
Introducing Selective Undo Features
in a Collaborative Editor

Weihai Yu
Department of Computer Science

UIT - The Arctic University of Norway
Weihai.Yu@uit.no

Abstract
Undo is an important functionality of editors. Selective undo is widely
regarded as an important feature for collaborative editing. However, even
after nearly three decades of active research and development, there is still
no practical support of selective undo for collaborative editing. This paper
introduces the selective undo features that we have implemented as part of a
collaborative editing subsystem in the GNU Emacs text editor.

1 Introduction
Undo is a key feature of editors. In a normal single-user editor, a user can conveniently
undo earlier editing operations in reverse chronological order. In a collaborative editor,
however, users at different sites may generate operations concurrently. This means that a
user cannot easily perceive a meaningful linear sequence of operations. In the research
community of collaborative editing, selective undo is widely regarded as an important
feature [4, 7, 9, 11–14, 17]. With selective undo, a user can undo an earlier operation,
regardless of when and where the operation was generated.

Selective undo can also be useful when there is no collaboration among multiple users,
as shown, for instance, in [16].

Despite wide acceptance in the research community, selective undo is practically not
supported in collaborative editors. For example, with Google Drive (https://drive.
google.com), a user can only undo operations in the reverse chronological order as they
were performed in the user’s local machine.

An editor supporting selective undo should have the following features.

1. Operation granularity. Text editing is character-string based in nature. Operations
on existing text may have arbitrary granularity. Undo or redo character by character
would be very inconvenient. Furthermore, some operations may consist of a number
of sub-operations. Examples include indentation of source-code blocks, global text
substitutions, etc.

2. Operation dependencies. Undoing an arbitrary earlier operation may lead to
undesirable effects due to operation dependencies. For example, a user first inserts

This paper was presented at the NIK-2016 conference; see http://www.nik.no/.



a misspelled word and then makes a correction. The correction depends on the
insertion of the misspelled word. It is undesirable to undo the insertion of the
misspelled word alone and leave the correction part behind.

3. Operation selection. The user should be able to conveniently view, find and select
an earlier operation in order to undo its effects.

4. Convenience. In most of the time, the user should be able to effortlessly undo a
default operation. In the case of a single-user editor, it is often the last performed
editing operation.

Existing research systems support only selective undo of operations with fixed
granularity (e.g. characters or unbreakable lines). Consequently, users can typically
only undo earlier operations character by character or line by line, even for operations
such as copy-paste, find-replace or select-delete. To the best of our knowledge,
there is no collaborative editing system that handles undesirable undo effects due
operation dependencies, support for convenient operation selection, or accounts for
default operations to undo. Only our recent work supports selective undo of string-
wise operations with arbitrary granularity [17, 18] and handles operation dependencies
for selective undo [18].

In this paper I introduce our support for all the above-mentioned features implemented
in the widely used GNU Emacs text editor (https://www.gnu.org/software/
emacs/). Our collaborative editing subsystem in Emacs is called Wyde. In [18], we
presented the support of the first two features, namely selective undo of string-wise
operations and dealing with undesirable effects of selective undo. In this paper, I will
focus on the other features, i.e. operation selection and effortless undo and redo. I will
also report my first experience of using the new system.

This paper is organized as the following. Section 2 presents related work and
highlights the contributions of this paper. Section 3 briefly reviews our CRDT
approach [18] to real-time collaborative editing. Section 4 presents the display and
filtering of editing histories in Wyde, and how to navigate through the histories. Section 5
presents how to perform undo and redo effortlessly in Wyde. Section 6 reports my first
experience using Wyde. Finally, Section 7 concludes.

2 Related Work
Most of the present collaborative editing work is based on operational transforma-
tion (OT) [3, 12, 13]. With OT, a local operation is performed immediately on the local
replica of a document; a remote operation is transformed and integrated in the local site
based on the positions of the existing and concurrent operations. The time complexity
depends on the lengths of operation histories (linear at best). As a critical issue with OT,
it is hard to design correct operation transformation functions that is generally applicable
to various integration algorithms [5]. One common way to relax certain required condi-
tions for transformation functions is to enforce a global total order in which operations are
transformed and integrated at all sites [15]. As a consequence, OT approaches generally
do not scale well and practically require the involvement of central servers. Furthermore,
support for off-line (or asynchronous) editing while enforcing a global total order is non-
trivial.

Lately, there appear a new family of approaches to collaborative editing based on
commutative replication data types (CRDT) [2, 6, 8, 10, 14, 17]. With CRDT, concurrent



insertions are ordered based on the underlying data structure, so the time complexity may
not depend on the lengths of operation histories. Furthermore, at different sites, operations
can be integrated in different orders. Ahmed-Nacer et al. reported in [1] that CRDT
algorithms are better suited for large-scale distributed environments and outperform OT
algorithms by orders of magnitudes.

Supporting string operations and selective undo requires obtaining at runtime relations
among operations, such as whether a string is part of an operation or whether an
operation is an undo of another operation. Since strings might be split by subsequent
operations and operations are executed concurrently, obtaining such relations can be
complicated. Deriving such relations through operation transformation is particularly
difficult. Currently, most related work can only apply undo to insertion and deletion
of fixed objects (characters or unbreakable lines) [4,7,9,11–14]. Only our previous work
[17, 18] supports selective undo of operations with dynamic and appropriate granularity.
Furthermore, [18] is the first work that accounts for possible undesirable effects of undo
due to operation dependencies.

The work presented in this paper is built on [18], with the following new features:

• undo or redo of a selected previous group operations like multiple substitutions and
block indentation,

• display of the editing history,

• filtering of displayed history, such as according to selected regions in the document
or using a regular expression, or both,

• navigation through the operation history,

• selection of operation and undo or redo,

• effortless undo of default operations.

These features are unique even for single-user editors. This is due to our CRDT data
structure that materializes the editing operations, which makes the implementation of all
these features pretty straightforward. In contrast, the implementations of undo in existing
single-user editors are based on operational transformation. For example, Emacs supports
regional undo (a restricted form of selective undo) as a built-in feature. Emacs maintains a
list of data elements representing the last performed operations. To find the operations in
a region, Emacs walks backward through the list and transforms the operation positions in
the data elements with respect to the current document state. This means that in principle
we have to walk through the entire list to find all operations in the region. For a long list,
this can be an expensive operation.

Azurite [16] is an Eclipse (http://www.eclipse.org) plug-in where every editing
operation is associated with some meta-data, called dynamic segment, containing
information like the position of the operation in the document and the character string
of the operation. Performing an editing operation involves updating all existing dynamic
segments. In addition, it has to deal with complicated relations among overlapping
operations.

3 View and Model
With a collaborative editor, a document is concurrently updated from a number of peers at
different sites. Every peer consists of a view of the document, a model, a log of operation
history and several queues (Figure 1).



ins del

View
012A5678

Model

Log

undo
redo

render Qv
integrate

Qin

receive

Qout

broadcast

1 2 34 A 56 78

Figure 1: View, model and operations

A peer concurrently receives local operations generated by the local user and remote
operations sent from other peers. Local operations take immediate effect in the view. The
peer stores executed local operations and received remote operations in queues. During
a synchronization cycle, it integrates the stored operations in the model and shows the
effects of integrated remote operations in the view. The peer also records integrated
operations in the log. Later, it broadcasts integrated local operations to other peers.

Every peer has a unique peer identifier pid. An operation originated at a peer has a peer
update number pun that is incremented with every integrated local operation. Therefore,
we can uniquely identify an operation with the pair (pid,pun). In what follows, we use
oppid

pun to denote an operation op identified with (pid,pun).
A view is mainly a string of characters. A user at a peer can insert or delete a sub-

string at a position in the view, and undo an earlier integrated local or remote operation
selected from the log.

A model materializes editing operations and relations among them. It consists of
layers of linked nodes that encapsulate characters. Conceptually, characters have unique
identifiers that are totally ordered (though not every identifier is explicitly represented in
the model). For two characters cl and cr, if cl.id < cr.id, then cl appears to the left of cr.

Nodes at the lowest layer of a model represent insertions and contain inserted
characters. Nodes at higher layers represent deletions. That is, a higher-layer node (outer
node) deletes the characters in the lower-layer nodes (inner nodes) it contains.

A node contains the identifier cidl of its leftmost character and cidr of its rightmost
character. The identifiers of the other characters (i.e. not at the edges of the node) are
not explicitly represented in the model. An insertion node also contains a string str of
characters.

Subsequent operations may split existing nodes. Nodes of the same operation share
an op element as the operation’s descriptor.

The descriptor contains the identifier and type of the operation, a set P (for parents)
of references to the descriptors of op’s ground operations and a set C (for children) of
operations built on op. Operation opg is a ground operation of op, if op’s existence
depends on the existence of opg. The parent-child relationship defines dependencies
among operations.

The descriptor also has an undo element that contains a set U of identifiers of its undo
operations (there might be more than one, as multiple peers might concurrently undo the
same operation). An undo element may itself have its own undo element (e.g. when the
original operation is redone). Thus the undo elements of an operation form a chain. The



Peer 1

12345678

12345678

Peer 2
12345678
12345678
12345678
12345678
1234A5678
1234A5B678
1234XA5B678
1234XA5B678

Peer 3

12345678

1234X5678

ins2
1

del22
del23

undo2
4(del23)

ins2
5

ins2
6

ins3
1

del11

12345678

1. ins2
1

12 34 5678

2. del22

1 2 34 56 78

3. del23
1 2 34 56 78

4. undo2
4

1 2 34 A 56 78

5. ins2
5

1 2 34 A 5 B 6 78

6. ins2
6

1 2 34 X A 5 B 6 78

7. ins3
1

1 2 3 4 X A 5 B 6 7 8

8. del11

Figure 2: Examples of model updates

operation is effectively undone if the length of the chain is an odd number.
An insertion is self-visible if it is not effectively undone. A deletion is self-visible

if it is effectively undone. An operation is visible if it is self-visible and all its ground
operations are visible. A character is visible if all operations on it are visible.

There are three types of links among nodes: l-r links maintain the left-right character
order; opl-opr links connect nodes of the same operations; i-o links maintain the inner-
outer relations. The outermost nodes and the nodes inside the same outer node are linked
with l-r links. When the view and the model are synchronized, the view equals to the
concatenation of all visible characters of the outermost nodes through the l-r links.

Figure 2 shows an example with three peers. The upper part shows a number of
operations generated at the peers. The lower part shows the model snapshots at Peer 2.
Nodes of the same deletion are aligned horizontally. Nodes with dotted border are self-
invisible. Characters in light gray are invisible.

Different peers can update the model concurrently. The model data structure is a
CRDT that has the following convergence property: when all peers have applied the same
set of updates, the states of the model at all peers converge.

We refer the interested readers to [18] for more details on the data structure and
algorithms on the model.

Materialization of editing operations in the model makes a number of tasks easier,
including support for selective undo and handling of operation dependencies [18], as well
as user friendliness features like display of operation history and selection of operations
to undo or redo, as described in the following sections.

4 Viewing and selecting operations
In a single-user editor without selective undo, undo or redo is relatively easy. The user
simply undoes the latest editing operations in reverse chronological order. Sometimes it



Figure 3: Operation history view

is not easy to know when to stop undoing if there are more than a handful of operations
to undo. Typically, the user keeps undoing until it has gone too far, and then corrects this
with a number of redos.

To perform a selective undo, the user must be able to view previous operations in a
comprehensible way. Figure 3 shows a document (this current paper) under editing in
Wyde and a history view to its right side.

In the history view, every operation is preceded with a leading character for its current
state: “U” indicates that the operation is undone; “R” indicates that the operation has been
first undone and is finally redone; a dot “.” indicates that nothing has happened with the
operation.

The character string of the operation is underlined. The string of an insertion is
displayed in blue; the string of a deletion is in red. If the string is not visible in the
document, it is displayed in dimmed color. The operation strings are displayed with the
surrounding text (in light gray).

The operations in the history view are in the chronological order in which they were
originated. If the user performs operation op1 prior to operation op2, op1 is displayed
before op2. Subsequent undo or redo of the operations does not change the displaying
order.

Wyde maintains the complete operation history of a document, even persistently
across editing sessions. The number of operations can thus be overwhelmingly large
for the user to navigate through. Wyde provides a number ways to display the relevant
subset of operations: operations in a given region, operations whose text matches a regular
express and operations generated by a particular user.

If the user selects a region in the document, the history view only displays the
operations restricted to the region. Displaying operations in a region is often the most
effective way to zoom into the relevant operations. Some operations, for instance global
text substitution, are widely spread in the document. Regular expression based filtering
can be more effective in this case. Filtering based on users provide another option, useful
when the user knows who performed the operations.

When the user activates a select-and-undo sub-session, a history view is displayed and
a sub-menu appears in the echo area at the bottom of the editor, to help the user perform
a number of tasks with typing a single character:



h to re-display a fresh new history,
a to search for operations performed by a particular author,
s to search for operations in the view containing substrings

matching a regular expression,
S to search for operations in the entire history with a regular expression,
p to move to the previous operation,
n to move to the next operation,
u to perform an undo,
r to perform a redo,
t to turn the direction of the current undo or redo chunk,
q to quit the current select-and-undo sub-session.

Searching for operations matching a regular expression is different from the traditional
way of searching in the document. The text in the current document state matching a
regular expression might be involved with multiple editing operations. On the other hand,
searching for operations will find operations containing the matching text, regardless of
whether the text is currently visible in the document or whether it is has been split by
other operations.

The user can navigate up and down through the operations, and expand the number of
displayed operations when the navigation goes beyond the displaying boundary. The
current selected operation during the navigate is highlighted in yellow. During the
navigation, the cursor in the document moves to the operation boundary accordingly.
This not only provides a nice way of navigating through the document, but also presents
a rich context of the operation.

5 Undo and redo behavior
Selective undo is a powerful feature, but it can be complicated to use. We will show that
performing undo and redo in Wyde is at least as convenient as in a single-user editor.

Undo and redo in single-user editors
In a single-user editor without selective undo, it is usually more convenient to perform
undo in most use cases.

A single-user editor typically has undo and redo as two distinct operations (Figure 4-
a). If the last editing operation was a normal update or redo operation, an undo operation
undoes the last operation. If the last operation was an undo, and undo operation
undoes one more operation and expands the undo sequence. During the undo process, a
previously undone operation is regarded as non-existent. For example, op−1

2 in Figure 4-a
is performed immediately after op−1

4 , as if op3 were non-existent. The redo operation
works in a similar way. Notice that an undo or redo is always related to the corresponding
original operation.

The built-in undo mechanism of Emacs is different. There is only a single undo
operation (Figure 4-b), which either starts a fresh new undo sequence and undoes the
immediate previous update operation, or continues with the current undo sequence. When
an undo operation follows immediately another undo operation, it will undo one more
operation; otherwise, it undoes the last update operation, which could be a normal update
or an undo operation. Thus, if an undo operation follows an operation that does not
modify the document, like a cursor movement, it will start a fresh new undo sequence
and undo the immediate previous update operation, regardless of whether it is an undo



do
op0

op1

op2

op3

undo

op−1
3

op−1
2

redo

op2

do

op4

undo

op−1
4

op−1
2

op−1
1

do

op5

(a) distinct undo and redo

do
op0

op1

op2

op3

undo

op−1
3

op−1
2

θ

op−2
2

do

op4

θ

op−1
4

op−3
2 op−2

2

op−2
3 op−1

3

op−1
2

op−1
1

do

op5

(b) undo only

Figure 4: Undo and redo in single-user editors

or not. If that previous update operation is an undo, this effectively achieves a redo. In
Figure 4-b, θ is a non-update operation. An undo operation following op−1

2 and θ undoes
op−1

2 , depicted as op−2
2 , which has the same effect as op2.

Notice that in the undo-only approach, an undo operation undoes a previous operation
in history without relating to its original operation. Consequently, when continuing
an undo sequence, a previously undone operation is not regarded as non-existent. In
Figure 4-b, because op−1

2 precedes op−2
2 , op−2

2 is performed after op−3
2 . To achieve

the same undo effect as in Figure 4-a, the user has to walk through the extra undo sub-
sequence as shown in the shaded circle in Figure 4-b.

Since human users normally relate undos and redos with original update operations,
the distinct undo-redo model is usually easier to use. On the other hand, the undo-only
model is more suitable for handling concurrent undos in a collaborative editor, because an
undo specifies explicitly which “version” of an operation it undoes. Therefore we adopt
the undo-only model in the model and support the distinct undo-redo model in the view.

It is easy to perform an undo in a single user editor, mainly because the effect of an
undo is unambiguously defined. The user does not have to make any choice. Therefor the
key to support the same level of convenience in a collaborative editor with selective undo
is to make useful default selections, so that the user does not have to make any choice
most of the time.

Undo and redo in Wyde
When a user is undoing or redoing a sequence of operations, the last undone or redone
operations form a “chunk”. In the history view in Wyde, an undo chunk is highlighted in
light yellow and a redo chunk is highlighted in light green (as shown in Figure 3).

In a select-and-undo sub-session, when the operation at point is not currently undone,
typing “u” undoes the operation and starts a new undo chunk. If the user types a second
“u”, the chunk expands. During the expansion of a chunk, the already undone operations
are regarded as non-existent and will be skipped over (so there may be “holes” in a chunk).
The expansion also skips operations that were not originated by the same user, as these
operations are regarded as belonging to different “input flows”. If a user has started an
undo chunk with an operation too early in the history, she may turn the direction of the
undo, so the chunk expands in the other direction.



A redo works in a similar way.
In Wyde, which operation to undo or redo depends either on the selected operation

(i.e. the operation at point when the select-and-undo sub-session is active), or on the last
update operation (when the sub-session is not active), as shown in the Table 1.

operation in question operation to undo operation to redo
op op no effect

undo(op) undoUp(), undoDown() op
redo(op) op redoUp(), redoDown()

Table 1: Operation to undo or redo

In the table, “operation in question” stands for the selected operation or the last update
operation. op stands for a normal update operation. If the operation in question is a normal
update or redo, an undo operation undoes the corresponding update. If the operation in
question is an undo and the undo is inside the current undo chunk, it expands the current
undo chunk and continues undoing. If, however, the undo is not inside the current chunk,
Wyde will re-establish an undo chunk around the undo in question before the expansion.
undoUp() expands the undo chunk upward and returns the new uppermost operation.
undoDown() expands the chunk downwards. Similarly, redoDown() and redoDown()
expand the redo chunk.

Note that if the user does not explicitly select an operation or turn the direction of
undo or redo, the undo and redo behavior is shown in bold in the table. This is exactly the
same as in the distinct undo-redo model of a single-user editor. Therefore the undo and
redo functionality in Wyde is at least as convenient to the user as in a single-user editor.

6 My first experience
I have been writing this paper as a LATEX document in GNU Emacs with Wyde features
turned on. The main purpose of doing this include, (1) to manually test the software (in
addition to pretty comprehensive unit tests), (2) to spot potentials of improvements, and
(3) to be able to report my first experience to the interested readers. This first experience
does not involve concurrent collaboration, but I think it might still be of interest, as the
introduced features are unique even for single-user editors.

The editing history of a document edited in Wyde is kept persistent, along with the
document itself. The user can actually undo or redo any operation ever performed on the
document. Because Wyde is primarily for collaborative editing, operations are eventually
sent to the remote peers that are concurrently editing the same document. To maintain the
editing history, Wyde simply appends all outgoing messages to a local file.

When a user opens a document, Wyde re-plays the entire history, so that the model of
the document is at exactly the same state as if the document had never been closed.

There are however many reasons things can go wrong and the result of a re-play might
not be the same as the document last saved. The software may be buggy, or the user may
have edited the document with another editor or with Emacs but with Wyde mode turned
off. To get around the problem so that the user can continue editing the document, after
re-playing the history, Wyde compares the resulting document with the last saved version.
If there is any difference, Wyde applies the “diff” and generates an error report. The user
may still continue with the editing. The software maintainer, i.e. I, can use the error report
for software maintenance.



1
10

100
1k

10k

0 2k 4k 6k 8k

Insertion lengths

1
10

100
1k

10k

0 2k 4k 6k 8k

Deletion lengths

10
20
30
40
50

0 2k 4k 6k 8k

Group operation sizes

1

10

100

1k

0 2k 4k 6k 8k

Undo and redo distances

undo
redo

Figure 5: Usage of editing operations

Wyde has a debugging mode. When the debugging mode is turned on, the user may
inspect various internal states of the software or even modify the software on the fly
(which is very well supported in Emacs Lisp).

As up to this date, writing this paper has revealed three software bugs. Two of the
bugs were buried deeply down in the model and could be non-trivial to hit in unit tests.
Each bug took two to three days to fix.

In addition, the writing of this paper was halted for about a month due to re-writing of
a component of the software and fine-adjustment of some features.

In general, the writing has been smooth, despite the bugs and the halt. I did have some
moments with satisfaction after undoing earlier updates, which were impossible without
selective undo.

I have collected some usage information about the editing operations that I have
performed. I did this primarily out of curiosity, but the collected information might also
be useful for me to figure out how useful particular features are and where the challenges
could be. Collecting the information is pretty straightforward, when the entire history of
editing the document is available.

Up till now, I have performed over 8000 editing operations. There are around 4000
insertions and 2500 deletions. (Wyde aggregates consecutive insertions and deletions
of characters as much as possible until line boundaries.) Some of these insertions and
deletions are stand-alone, while others are parts of around 1500 group operations (for
instance, multiple substitutions as a single operation). I have undone over 200 times and
redone over 30 times.

Figure 5 shows some additional information about the performed operations. The x-
axis indecates the sequence numbers of operations. As we can see, it is quite often that
the lengths of insertions and deletions are around 10 characters and above. There are
even occasional cases where the lengths reached 10k characters. If only character-wise
operations are supported, real-time collaborative editing would be very costly, both in



terms of run-time overhead and the number of messages over the network. For the end
user, undoing operations character by character would be very painful. Unfortunately,
most of the available systems support only character-wise operations (of course some
operations, like initial insertion of a character string, can be easily optimized.). At present,
only our work supports undo of string-wise operations.

Most of the group operations consist only of two sub-operations, such as auto-
correction of miss-spelled words. There are occasional larger group operations, consisting
of over 20 sub-operations. Undoing a group operation with a single undo is useful, but
in our particular case, it is not convincingly indispensable. I have experienced in other
cases, such as editing source code with IDE features, where there are much more frequent
group operations and the sizes of them are often large.

The distance of an undo (or redo) is how far the undo (or redo) is from the original
editing operation. In the figure, the undos are depicted in brown and redos in green.
It shows that I have only performed a handful of selective undos with distances greater
than 10. I performed almost all redos immediately following some undos, typically when
I undid too much. In retrospect, I normally did not keep the history view constantly
open and undoing a little too much is a way of getting the feedback of where to stop
a sequence of undos. When I was writing new content, I mostly performed undo in
the traditional way, as I was used to. I performed selective undo a little more when I
was revising the document (and when I was more conscious about the availability of the
features). Obviously, I myself was not yet used to making good use of the new selective
undo features.

The resulting LATEX file is around 49K bytes (excluding the BIBTEX file and the
images in Figures 3 and 5). The history file is around 1.9M bytes, about 40 times the
size of the file being edited. This is also the total size of the messages that would have
been sent if there were other people co-editing the document concurrently.

With respect of performance, all editing operations are spontaneous. I would like to
refer the interested readers to [18] for the performance of the key operations in the CRDT
data model.

7 Conclusion
Selective undo has long been regarded as a desirable feature of collaborative editors.
However, support for selective undo has remained for over two decades as a “research
feature”. In this paper, I have introduced selective undo features implemented in GNU
Emacs. I have also reported my own personal experience of using these features. The
experience is still limited though, as the document was not edited by multiple authors
concurrently. Still, I hope that I have convinced the readers of the fact that selective undo
can indeed be practically usable.

References
[1] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and P. Urso. Evaluating CRDTs

for real-time document editing. In DocEng, pages 103–112. ACM, 2011.

[2] L. André, S. Martin, G. Oster, and C.-L. Ignat. Supporting adaptable granularity of
changes for massive-scale collaborative editing. In CollaborateCom. IEEE, 2013.

[3] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In SIGMOD,
pages 399–407. ACM, 1989.



[4] J. Ferrié, N. Vidot, and M. Cart. Concurrent undo operations in collaborative
environments using operational transformation. In CoopIS/DOA/ODBASE (1),
pages 155–173, 2004.

[5] A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving correctness of
transformation functions in real-time groupware. In ECSCW, pages 277–293, 2003.

[6] G. Oster, P. Urso, P. Molli, and A. Imine. Data consistency for P2P collaborative
editing. In CSCW, pages 259–268. ACM, 2006.

[7] A. Prakash and M. J. Knister. A framework for undoing actions in collaborative
systems. ACM Trans. Comput.-Hum. Interact., 1(4):295–330, 1994.

[8] N. M. Preguiça, J. M. Marquès, M. Shapiro, and M. Letia. A commutative replicated
data type for cooperative editing. In ICDCS, pages 395–403. IEEE Computer
Society, 2009.

[9] M. Ressel and R. Gunzenhäuser. Reducing the problems of group undo. In GROUP,
pages 131–139. ACM, 1999.

[10] H.-G. Roh, M. Jeon, J. Kim, and J. Lee. Replicated abstract data types: Building
blocks for collaborative applications. J. Parallel Distrib. Comput., 71(3):354–368,
2011.

[11] B. Shao, D. Li, and N. Gu. An algorithm for selective undo of any operation in
collaborative applications. In GROUP, pages 131–140. ACM, 2010.

[12] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems.
ACM Trans. Comput.-Hum. Interact., 5(1):63–108, 1998.

[13] D. Sun and C. Sun. Context-based operational transformation in distributed
collaborative editing systems. IEEE Trans. Parallel Distrib. Syst., 20(10):1454–
1470, 2009.

[14] S. Weiss, P. Urso, and P. Molli. Logoot-undo: Distributed collaborative editing
system on P2P networks. IEEE Trans. Parallel Distrib. Syst., 21(8):1162–1174,
2010.

[15] Y. Xu and C. Sun. Conditions and patterns for achieving convergence in OT-based
co-editors. IEEE Trans. Parallel Distrib. Syst., 27(3):695–709, 2016.

[16] Y. Yoon and B. A. Myers. Supporting selective undo in a code editor. In ICSE, pages
223–233. IEEE/ACM, 2015.

[17] W. Yu. Supporting string-wise operations and selective undo for peer-to-peer group
editing. In GROUP, pages 226–237. ACM, 2014.

[18] W. Yu, L. André, and C. Ignat. A CRDT supporting selective undo for collaborative
text editing. In DAIS, pages 193–206, 2015.


