorithm is specified in a so called specification file, along with any custom data
types and auxiliary functions needed. The specification file also contains the fitness
function and the data needed for training and validating the performance of the generated
programs.

Unlike most other evolutionary computation strategies, ADATE does not rely on
random mutations. Instead, the system employs a systematic search inspired by natural
evolution. A full explanation of the process is beyond the scope of this article, but a full
description can be found in [14, 15].

Population Management
Each separate run with ADATE starts with just one program, the starting program. As new
individuals are created they are organized in a tree structure called a kingdom, inspired by
Linnean taxonomy [8]. At the top level of the kingdom there are families of genera that
are similar in terms of syntactic complexity, and each genus contains one or more potential
parent programs. A species is all individuals created from the same parent program.

Each program has an associated cost limit that is essential to the search process. On
each iteration, the program with the lowest syntactic complexity and the lowest cost limit
is selected for expansion. A number of new programs are synthesized based on the
current cost limit and the syntactic complexity of the program. Any new program that
is considered better than the existing individuals is inserted into the kingdom, and all the
programs that are bigger, but not better, are removed. This produces genealogical chains
of gradually bigger and better programs. The cost limit of the parent program is then
doubled before continuing by finding a new program to expand. In this way we end up
with an iterative deepening search process.



Program Transformations
At each iteration during evolution, a number of new programs are synthesized using a
sensible sequence of atomic transformations, referred to as compound transformations.
The transformations in a sequence are found by systematically searching the program
space given by type correct transformations.

The are the following four kinds of atomic transformations. A Replacement (R) is
responsible for exchanging an expression with a new one. The new expression can either
be entirely new, or it can include the original expression, or parts of it, as an argument.
Replacements are the only transformation type capable of changing the semantics of a
program, and as such they are essential to the search process. They are also by far the
most combinatorially challenging.

The remaining three transformations are all just syntactic rewrites, but they play an
important part for the overall search process. An Abstraction (ABSTR) is responsible
for creating new auxiliary functions by moving a chosen expression into a new function
and placing a function call with the appropriate arguments at the location of the source
expression. A Case-Distribution (CASE-DIST) changes the scope of variables and
functions, and an Embedding (EMB) changes the domain or range of an auxiliary
function.

3 The Canny Edge Detector
The Canny edge detector [3] is a filter based edge detector in that it convolves the input
image with a custom filter to produce a gradient magnitude image. This image provides
the input to the second stage of the algorithm, called non-max suppression, which was
designed to reduce multiple responses to a single edge. This stage of the algorithm
has already been improved [12], but we have used the original in this paper. Hysteresis
thresholding is the last stage of the algorithm, and it is the target of our investigation in
this paper. It was designed to identify the true edges amongst all the weak edges, and as
such reduce the number of false positives.

There are many implementations of the Canny algorithm available, but we decided
to base our experiments on the implementation in Matlab. It offers a good match to the
original description of the algorithm, and the implementation has been widely used in
academia. The entire algorithm has been ported to SML and tested thoroughly to ensure
that the implementation produces the same results as the original.

Hysteresis Thresholding
In addition to the non-max suppressed gradient magnitudes image, hysteresis thresholding
takes two thresholds as input. The two thresholds high and low are used to identify
the strong and weak edges respectively. All gradient magnitudes greater than the high
threshold are considered strong edges, and the ones greater than the low threshold are
considered weak edges. The final edge map contains all the strong edges, along with all
weak edges that are connected to a strong edge.

In the Matlab implementation, hysteresis thresholding is done using vector operations
not available in SML. The algorithm has instead been implemented as a recursive depth-
first-search from all strong edges to find all the weak edges connected. The runtime for
this implementation is linear in the number of pixels in the image.



4 Experimental Setup
This section will cover the most important aspects of the experimental setup. The ADATE
specification and all relevant resources are available at our website [10].

The Original Program

fun f ( g , e , e t , h , l , p , m )
l e t

fun f o l l o w ( pf , us ) =
l e t

fun f i l t e r V a l i d ns =
case ns of

[ ] => [ ]
| n : : ns ’ =>

case nav ( g , pf , n ) of
i n v a l i d => f i l t e r V a l i d ns ’

| v a l i d pv => pv : : f i l t e r V a l i d ns ’
in

fo l l ow ’ (
f i l t e r V a l i d

[ up , upRight , r i g h t , downRight , down , downLeft , l e f t , u p L e f t ] ,
us )

end

and fo l l ow ’ ( ps , us ) =
case ps of

[ ] => us
| p : : ps ’ =>

case checkUpda te ( g , e , e t , p , l , us ) of ( u , us ’ ) =>
case u of

f a l s e => fo l l ow ’ ( ps ’ , us )
| t r u e => fo l low ’ ( ps ’ , f o l l o w ( p , us ’ ) )

v a l ( u , us ) = checkUpda te ( g , e , e t , p , h , [ ] )
in

case u of
f a l s e => [ ]

| t r u e => f o l l o w ( p , us )
end

Figure 1: The original program written in Standard ML.

The original program can be seen in Figure 1. The first three input arguments are
not intended for direct use, but they are needed by some the auxiliary functions. g is a
representation of the gradient magnitude image, and e and et are the final edge map and a
temporary edge map respectively. The temporary edge map is used to keep track of edges
found during the current invocation. The input arguments h and l contain the high and
low thresholds respectively, while p and m contain the current position and magnitude.
The function returns a list of positions to update.

There are two auxiliary functions defined outside the learning environment. The first,
checkUpdate, is used to check if the magnitude of a specified position is greater than a
specified value, and to mark the position as an edge if that is so. The second auxiliary
function, nav, is used to navigate the image. It takes a position and a direction to move,
and it returns either invalid or the valid position.



Figure 2: A selection of images from the BSDS500 [1]

The function f is invoked for all pixels in the image not already marked as an edge.
Each invocation starts with a call to checkUpdate to compare the magnitude of the current
position to h. If the magnitude is greater, the auxiliary function follow is invoked, if not,
the function simply returns. The follow function takes a position pf and generates a list of
all the valid neighbors and invokes the follow’ function on that list. The follow’ function
compares the magnitude of each of the positions in the list against l using checkUpdate,
and invokes follow on the positions where the magnitude is greater.

The Dataset
The training data used for our experiments were taken from BSDS500 [1]—a dataset
specifically designed to train and evaluate contour detectors and image segmentation
algorithms. The set contains high quality ground truth annotations by on average five
subjects for each of the images. There are in total 500 images in the set; 200 training
images, 100 validation images and 200 test images. Figure 2 shows a few example images
from the dataset.

We used the training and validation images both for finding appropriate constants
and for evolving new programs. In order to reduce the time needed to evaluate each
image during evolution, we decided to reduce the cardinality of the ground truth sets
by only using the best ground truth from each set. The best ground truth was selected by
evaluating each truth against the others in the set. This reduces the time needed to evaluate
each image to about one fifth of what is originally needed, and previous experience with
the dataset has shown that this approach is capable of producing results that correlate with
the results from a full evaluation.

The Fitness Function
We have used the average F-measure as the performance metric in our experiments. We
evaluate the quality of an edge map using the exact same approach as [1]. A graph
matching algorithm is used to match edges in an edge map against edges in the ground
truth. But, where [1] accumulate the count for all the images and calculate the F-measure
for the entire set, we instead calculate the F-measure on each image, and use the average
to determine the overall performance on the set. This approach makes each image equally
important to the final score, regardless of the number of edge pixels in the image.



Selecting the Constant Values
The Canny algorithm has three constants that control the algorithm. The first, σ, specifies
the standard deviation of the noise reduction filter used in the first stage of the algorithm.
The last two are the high and low thresholds used in hysteresis thresholding.

The first constant σ was chosen by simple grid search. We evaluate values for σ in the
interval [0.25,4.25] using a small 4×4 grid for the thresholds. The two thresholds were
found using the best σ and a 32×32 grid. Initial experiments showed that using thresholds
optimized for the entire set produced programs that used only one of the thresholds,
meaning that it is unlikely that any benefit is gained from using a dual threshold setup
when the thresholds have been tuned for the entire set. Therefore we decided instead to
use constants optimized per image.

5 Results
This section presents the new and improved program along with the results of the
benchmarks, and a visual inspection of the improvement on a small set of images.

The Improved Program
The improved program is listed in Figure 3. There are a number of changes, but most of
the overall structure from the original program remains.

The first difference is the comparison of h to m. If h is greater or equal to m the
function returns an empty update list. If h is less than m, the function makes a recursive
call with h = l, l = m and m = h. The program then continues to invoke checkUpdate
to check the magnitude at position p against h tanhh, and to update the edge maps if
necessary. Note that the function call is sent the update list returned from the recursive
call, and that et has been replaced by e.

The follow function has been modified so that it invokes follow’ two times. The first
invocation will check only the current position, and the second will check the neighbors of
the current position, in the following order; downRight, upRight, right, downLeft, down,
upLeft, left, upLeft and up. Note that upLeft is repeated twice. The internal auxiliary
function filterValid’ has changed so that it stops if any of the neighbors are invalid.

The follow’ function has also changed. The function now uses the update list sent
to follow (us)—instead of the update list in us′—as an argument in the function call to
checkUpdate. A new case-expression has been inserted where u matches false. This
invokes nav in an attempt to return the downLeft neighbor. If this neighbor is invalid, the
function returns us, if it is valid, normal operation is resumed. Lastly, the function has
been modified where u matches true. The order of the function calls has changed so that
follow’ is invoked first, and the pos list has changed to ps—the position list originally sent
to follow’.

Benchmarks
The final benchmark of the accuracy of the algorithms were conducted using the
accumulated F-measure and the full ground truth sets as in [1], and we used the dedicated
test set with 200 images. This allows fair comparison between the algorithms, and it
makes the result comparable with the result of a number of other algorithms that have
been benchmarked using the same setup.

The benchmark results can be seen in Table 1. We have evaluated the algorithms
using constants optimized for the entire dataset (OD) and constants optimized per image



fun f ( g , e , e t , h , l , p , m ) =
l e t

fun f o l l o w ( fp , us ) =
l e t

fun f i l t e r V a l i d ’ ns =
case ns of

[ ] => [ ]
| n : : ns ’ =>
case nav ( g , fp , n ) of

i n v a l i d => [ ]
| v a l i d pv => pv : : f i l t e r V a l i d ’ ns ’

fun fo l l ow ’ ( ps , us ’ ) =
case ps of

[ ] => us ’
| p : : ps ’ =>
case checkUpda te ( g , e , e t , p , l , us ) of ( u , us ’ ’ ) =>
case u of

f a l s e => (
case nav ( g , p , downLeft ) of

i n v a l i d => us
| v a l i d _ => fo l low ’ ( ps ’ , us ’ ) )

| t r u e => f o l l o w ( p , fo l l ow ’ ( ps , us ’ ’ ) )
in

fo l l ow ’ (
f i l t e r V a l i d ’

[ downRight , upRight , r i g h t , downLeft ,
down , upLef t , l e f t , upLef t , up ] ,

fo l l ow ’ ( [ p ] , us ) )
end

in
case r e a l L e s s ( h , m ) of

f a l s e => [ ]
| t r u e =>

case f ( g , e , e t , l , m, p , h ) of us =>
case checkUpda te ( g , e , e , p , h* t a n h h , us ) of

( _ , us ’ ) => f o l l o w ( p , us ’ )
end

Figure 3: The improved program written in Standard ML.

(OI). The F-measure with OD constants is listed under ODF, and the F-measure with OI
constants is listed under OIF.

The SCG algorithm [19] has been included for comparison. This is currently the best
known algorithm for the dataset, but it is far more complex than the other two algorithms
and requires much longer runtimes.

The ADATE-improved edge detector has been improved by 1.8%, or 1.1 percentage
point, with OD constants, and by 1.4%, or 0.9 percentage points, using OI constants. This
is a significant improvement since it closes 11.5% and 11.9% of the gap up to the SCG
algorithm with OD and OI constants respectively—without increasing the computational
complexity or adding more information. Note that the improvement is greater when using
OD constants—despite the fact that the algorithm was evolved using OI constants. This
is a strong indication that the algorithm offers a general improvement over the original
Canny algorithm.
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Figure 4: The ROC-curves of both algorithms. The ADATE-improved curve in blue, and
the original in dotted blue.

The ROC-curves of the two algorithms can be seen in Figure 4; the ADATE-improved
algorithm is plotted in red, and the original Canny algorithm in dotted blue. The curves
show a comfortable improvement across the entire range.

Table 1: The results of the benchmarks.
ODF OIF

SCG 0.71 0.73
ADATE-Improved 0.618 0.656
Canny 0.606 0.646

We performed a paired student-t test and a Wilcoxon signed rank test on the results of
the two algorithms on the test set using OD constants. The student-t test gave a p-value
of 4.685× 10−09, and the Wilcoxon signed rank test gave a p-value of 2.357× 10−10.
Therefore both tests confirm that the improvement made to the algorithm is statistically
significant on the test set. We have included a histogram plot of the difference in F-
measure between the ADATE-improved and the original Canny algorithm in Figure 5.

Visual Analysis
We have provided a few example images, along with the edge maps produced by the
two algorithms, for visual analysis of the improvement. The images and corresponding
edge maps can be seen in Figure 6, where the results produced by the ADATE-improved
algorithm are in the middle, and the results from the original in the right.

The first image has only a single foreground object, but most of the edge pixels around
the duck are missing in the image on the right. The middle image is also missing quite
a few edges—in particular the weak edges over the back of the bird—but the image is a
significant improvement over the right image. The improved algorithm is able to correctly
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Figure 5: A histogram plot of the difference in F-measure between the two algorithms on
the test set.

identify most of the edges around the head, and it has found some of the tail and second
leg. There is also more detail in the edge along the reflection in the water.

Both algorithms are capable of identifying the primary object in the second image,
but their performance differ in the surrounding areas. The improved algorithm has found
more of the cracks in front of the bear, it has been able to detect more of the ice in the
water in front, and there is more detail in the background.

In the second image, we can easily see that the improved algorithm does a
considerably better job with the emblem on the side of the fuselage. The original
algorithm has identified more of the edges around the clouds, but these edges are neglected
in all but one of the ground truth images.

The fourth image is an example where a considerable amount of weak edges are
marked as true edges. The improved algorithm does a better job at neglecting these
edges—both in the fur of the goat and the blurry background.

The improved algorithm has identified more of the left wing of the penguin in the last
image than the original, and it has identified the edges around the eye. The rocky region
under the penguin is troublesome for both algorithms. The improved looks slightly better
on the right hand side of the image, and the original looks better on left.

6 Conclusions
We have successfully improved the hysteresis thresholding stage of the Canny edge
detector. The F-measure has increased with 1.8 percent on a widely used test set of
natural images. A paired student-t test and a Wilcoxon signed rank test gives p-values
of 4.685× 10−09 and 2.357× 10−10 respectively, which show that the improvement is
extremely statistically significant.

The improved algorithm has introduced several complex recursive patterns that exhibit
an increased ability to distinguish true weak edges from false weak edges, and to produce



Figure 6: A selection of test images and the results produced by the two algorithms using
OD constants.

more accurate representations of edges in detailed areas. This has been achieved without
adding any extra processing or information to the algorithm.

The algorithm offers the greatest improvement when using constants optimized for
the entire test set, even though the program was evolved using constants optimized per
image. This indicates that the algorithm offers a general improvement over the original,
but more testing is required on other data sets to make sure.

The fact that we have improved hysteresis thresholding is further evidence that
automatic programming can infer heuristic algorithms capable of outperforming popular



image analysis algorithms created manually. The approach should work equally well in
other problem areas where exact solutions are impractical or impossible.

Future Work
There are a number of promising candidates for future investigations. There has been
a number of efforts to find an adaptive threshold mechanism for the Canny edge
detector, but a heuristic algorithm created using automatic programming could provide
an improvement over the current state-of-art.

We have been successful in improving the stages of the Canny algorithm separately.
The separate improvements need to be tested together to figure out how that affects the
performance. We would also like to investigate the possibility of evolving the different
stages together, which would allow for complex collaborative patterns to be created.

There are several other image analysis algorithms that we would like to try to improve
using a approach similar to the one presented in this paper. We have successfully
improved several non-trivial image analysis algorithms, but it remains to see if we could
improve the state-of-the-art algorithms.
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