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Abstract
Subjective Bayesian networks extend Bayesian networks by substituting the
conditional probability distributions with subjective opinions. In that way
they enable explicit representation of the uncertainty in the probabilistic
information encoded in the network. In this paper we focus on predictive
reasoning in subjective Bayesian networks and propose an inference method
that is based on the operations of deduction and multiplication of subjective
opinions. We demonstrate modelling and inference with subjective Bayesian
networks through an example.

1 Introduction
A Bayesian network (BN) is a compact representation of probabilistic information in
the form of a directed acyclic graph and probability distributions associated with its
nodes. Bayesian network reasoning algorithms provide a way to propagate probabilistic
information through the graph, enabling predictive and diagnostic reasoning applicable
in risk assessment and decision making. A serious limitation of the Bayesian network
reasoning methods is that all the input probabilities must be assigned a precise value
in order for the inference algorithms to work and the model to be analysed. This is
problematic in many situations where probabilities can not be reliably estimated or are
completely missing, while we still want to infer the most accurate conclusions possible.
Many different approaches have been proposed for dealing with incomplete Bayesian
networks and imprecise probabilistic information in general, like, for example, Bayesian
logic (Andersen and Hooker, 1994), credal networks (Cozman, 2000), the probabilistic
logics and networks discussed in (Haenni et al., 2011), the logics of likelihood in (Fagin
et al., 1990), and imprecise probabilities (Walley, 1991). Conditional reasoning has been
an important part of the mentioned theories and has also been analysed in the context of
belief theory (Shafer, 1976), (Xu and Smets, 1994).

Subjective Bayesian networks represent second-order uncertainty in BNs, uncertainty
about the probabilities, in the form of subjective opinions. A subjective opinion on a
random variable is a composite representation that includes a specific belief assessment
of the random variable done by an expert, based on a test, etc; and a base rate distribution
obtained from a background statistics about the knowledge domain. (Ivanovska et al.,
2015) provides an introduction to subjective networks and briefly discusses several
possible reasoning approaches. In Bayesian networks, inference is based on evidence
in the form of an observation of some of the variables’ values. In subjective BNs, the
evidence itself can in general have the form of a subjective opinion, which provides a
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way of representing soft evidence like, for example, vague observations. In this paper
we propose a method for predictive reasoning in subjective BNs which provides a way
of propagating subjective evidence from variables to their descendants in the graph. The
proposed method combines the deduction operation for subjective opinions described in
(Ivanovska et al., 2016) and the operation for multiplication of opinions introduced in
(Jøsang and McAnally, 2004).

In Section 2 we introduce subjective BNs providing the necessary preliminaries for
Bayesian networks and subjective opinions, but assuming that the reader is familiar with
the basics of probability theory. In Section 3 we review the operations of deduction and
multiplication of subjective opinions and propose a method for predictive reasoning in
subjective BNs. In Section 4 we provide an example to demonstrate the method. In
Section 5 we summarize the results of the paper and discuss topics for future work.

2 Subjective Bayesian Networks
Bayesian Networks
A Bayesian network (Pearl, 1988) with n variables is a directed acyclic graph (DAG)
with random variables V = {X1, . . . ,Xn} as nodes, and a set of conditional probability
distributions p(Xi|Pa(Xi)) associated with each node Xi containing one probability
distribution p(Xi|pa(Xi)) of Xi for every assignment of values pa(Xi) to its parent nodes
Pa(Xi).

If the Markov property holds for the given DAG and the joint distribution p of the
variables X1, . . . ,Xn (Every node is conditionally independent of its non-descendant nodes
given its parent nodes in the graph, I(Xi,ND(Xi)|Pa(Xi)), then p is determined from the
input information in the network as follows:

p(x1, . . . ,xn) =
n

∏
i=1

p(xi|pa(Xi)) , (1)

where pa(Xi) is the assignment of the parents of Xi that corresponds to the tuple
(x1, . . . ,xn).

The general belief update problem in Bayesian networks is the following: Given
evidence in the form of an observation of the value of a variable X , to find the probability
distribution of another variable Y (X and Y can also be subsets of V ). There are different
belief propagation methods for solving this problem which make use of the conditional
independencies embedded in the graph.

Of importance for our later discussion is the graphical criterion for conditional
independence in Bayesian networks, called d-separation (see, for example, (Neapolitan,
2003)): For three disjoint sets of nodes X , Y , and Z in a DAG, we say that Z d-separates X
from Y , if every path between a node from X and a node from Y is blocked by Z, meaning:
1) there is a node on the path that delivers an arrow and belongs to Z, or 2) there is a node
on the path with converging arrows that is neither in Z nor has a descendant that is in Z.
If X and Y are d-separated by Z, then they are independent given Z, I(X ,Y |Z).

Subjective Opinions
Let X be a random variable. A subjective opinion on X (Jøsang, 2008) is a tuple:

ωX = (bX ,uX ,aX) , (2)



where bX : X→ [0,1] is a belief mass distribution, uX ∈ [0,1] is an uncertainty mass,
and aX : X→ [0,1] is a base rate distribution of X , satisfying the following additivity
constraints:1

uX + ∑
x∈X

bX(x) = 1 , (3)

∑
x∈X

aX(x) = 1 . (4)

The beliefs and the uncertainty mass are a result of a specific analysis of the random
variable by applying expert knowledge, experiments, or a personal judgement. bX(x) is
the belief that X takes the value x expressed as a degree in [0,1]. It represents the amount
of experimental or analytical evidence in favour of x. uX is a single value, representing
the degree of uncertainty about the belief analysis. It represents lack of evidence that can
be due to lack of knowledge or expertise, or insufficient experimental analysis. The base
rate aX is a prior probability distribution of X that reflects domain knowledge relevant to
the specific analysis, most usually relevant statistical information. For example, a doctor
wants to determine whether a patient suffers from depression. Based on examinations
and tests, she concludes that the collected evidence is 10% inconclusive, but is still two
times more in support of the diagnosis that the patient suffers from depression than of
the opposite one. As a result, the doctor assigns 0.6 belief mass to the patient suffering
from depression and 0.3 belief mass to the opposite diagnosis, complemented by 0.1
uncertainty mass. The probability that a random person in the population suffers from
depression is 5% and this fact determines the base rates in the doctor’s subjective opinion
about the condition of the patient.

A subjective opinion in which uX = 0, i.e. an opinion without any uncertainty, is
called a dogmatic opinion. Dogmatic opinions correspond to probability distributions. A
dogmatic opinion for which bX(x) = 1, for some x ∈ X, is called an absolute opinion.
Absolute opinions correspond to observations. In contrast, an opinion for which uX = 1
(and consequently bX(x) = 0, for every x) is called a vacuous opinion. For a given
multinomial opinion ωX we define its corresponding projected probability distribution
PX : X→ [0,1] in the following way:

PX(x) = bX(x) + aX(x) uX . (5)

PX(x) is an estimate for the probability of x which varies from the base rate value, in
the case of complete ignorance (uX = 1), to the actual probability in the case uX = 0. In
the correspondence between subjective opinions on a random variable and multinomial
Dirichlet model (Walley, 1996) of its distribution given in (Jøsang and McAnally, 2004),
the belief mass bX(x) is proportional to the number of observations of x, n(xi), while uX
is inversely proportional to the total number of observations N:

bX(xi) =
n(xi)

N + s
, uX =

s
N + s

, (6)

where s is the Dirichlet strength. Then PX corresponds to the mean distribution of the
Dirichlet posterior, if aX is the mean of the Dirichlet prior.

A joint subjective opinion on variables X1, . . . ,Xn, n≥ 2, is a tuple:

ωX1...Xn = (bX1...Xn,uX1...Xn,aX1...Xn) , (7)

1This definition is for a multinomial subjective opinion. In general, we can define hyper opinions, where
bX : R (X) = 2X \ {X, /0}, and operate with them through their multinomial projections (see (Ivanovska
et al., 2016)).



where bX1...Xn : X1× . . .×Xn→ [0,1] and uX1...Xn ∈ [0,1] satisfy the additivity condition
in Eq.(3) and aX1...Xn is a joint probability distribution of the variables X1, . . . ,Xn. Given
two sets of random variables X and Y , a conditional opinion on Y given that X takes the
value x is a subjective opinion on Y defined as a tuple:

ωY |x = (bY |x,uY |x,aY |x) , (8)

where bY |x : Y→ [0,1] and uY |x ∈ [0,1] satisfy the condition in Eq.(3) and aY |x : Y→ [0,1]
is a probability distribution of Y . We use the notation ωY |X for a set of conditional opinions
on Y , one for each value of X , i.e.:

ωY |X = {ωY |x | x ∈ X} . (9)

Subjective Bayesian Networks
A subjective Bayesian network (SBN) is a generalization of a classical Bayesian network
where each probability distribution p(X |pa(X)) is represented with an opinion about it,
ωX |pa(X) (Fig.1).

The inference problem of opinion update in an SBN can be formulated as follows:
Given a subjective opinion on an evidence variable X to derive a subjective opinion
on a target variable Y .2 This means that, unlike in the case of BNs, we allow for soft
evidence, evidence in the form of a general subjective opinion, not only an absolute one
(observation). We denote the derived opinion by ωY‖X . If X is a root node, then ωY‖X
is the marginal opinion on Y derived from the network’s input. In the case when X is
not a root node, we assume that by providing an opinion ωX , we ignore the opinion on
X that would be derived from the network’s input, i.e. we “delete” the arrows between X
and its parent nodes. A general inference procedure for deriving ωY‖X would ideally be
performed in the following steps:

1. The projected probability of the resulting opinion is determined from the projected
probabilities of the given opinions using standard BNs reasoning methods.

2. The base rate of the resulting opinion is either given a priori, or determined from
the given ones by Bayesian reasoning or other specified methods.

3. The uncertainty mass and the beliefs are determined by implementing the result of
1. and 2. in Eq.(5), and setting additional constrains that they should satisfy in the
specific inference.

While 1. and 2. can be defined in a generic way, it is hard to think of general constrains
to be imposed on uY‖X and bY‖X that would apply independently of the position of the
evidence and target variable in the graph. That is the reason we apply a piece-wise
reasoning strategy, which follows the direction of the arrows in the graph and applies
one operation (having its own constraints on the resulting opinion) at a time.

3 Predictive Reasoning in SBNs
Predictive reasoning in Bayesian networks (Korb and Nicholson, 2010) is the reasoning
along the direction of the arrows in the DAG in the sense that the target variable
is a descendant of the evidence variables. Determining the marginal probability

2The discussion in the paper is limited to opinion update with one evidence and one target variable.
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Figure 1: Three-node subjective Bayesian networks

distribution of a variable can be considered a special case of predictive reasoning
where the set of evidence variables is empty. We present a method for predictive
reasoning in SBNs that combines the subjective logic operations of deduction and
multiplication. The deduction operation propagates information from parents to children,
while multiplications operation derives the joint opinion from the individual opinions
of two or more independent variables. We provide a short review of the deduction and
multiplication operation. Then we propose an inference method for singly-connected and
a class of multiply-connected networks. The proposed method is an extension of the
discussion for predictive reasoning in singly-connected networks provided in (Ivanovska
et al., 2016).

Subjective Logic Deduction
Given a set of opinions ωY |X and a subjective opinion ωX , the goal of the operation of
deduction is to derive a subjective opinion on Y , ωY‖X . We denote this by the following
expression:

ωY‖X = ωY |X }ωX . (10)

First the projected probability distribution of ωY‖X is determined as follows:3

P(y‖X) = ∑
x∈X

P(x)P(y|x) . (11)

The base rate aY is determined by an equation similar to Eq.(11) or supplied from
another source (statistics). It remains to determine the uncertainty and the beliefs of the
deduced opinion.

For the belief masses of the deduced opinion ωY‖X , we assume the following:

by‖X ≥min
x∈X
{by|x} , (12)

for every y ∈Y , which can be found as a principle of plausible reasoning in (Pearl, 1990).
Let ωY‖X̂ be the deduced opinion from the vacuous opinion ω̂X with a base rate aX .

Then uY‖X̂ is determined as the maximum possible uncertainty mass value under the
conditions imposed by Eq.(12) and Eq.(11) applied to a vacuous opinion. The result
is the following expression:

uY‖X̂ = min
y∈Y

∑x P(y|x)ax−minx by|x
ay

. (13)

3Note that we use simplified notation for the projected probabilities, beliefs, and base rates, for example,
P(x) is an abbreviation for PX (x), by‖X is an abbreviation for bY‖X (y).



The uncertainty of the opinion ωY‖X deduced from an arbitrary ωX is then determined
as the weighted average of the uncertainty mass uY‖X̂ and the uncertainty masses of the
given conditional opinions:

uY‖X = uX uY‖X̂ + ∑
x∈X

bxuY |x . (14)

Eq.(14) is the unique transformation that maps ω̂X into uY‖X̂ , and the corresponding
absolute opinions on X into uY |x, for x ∈ X. Once we have the uncertainty mass of the
deduced opinion, the beliefs are easily derived as a consequence, applying Eq.(5).4

Deduction can be generalized for the case when Y has parents X1 . . .Xk, where k ≥ 2.
Then the input arguments for the deduction operation are: 1) a joint opinion on the parents
ωX1...Xk ; and 2) a set of conditional opinions ωY |X1...Xk on Y , one for each combination of
values of its parents. While the set of conditional opinions ωY |X1...Xk is a part of the input
in a subjective Bayesian network, the joint opinion ωX1...Xk would have to be derived. For
this purpose we use the multiplication operation described in the next section.

Subjective Logic Multiplication
Given subjective opinions ωX and ωY on two probabilistically independent variables X
and Y , the multiplication operation derives an opinion ωXY on their joint distribution. We
will denote this by the following expression:

ωXY = ωX ·ωY . (15)

Since X and Y are probabilistically independent, the projected probability of the joint
opinion satisfies the following:

P(x,y) = P(x)P(y) . (16)

aXY is either obtained by a similar equation or provided separately. We will assume that
aXY = aX aY here. Applying Eq.(5) in Eq.(16), we obtain:

uXY =
bxby +bxuY ay +uX axby +uX uY axay−bxy

axay
. (17)

We impose the following requirement on the beliefs:

bxy ≥ bxby . (18)

For every pair of values x and y, the maximum value on the right-hand side of Eq.(17)
is achieved for the smallest allowable value of bxy, which is bxy = bxby. We denote that
value with uxy. Applying the latter in Eq.(17), we obtain:

uxy =
bx

ax
uY +uX

by

ay
+uX uY . (19)

We take uXY to be the minimum of these values, i.e. uXY = minx,y{uxy}, to assure that
Eq.(18) always holds. This leads to the following expression:

uXY = min
x,y
{bx

ax
uY +uX

by

ay
+uX uY} . (20)

The beliefs bxy, for x ∈ X and y ∈ Y, then follow as a consequence of Eq.(16), Eq.(20),
and Eq.(5).

4Note that the operation uses only unconditional base rates for Y . This is necessary for the condition in
Eq.(12) to hold for the beliefs of ωY‖X . Relaxing on this constraint, we can consider conditional base rates
as well.



Reasoning in Three-Node Structures
In this section we analyse the cases of predictive reasoning that appear in the subjective
networks given in Fig.1(a, b, c). The underlying graphs represent the three basic
independence structures.

In the common cause network given in Fig.1(a), the only case of predictive reasoning
is when we are given a subjective opinion on X and want to derive an opinion on Y or Z.
Then only the deduction operation is used in deriving the opinions ωY‖X and ωZ‖X from
the opinion ωX and the corresponding sets of conditionals given in the network. In this
paper we are generally interested in inference with one evidence and one target variable,
but it is worth mentioning that in Fig.1(a), we could easily combine the operations of
deduction and multiplication to derive an opinion ωY Z‖X given ωX . First we obtain the
set ωY Z|X by a series of multiplications: ωY Z|x = ωY |x ·ωZ|x, for every x ∈ X, and then
we obtain ωY Z‖X applying deduction on ωY Z|X and ωX . Multiplication operation can be
applied here because the independence relation I(Y,Z|X) holds.

In the common effect network in Fig.1(b), the most natural case of predictive reasoning
is when we are given opinions on the parents X and Y , and want to derive an opinion on
the child Z. Since the variables X and Y in this network are probabilistically independent,
we can apply the multiplication operation on the subjective opinions ωX and ωY to obtain
the opinion ωXY . Then ωZ‖XY = ωZ|XY }ωXY . The case that fits the general inference
problem we are treating here is when we have a single piece of evidence, i.e. evidence
on one of the parents, for example ωX , and want to derive a subjective opinion on Z. We
obtain ωZ‖X in the same way as ωZ‖XY here.

In the chain network in Fig.1(c), predictive reasoning is used when evidence ωX is
given, and opinion ωY‖X is derived by deduction. Applying deduction further on ωY‖X and
ωZ|Y would complete a predictive reasoning from X to Z deriving ωZ‖X . Alternatively, we
could use two consecutive deductions on the absolute opinions on X , through ωY |X and
ωZ|Y , to derive a set of opinions ωZ|X , and then use this set to deduce ωZ‖X from ωX .
The first method is preferable though, since it is more direct, involving less operations. If
evidence in the form of a subjective opinion ωY is available at Y , then applying deduction
on ωY and ωZ|Y we can derive ωZ‖Y . In the latter inference we ignore the input opinion
ωX that is “above” the evidence variable Y , and the opinion ωY‖X that can be deduced
from it, since we have a new opinion (soft evidence) on the evidence variable Y .

Reasoning in Singly-Connected DAGs
A singly-connected DAG is a graph where there is only one path between any two nodes.
Let X be the evidence variable and Y be the target variable in the inference, i.e. we
are given a subjective opinion ωX and want to derive a subjective opinion ωY‖X . We
distinguish between the following two cases:

1. The DAG is in the form of a tree. This means that every node has only one parent,
so there is an ancestor chain between the evidence and the target: X1→ ··· → Xn
where X1 = X and Xn = Y . Then the reasoning from the evidence to the target
is a generalization of the reasoning in the chain network in Fig.1(c), i.e. ωY‖X is
obtained by n−1 consecutive deduction operations. If X is not a root node, then its
ancestors in the graph are ignored in the inference.

2. The DAG contains V-structures, i.e. there are nodes that have multiple parents.
Suppose Z is a node on the path between X and Y that has multiple parents.
Then the parents of Z are probabilistically independent variables according to



the d-separation criterion since the only path between each two of them passes
through Z, and Z is a node with converging arrows. This means that we can first
derive subjective opinion on each of the parents of Z separately, and then use the
multiplication operation to find ωPa(Z)‖X , which we further propagate to Z. Because
the graph is singly-connected, the parents of Z have sets of ancestors that are non-
intersecting, hence the deduced opinions on them are derived independently.

Reasoning in Multiply-Connected DAGs
Let X →Y be an arrow in a given DAG. We call X →Y a shortcut if there is another path
in the graph from X to Y containing at least one node Z other than X and Y . Clearly, all the
singly-connected graphs are graphs without shortcuts. The simplest example of a graph
with a shortcut is the three-node connected network given in Fig.1(d). Already in this
network, the inference problem becomes complicated due to absence of the necessary
independencies. In particular, given an opinion ωX as evidence, we can propagate the
evidence to Y by applying deduction, but we do not have a way of determining the opinion
ωXY in order to propagate the evidence to Z. Similar problems would appear in any DAG
containing shortcuts.

The simplest example of a multiply-connected DAG that does not contain shortcuts
is the directed diamond structure given in the example in Fig.2(b). We can generalize
the directed diamond to a directed polygon, which is a DAG in the shape of a polygon
with two designated nodes, start S and finish F , and two directed paths of arbitrary length
(greater than 1) from S to F .

If the evidence in the directed polygon is at a node E other than the start node S,
then the incoming arrow in E is deleted, and the graph becomes singly-connected. If the
evidence is a subjective opinion on the start node S, and the target is not the finish F , we
perform chain reasoning. If the evidence is a subjective opinion on the start node S, and
the target node is F , we take the following steps:

• ωP1|s, ωP2|s, for P1,P2 ∈ Pa(F), for every s ∈ S, are determined by chain reasoning.

• ωPa(F)|s = ωP1|s ·ωP2|s, for every s, since I(P1,P2|S).

• ωPa(F)‖S = ωPa(F)|S }ωS

• ωF‖S = ωF |Pa(F)}ωPa(F)‖S

If the DAG is consisted of two directed polygons that are connected with the start
or finish nodes, and do not have any other nodes in common, then the same reasoning
will still work, since the connection points will d-separate any path from a node in one
polygon to a node in the other. More precisely, we will have one of the following cases:

• The polygons are connected at the starts, i.e. S1 = S2. Then the predictive inference
problems in them and their solutions are completely disjoint.

• The end of one of the polygons is the start of the other, i.e. F1 = S2. Then
any inference problem with an evidence in the “above” polygon and target in the
“below” one is performed by first determining the opinion ωF1‖E by reasoning in
the first polygon, and then propagating it to the target in the second polygon.

• The polygons are connected with the final nodes, i.e. F1 = F2. Then the only
interesting case is when the target is the common node. The solution in this case
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bw bw̄ uW aw pw
ωW |d 0.60 0.20 0.20 0.5 0.7
ωW |d̄ 0.30 0.30 0.40 0.5 0.5

bt bt̄ uT at pt
ωT |d 0.20 0.10 0.70 0.20 0.34
ωT |d̄ 0.05 0.85 0.10 0.20 0.07

Figure 3: Conditional opinions on W and T given the values of D

is provided by deducing opinions on the parents of the target node first (which will
be a deduction from the new opinion on the evidence node, for the group of parents
that are in the same polygon as the evidence node, or a deduction from the opinion
on the root (start) node, for the group of parents that are not in the same polygon as
the evidence node). Then, the deduced opinions on the two (independent) groups
of parents are multiplied and propagated to the target by deduction.

The case of more than two polygons connected in the above described way is dealt with
in a similar way. Similar methods apply in a graph structure obtained by connecting a
singly-connected graph at one of the end nodes of a directed polygon. Fig.2(a) shows an
example of a simple DAG that does not belong to the above discussed categories. The
propagation from D to S in this network would require the set of conditional opinions
ωW |D, in order to multiply them with the corresponding opinions from ωT |D (I(W,T |D))
and propagate them further to the target, but we do not have a way to determine ωW |D
from the information provided in the graph.

4 Example
Consider the following situation depicted in Fig.2(b): A student can be granted a college
scholarship (S) if she wins a race. Using doping (D) would increase the chances of her
winning the race (W ) at the same time increasing the chances of her testing positive on the
doping test (T ) after the race. Another student (we will call her “the analyst”) competing
for the same scholarship wants to predict the racers’ chances of receiving the scholarship
having an opinion on her use of doping.

We assume all the variables in the example are binary and denote the two states of
a variable X by x and x̄. The conditional opinions ωW |D on the influence of doping on
the results in the race are given in the left table of Fig.3. The beliefs and uncertainty in
these opinions are subjective estimates of the analyst based on common sense and the
current situation, while, in the absence of relevant statistics, the base rates are uniform.
The analyst’s opinions about the accuracy of the doping test are given in the right table
of Fig.3 and are based on gathered opinions from experts in the laboratory. We can see
that the test is very uncertain when there is doping, but still the chances are double for it
being accurate rather than inaccurate. In the case of no doping, it will most certainly give



bs bs̄ uS as ps
ωS|wt 0.1 0.3 0.6 0.5 0.40
ωS|wt̄ 0.8 0.1 0.1 0.5 0.85
ωS|w̄t 0.0 1.0 0.0 0.5 0.00
ωS|w̄t̄ 0.1 0.8 0.1 0.5 0.15

Figure 4: Conditional opinions on S given W and T

bwt bwt̄ bw̄t bw̄t̄ uWT
ωWT |d 0.1935 0.2840 0.0575 0.0200 0.4450
ωWT |d̄ 0.0150 0.3850 0.0150 0.3850 0.2000
aWT 0.1000 0.4000 0.1000 0.4000

pWT |d 0.2380 0.4620 0.1020 0.1980
pWT |d̄ 0.0350 0.4650 0.0350 0.4650

Figure 5: Conditional opinions on (W,T ) given D

the correct results, with small chances of giving false positive result based on presence of
similar substances. Statistically, the test has shown positive in 20% of the cases.

Granting the scholarship is not completely guaranteed by winning the race and testing
negatively on the doping test, it is also based on availability and competition. Also, there
is a little chance that the committee decides to grant the scholarship to the winner in case
the test shows positive. On the other hand, it can happen that the racer in question does
not win the race, but shows dedication and is clean on the test, and obtains the scholarship.
The only deterministic case is when the racer does not win and tests positive on the doping
test, which results in not obtaining the scholarship. The corresponding opinions are given
in Fig.4. The base rate is non-informative.

Assume the analyst has a subjective opinion on the racer taking doping or not given by
ωD = (bD,uD,aD), where bD = (0.40,0.10), uD = 0.50, and ad = ad̄ = 0.50 and resulting
pd = 0.65. Based on that, she wants to derive a subjective opinion on the racer winning
the scholarship, the opinion ωS‖D. Following the procedure described in Section 3, we
first derive the opinions in the set ωWT |D by multiplication: ωWT |d = ωW |d ·ωT |d . The
results are presented in Fig.5. Then we apply deduction to obtain ωWT‖D from ωWT |D and
ωD. At the end we apply one more deduction to obtain ωS‖D from ωS|WT and ωWT‖D. The
results of these deductions are given in Fig.6.

The resulting opinion suggests belief that is slightly in favor of the racer not winning
the scholarship, but we can clearly see that there is a significant amount of uncertainty
in this opinion. We can imagine that operating with probabilities only, i.e. excluding the
uncertainty factor, is comparable with operating with the projected probabilities here. In
this example, it would give the same impression about not obtaining being more probable
than obtaining the scholarship, but the uncertainty in this fact (that could be anything from

bwt bwt̄ bw̄t bw̄t̄ uWT
ωWT‖D 0.125 0.294 0.036 0.240 0.305

aWT 0.100 0.400 0.100 0.400
pWT‖D 0.155 0.416 0.067 0.362

bs bs̄ uS
ωS‖D 0.272 0.331 0.397

aS 0.500 0.500
pS‖D 0.470 0.530

Figure 6: Deduced opinions



0 to 1) would be ignored.

5 Conclusions and Future Work
In dealing with uncertain probabilistic information, we usually operate with probability
estimates where the nature and the amount of evidence they are based on is rarely
explicit. The advantage of reasoning with subjective opinions is that it deals with beliefs,
uncertainty about them, and prior statistical information at the same time. In that way it
enables control over more complex information, returning a more accurate portrait of the
modelled situation. The projected probability of a subjective opinion is an estimate for
the unknown probability distribution, in which the prior information acts as a backup for
the beliefs as much as it is needed (depending on the uncertainty mass).

Subjective Bayesian networks are “uncertain” Bayesian networks whose local modes
are subjective opinions instead of probability distributions. In view of the Dirichlet
representaton of subjective opinions, SBNs can be seen as credal networks in a
hierarchical form (Antonucci et al., 2014), where the hierarchical credal sets (K(X),π)
that correspond to the local conditional distributions are such that K(X) consists of all
the possible distributions of X , and π is a Dirichlet density function over K(X) with
parameters determined by the elements of the subjective opinions. Evidence in SBNs in
general takes the form of subjective opinions on some of the network’s variables, which
enables reasoning over partial observations or soft evidence in SBNs. This is, in a sense,
a generalization of Jeffrey’s updating (Jeffrey, 1983) (where evidence takes the form of
a new probability distribution over some of the variables) since subjective opinions are
generalization of probability distributions.

We proposed a method for predictive reasoning in SBNs with singly-connected DAGs
and multiply-connected DAGs of certain types. The proposed method combines the
use of deduction and multiplication operation along the paths from the evidence to the
target variable in a way that minimizes the number of applied operations in order to
provide a better approximation of the ground truth. The probabilistic inference in BNs,
and in particular inferring the marginal probabilities of the nodes, is proven to be NP-
hard (Cooper, 1990). Since BNs can be considered as SBNs in which all the subjective
opinions are dogmatic (all the uncertainty masses are zero), the problem of determining
the marginal probabilities in BNs reduces to a predictive reasoning problem in SBNs and
we can conclude that the latter is NP-hard as well.

In future work we want to extend the method to be able to do predictive reasoning
in any type of DAGs. Also, evaluation of the procedure as well as a comparison with
methods for opinion update based on the Dirichlet representation of subjective opinions
(Kaplan and Ivanovska, 2016) will be a part of future work. We are currently working
on developing general inference methods for opinion update in SBNs, which will apply
to inference problems with any position of the evidence and target variable in the graph,
and also to multiple evidence and target variables. In addition to predictive reasoning, this
will open the possibilities for diagnostic and combined reasoning.
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