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Abstract. Pu�er�sh, acclaimed for its distinctive texture and extraor-
dinary delicacy, is however notorious for the highly toxic poison. Identi-
fying individual pu�er�sh can be very bene�cial for the aquaculture and
food processing industries, as it tackles the challenges of food security
and nutrition strategies, as well as maintenance of a sustainable ecosys-
tem. Current methods of identifying and tracking pu�er�sh mainly rely
on heuristic visual recognition or manual intervention such as RFID. The
rapid advances in deep learning together with the presence of large scale
database, are now able to solve complex tasks that previously required
human expertise. In this work, we have implemented a deep learning
framework based on deep Face Recognition (deep FR) techniques, to
identify individual pu�er�sh. First, we created a dataset of labeled and
data augmented takifugu bimaculatus �sh images, which is publicly ac-
cessible as benchmark for interested researchers. Second, we conducted
an extensive evaluation of state-of-the-art building blocks of Deep FR, in
particular segmentation and loss functions, and conducted an ablation
study for their applicability to pu�er�sh recognition. Third, we proposed
a framework named FishIR composed of four deep FR stages. Experi-
ments veri�ed the e�ectiveness of this framework in terms of learning
useful representation of individual pu�er�sh specie based on the back
skin texture pattern. We believe that this approach can generalize to
other similar individual recognition tasks, as well as contribute to the
massive growth of smart farming and deep ocean �shery.

Keywords: Fish recognition · Deep Face Recognition · Convolutional
neural networks.
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1 Introduction

Pu�er�sh, rated for its extraordinary delicacy, distinctive texture, and high nutri-
tion value, has consistently gained popularity as luxury food ingredient especially
in eastern hemisphere over centuries. However, as widely known, pu�er�sh may
contain a potent and deadly toxin called tetrodotoxin in the liver and ovarie and
not able to be destroyed by cooking procedure. As �sh and seafood have grown
to be a primary source of protein and essential nutrients, there is a greater con-
sumer awareness about security in the food supply chain. It is di�cult to obtain
the reliable food information in the complex food supply system which involves
multiple economic stakeholders, thus easily lead to food fraud and food safety
problems [1].

To tackle the aforementioned problem, methods of identifying and track-
ing individual pu�er�sh instance can be very bene�cial for the aquaculture and
food processing industries. Previous attempts include alphanumerical code or
bar code [2], which are carried out without physical engagement directly to the
�sh individuals, thus prone to questionable reliability in food supply chain. En-
planting Radio-frequency identi�cation (RFID) chips on the other hand faces
the risk of potentially injuring the �sh [2, 3]. Moreover, those techniques are
in general expensive by involving time-consuming and labour-intensive process.
On the contrary, a computer vision method to identify individuals would solve
this problem by minimizing the impacts from invasive techniques. Traditional
methods of identifying �sh species are in general using shape and texture fea-
ture extraction [4�7]. Mehdi et al. [8] used Haar classi�er to classify the shape
features modelled by Principal Component Analysis (PCA). However, the main
drawbacks of feature based approach come from its sensitivity to background
noise, poor generalization ability, and di�culties of �nding discriminative fea-
tures, especially when the goal is to recognizing sub-ordinate object classes or
species that are highly characterized by regions or territories.

Recent years have seen rapid advances of applying deep convolutional neural
networks (CNNs) in the �elds of computer vision and machine learning [9]. The
integration of deep learning into marine science has achieved remarkable success,
i.e., applying underwater video and acoustic surveillance to monitor or identify
�sh species [10]. Deep learning methods has been deployed for �sh recognition
competition in the Kaggle challenge [11]. However, to the best of our knowl-
edge, very limited work has been conducted in �sh individual recognition (IR),
partly because the statistical approach has been dominant in addressing marine
biodiversity and ecosystem, and also because the scale and diversity of ocean
�sh species makes individual recognition impractical. Nevertheless, it is foresee-
able that learning individual features has already drawn drastic attention and
requires robust while �exible methodology in aquaculture and food traceability.

We have observed that each individual pu�er�sh has a unique skin texture
pattern, suggesting that such texture patterns may be utilized for identifying
each individual pu�er�sh, analogically to the process of learning feature repre-
sentations of individual human faces. In this work, we introduce a well engineered
deep face recognition (deep FR) technology, to identify takifugu bimaculatus, one
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type of pu�er�sh that inhabits in East China sea. By training a similar archi-
tecture on images of �sh, we enable accurate identi�cation of each individual
pu�er�sh without physical intervention. Previous attempt can be found in [17],
where the authors have proposed an architecture based on FaceNet [15] to iden-
tify salmon. It is worth noting that our work does not simply adopt any state of
the art face recognition framework. Instead it investigates elementary building
blocks of the architecture and therefore gains a better insight of well engineered
features.

In summary, we make the following main contributions: (i) we have proposed
a system that focuses on individual recognition of �sh specie, by introducing
a well engineered face recognition technology; and remarkable result has been
achieved through an ablation study; (ii) we have created a labeled dataset of
takifugu bimaculatus �sh that is publicly available; (iii) by introducing individual
pu�er�sh identi�cation and tracking we could also enable new research areas that
require monitoring of individuals over time such as feeding behavior, detection
of diseases and social behavior. FishIR can facilitate such research by o�ering a
non-invasive and e�cient approach for identifying pu�er�sh, thus contribute to
the massive growth of smart farming and deep ocean �shery.

The rest of this paper is structured as follows. In Section 2, we outline the
related work. The construction of dataset is presented in Section 3. In Section 4,
we present a comparison and analysis on elementary building blocks that are of
vital importance for overall performance. Following this, we present our approach
FishIR, a complete framework to identify individual pu�er�sh. Section 5 presents
conclusions and thoughts on future research directions for this work.

2 Background

Face recognition is a typical example of individual recognition. Inspired by the
breakthrough work launched by DeepFace [13] and DeepID [14], research in face
recognition [12] focus has shifted to deep learning based approaches, and the
accuracy was dramatically boosted to above 99.80% in just three years [16].
The facial recognition process normally has four interrelated phases or steps
that are essential components of a facial recognition system and depend on each
other. First, an image is fed to an FR module and segmented, followed by image
processing and alignment [34], handling intra-personal variations before training
and testing, such as poses, illuminations, expressions, and occlusions. Then, the
feature extractor is learned by a loss function when training, and it is utilized
to extract features of faces when testing. Last but not least, a face matching
algorithm is used to compute similarity scores of the features to determine the
speci�c identity of faces [18].

2.1 Segmentation

The widely used segmentation models are in general grouped into several cate-
gories based on the underlying model architecture. We introduce several repre-
sentative relevant models and evaluate some novel approaches in our study.
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Fully Convolutional Networks Fully convolutional networks (FCNs), which
include only convolutional layers, have been applied to a variety of segmentation
problems, such as brain tumor segmentation [20], skin lesion segmentation [21],
etc. In this work, we applied FCN-8, �rst proposed by Long et al. [19] for se-
mantic image segmentation.

Multi-Scale and Pyramid Network Based Models Feature Pyramid
Network (FPN) was �rst proposed by Lin et al. [22]. In their work, the inherent
multi-scale, pyramidal hierarchy of deep CNNs was used to construct feature
pyramids with marginal extra cost. The Pyramid Scene Parsing Network (PSP-
Net), a multi-scale network to better learn the global context representation of a
scene, was proposed by Zhao et al. [23]. In this work, we have evaluated PSPNet
as one of the benchmark methods for performance comparison.

Encoder-Decoder Based Models The encoder/decoder based model con-
sists of an encoder using convolutional layers adopted from the VGG16 network
and a corresponding deconvolutional network, that takes the feature vector as
input and generates a map of pixel-wise class probabilities and predict segmen-
tation masks. We evaluated a novel encoder-decoder based design, named Seg-
Net [24], in this work.

R-CNN Based Models (for Object Instance Segmentation) He et
al. [25] proposed Mask R-CNN, which e�ciently detects objects in an image while
simultaneously generating a high-quality segmentation mask for each instance.
Mask Scoring R-CNN [26], proposed a mask scoring strategy which calibrates
the misalignment between mask quality and mask score, brings consistent and
noticeable gain with di�erent models, and outperforms the state-of-the-art Mask
R-CNN. Both Mask R-CNN and Mask Scoring R-CNN are evaluated in this
work.

Dilated Convolutional Models and DeepLab Family Dilated convolu-
tion introduces the dilation rate to convolutional layers, based on sparse convo-
lution kernels to enlarge the perception �eld. Some of the most important works
include the DeepLab family [27] [28] [29]. In 2018, Chen et al. [30] released
DeepLabv3+, which is composed of a depthwise convolution and pointwise con-
volution operations, has obtained a 89.0% mIoU score on the 2012 PASCAL
VOC challenge best pretrained on the COCO and the JFT datasets.

2.2 Loss Functions

Intuitively, face features are discriminative if their intra-class compactness and
inter-class separability are well maximized. As pointed out by [32], the classical
softmax loss lacks the power of feature discrimination. In face recognition, de-
signing margin-based (e.g., angular, additive, additive angular margins) softmax
loss functions plays an important role in learning discriminative features. Given
an input feature vector x with its ground truth label y, below equation shows
a re-formulated softmax loss for face recognition, where wk ∈ Rd is the k-th
classier (k ∈ 1, 2, ...,K) and K is the number of classes. x ∈ Rd denotes the
feature belonging to the y-th class and d is the feature dimension. cos (θwk,x)
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is the cosine similarity and θwk,x is the angle between wk and x. s is the scale
parameter.

L = − log
es cos(θwy,x)

es cos(θwy,x) +
∑K

k ̸=y e
s cos(θwk,x)

(1)

3 Dataset

Recently, the creation of large annotated databases has encouraged the devel-
opment of highly discriminative, state-of-the-art deep learning face recognition,
from which rich and compact representations of faces are learned and lever-
aged. Several benchmark datasets are released for researchers to verify their
algorithms, such as PASCAL [35], MS COCO [36], and ILSVRC [37]. In this
work, we have constructed a properly annotated pu�er�sh database to facilitate
identi�cation of individual pu�er�sh.

3.1 Data Collection and Splitting

We constructed our own dataset with labeled pictures of takifugu bimaculatus,
one type of pu�er�sh that inhabits in East China sea, as the starting point of
our dataset construction. We acquired the dataset by obtaining video clips and
extracting frames from the video stream.

The implementation aspects are described as below:

1. Specify the photographing conditions and device for image acquisition. A
light background with a clear contrast to the �sh color is required to ensure
that �sh's outline is clearly visible. We used D65 light source with a color
temperature of 6500K.

2. Collect �sh characteristics by shooting from various angles. The video clip
is taken from carefully chosen angles, i.e. 30 or 45 degrees, with the camera
rotating for about 60 seconds. Around 200 images are extracted from each
recorded video clip.

3. Categorize and annotate images according to the chosen naming convention.

After acquiring the data, we applied MS COCO-style [36] to create the
dataset for segmentation task. Since segmentation task is relatively simple, we
used 30 di�erent takifugu bimaculatus �sh with in total 1267 images as training
dataset. LabelImg software was used to manually label and annotate images. For
feature extration, we applied pair matching to organize and split the dataset.
The dataset was split into veri�cation and identi�cation subsets with 126 and
20 �sh included, respectively. The veri�cation subset was further divided into
training, veri�cation and recognition datasets with a proportion of 8:1:1. In to-
tal, 20, 793 pictures of 142 takifugu bimaculatus individuals were collected for
feature extration task, and each image was scaled to 1500× 800.
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3.2 Data Augmentation

Data augmentation increases the number of training samples by applying a set
of transformations to the images, which typically include translation, re�ection,
rotation, warping, scaling, color space shifting, cropping, and projections onto
principal components. Data augmentation has proven to improve the perfor-
mance of the neural network models in terms of yielding faster convergence,
decreasing the chance of over-�tting, and enhancing generalization, especially
when learning from limited datasets. We applied several di�erent augmentation
methods to datasets both for segmentation and feature extraction tasks, increas-
ing the number of images use for segmentation from 1267 to 7620, and for feature
extraction from 20, 793 to 55, 837.

4 Experiments

We adopted synchronized stochastic gradient descend (SGD) training on NVIDIA
GeForceGTX 2080 Ti GPUs based on Linux Ubuntu 16.04 LTS. Python and Py-
torch [40] were applied for all the experiments.

4.1 Segmentation Experiments

For segmentation experiments, 30 di�erent takifugu bimaculatus �sh with in
total 1267 images were used as training dataset.

We performed an elaborated comparison of state-of-the-art image segmenta-
tion methods along with comprehensive ablation experiments. Mask R-CNN [25],
Mask Scoring R-CNN [26] in instance segmentation category, and DeepLabV3+
[30], PSPNet [23], FCN8 [19], SegNet [24] were evaluated in this work. For Mask
R-CNN and Mask Scoring R-CNN, learning rate was initialized to 0.0025. For
the other models, learning rate was initialized to 0.01. The standard semantic
segmentation metrics including MPA (Mean Pixel Accuracy) and MIoU (Mean
Intersection over Union) [41] were used in our experiments as performance cri-
teria.

Ablation Study First, we evaluated the proper anchor size for Mask R-CNN
and Mask Scoring R-CNN. Anchor boxes provide a prede�ned set of bounding
boxes of di�erent sizes and ratios as a �rst reference for predicting object lo-
cations for the Regional Proposal Network (RPN). Inspired by YOLO [42], we
apply K-means clustering to cluster the bounding boxes of objects in the training
data to determine suitable anchor box sizes. These anchor boxes essentially serve
as a guideline for our algorithm to look for objects of similar size and shape.

Based on the clustering results, we propose two sets of anchor boxes with
di�erent sizes, which are (32,128,256,512,600) and (128,256,512,600,680) respec-
tively, and the aspect ratio is set to (0.5,1.8,2.5). Fig. 1 shows two di�erent sets
of anchor boxes. According to the training result after 10, 000 iterations, the �rst
set of anchor boxes achieved slightly better results in terms of MPA and MIoU.
Therefore, the result suggests us to apply the �rst set of anchor boxes of size
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(a) (b)

Fig. 1. Two di�erent sets of anchor boxes.

(32,128,256,512,600) and aspect ratio of (0.5,1.8,2.5) in Mask R-CNN and Mask
Scoring R-CNN models.

We ran a number of ablation experiments to analyze the e�ect of various
backbone networks. We applied ResNet50, ResNet101, MobileNet, Shu�eNet on
Mask Scoring R-CNN, ResNet50, ResNet101 on Mask R-CNN, and ResNet101,
MobileNet, DRN on DeepLabV3+ respectively. The quantitative and visual re-
sults are shown in Tab. 1 and Fig. 2 respectively. The order of pictures (from
left to right, from top to bottom) in Fig. 2 follows the order of Tab. 1. The used
backbone networks were pre-trained in advance.

Fig. 2. Segmentation of various image segmentation models with various backbone
networks.
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The quantitative results show that comparing with Mask R-CNN, Mask Scor-
ing R-CNN only demonstrates a marginal performance improvement on all back-
bone networks, most probably because single object segmentation task is not
sensitive to a more accurate scoring function. On the other hand, Mask Scor-
ing R-CNN has yielded larger model size (in terms of parameters) due to the
extra prediction branch. Among semantic segmentation models, DeepLabV3+
based on ResNet101 backbone achieved the highest MPA and MIoU, 99.49%
and 98.56%, respectively. Moreover, its average speed is 0.034s, which is e�cient.
On the contrary, although MobileNet achieved the fastest processing speed and
smallest model size due to its compact model architecture, it sacri�ces perfor-
mance in terms of MPA and MIoU. PSPNet and FCN8 are not e�cient in terms
of speed and model size, although these two approaches can yield high MPA
and MIoU. Based on the quantitative results, DeepLabV3+ achieved the best
performance, and it was thus chosen as our default segmentation model.

Table 1. Experimental results of various image segmentation models with various
backbone networks

Model Backbone Network MPA MIoU Time(s) Model Size

Mask R-CNN
ResNet50 0.9884 0.9775 0.0659 335M

ResNet101 0.9894 0.9772 0.0869 480M

MobileNet - - - -

Shu�eNet - - - -

Mask Scoring R-CNN

ResNet50 0.9883 0.9773 0.0886 459M

ResNet101 0.9889 0.9774 0.0662 604M

MobileNet 0.7518 0.5276 0.0442 295M

Shu�eNet 0.9840 0.9699 0.0662 309M

DeepLabV3+

ResNet101 0.9949 0.9856 0.0344 453M

MobileNet 0.9827 0.9761 0.0196 45M

DRN 0.9886 0.9838 0.0211 311M

PSPNet - 0.9927 0.9850 19.8835 393M

FCN8 - 0.9915 0.9822 11.9410 1.1G

SegNet - 0.9872 0.9783 15.6391 125M

4.2 Feature Extraction Experiments

For feature extraction experiments, the dataset contains 4, 158 pairs of sample
images. As mentioned earlier, we use LFW-style dataset [39] for all the feature
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Table 2. Experimental results of various backbone networks with various loss functions

Model Loss function ACC Threshold Time(s) Model Size

ResNet50

AAML 0.9997 1.1124 0.2111 250M

LMCL 0.9985 1.2450 0.2243 250M

A-Softmax 0.9987 1.0900 0.2207 250M

ResNet101
AAML 0.9997 1.2974 0.3883 323M

LMCL 0.9990 1.2025 0.4152 323M

IR_50
AAML 0.9992 1.1475 0.2726 251M

LMCL 0.9963 1.4049 0.3066 251M

IRSE_50
AAML 0.9987 1.2450 0.3592 252M

LMCL 0.9997 1.2050 0.3596 252M

extraction experiments. First, the testing dataset was divided into ten folds for
cross-validation. The �nal results were obtained by averaging the accuracy of ten
experiments. In each experiment, nine random folds were used as training folds,
while the remaining fold was used as test fold to calculate the accuracy. Second,
the Euclidean distance value on the pairs for each experiment were computed to
determine whether a given pair is similar or not, based on a certain threshold s.
The best threshold from training folds was used as the threshold for the testing
fold. Accuracy was therefore de�ned as sum of TP and TN divided by total pairs,
as shown in following equation.

ACC =
TP + TN

TP + TN + FP + FN
(2)

Ablation Study For each experiment, we considered a uni�ed architecture
as the feature embedding backbone network with the same pre-processing and
best settings and only change the loss function in order to better investigate
performance of di�erent loss functions.

We tested the following loss functions: (1) Angular Softmax Loss [31], which
introduces an angular margin (A-Softmax) between the ground truth class and
other classes to encourage larger inter-class variance; (2) the Large Margin Co-
sine Loss [33] that maximizes inter-class variance and minimize intra-class vari-
ance by reformulating the softmax loss as a cosine loss by L2 normalizing both
features and weight vectors; and (3) Additive Angular Margin Loss [32] that
adopts an additive angular margin loss, which has a clear geometric interpre-
tation to compare their performance. Four di�erent backbone networks were
selected: ResNet50, ResNet101, IR_50 and IRSE_50. IR_50 and IRSE_50
only represent a slight modi�cation of ResNet50.

The quantitative results of the ablation study are shown in Tab. 2, indicating
that most state of the art convolutional neural networks are robust to perform
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feature extraction task. Note that the threshold in Tab. 2 is the aforementioned
Euclidean distance value. In addition, we made the following observations: First,
the ResNet50 backbone network using AAML loss function is the most e�cient
in terms of speed to learn representative features, whereas ResNet101 using
LMCL loss function requires the longest time. Second, deeper and larger neural
networks in general yield better performance, i.e., ResNet101 achieved high ACC
performance with a value that exceeds 99.9% for di�erent loss functions. Last
while not least, the evaluation of di�erent loss functions shows that AAML is
outperformed than LMCL for most backbone networks, except for IRSE_50.

Convolutional Kernels Observing the nature of pu�er�sh skin pattern,
which has in general a rectangular shape, we are inspired by a new hypothe-
sis that a rectangular convolutional kernel might learn feature representation in
a more e�cient and accurate manner than the traditional square sized convo-
lutional kernel. In this study, we apply 7 × 3 rectangular convolutional kernel
with padding 3× 1 and stride equals to 2 at di�erent stages of ResNet50 back-
bone network and evaluate the performance accordingly. The architecture of
ResNet50_rc is shown in below Tab. 3. The result with 7× 3 rectangular con-
volutional kernel applied at stages 1 to 4 of ResNet50 backbone network is shown
in Tab. 3. Surprisingly, the result shows that only marginal performance gain
or even performance degradation in terms of accuracy is achieved by applying
rectangular convolutional kernel.

Table 3. The result with 7× 3 rectangular convolutional kernel applied at stages 1 to
4 of ResNet50 backbone network

model stage1 stage2 stage3 stage4 ACC

RecNet50_rc1 x x x x 0.9992

RecNet50_rc2 x x x 0.9995

RecNet50_rc3 x x 0.9997

RecNet50_rc4 x 0.9997

4.3 FishIR: a deep learning based pu�er�sh recognition architecture

In this Section, we present FishIR that utilizes the concept and building blocks
of deep face recognition to identify pu�er�sh individuals. The setup of FishIR is
the same as in the previous ablation study. Fig. 3 shows the architecture of the
proposed FishIR.

We applied confusion matrix TPR (true positive rate) and FPR (false positive
rate) to measure the model performance. As explained in the equations below,
TPR is also known as sensitivity, recall or probability of detection, and FPR is
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Fig. 3. Architecture of individual pu�er�sh recognition system.

also known as probability of false alarm in machine learning domain.

FPR =
FP

TN + FP
;TPR =

TP

TP + FN
(3)

Based on the results of the aforementioned ablation study, we chose DeepLabV3+
as our segmentation model, and ResNet50 as feature extraction backbone net-
work. We applied three di�erent loss functions for evaluation throughout the
experiments. Note that we can use the pre-trained model parameters for weight
initialization without re-training.

We can draw various conclusions from the results. First, di�erent network
architectures yield similar accuracy, whereas speed can vary greatly for di�erent
model structures. Intuitively, extracted features are discriminative if their intra-
class compactness and inter-class separability are well maximized. Therefore,
in individual object recognition, e�ciency of di�erent loss functions can vary
when applied to learn representative features. Among the loss functions we have
tested, AAML performs the best for individual pu�er�sh recognition tasks. The
main experimental results show that FishIR can successfully recognize pu�er�sh
individuals based on their back skin patterns.

5 Conclusion

In this work, we present FishIR, a comprehensive method based on deep face
recognition techniques, to identify takifugu bimaculatus, one type of pu�er�sh
that inhabits in East China sea. Our experiments indicates that, by training a
similar facial recognition architecture on images of pu�er�sh, we enable accurate
identi�cation of each individual without physical intervention. The encouraging
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Table 4. Recognition results on the recognition dataset

Segmentation model Loss function TPR FPR Time(s)

MobileNet AAML 0.9432 0.0010 0.4644

DRN AAML 0.9492 0.0010 0.6689

ResNet101 AAML 0.9485 0.0011 0.7439

MobileNet LMCL 0.9423 0.0067 0.4993

DRN LMCL 0.9412 0.0065 0.8865

ResNet101 LMCL 0.9429 0.0066 0.7438

MobileNet A-Softmax 0.9312 0.0053 0.4994

DRN A-Softmax 0.9374 0.0049 0.8859

ResNet101 A-Softmax 0.9361 0.0044 0.4436

results will attract more research e�orts to apply deep learning and facial recog-
nition mechanisms into the �eld of food industry and �shery in the future.

As future work we would like to investigate the model's ability to recognize
individuals from wild environment, i.e., video streams are captured in underwater
habitat. We would also like to test if we can improve performance by employing
other critical variants. Finally, we would like to test if we can generalize the
concept by extending current recognition task from pu�er�sh to other species.
Individual pu�er�sh identi�cation and tracking could also enable new research
areas that require monitoring of individuals over time such as feeding behavior,
detection of diseases and social behavior. FishIR can facilitate such research
through o�ering a non-invasive and e�cient approach for identifying individuals,
thus contribute to the massive growth of smart farming and �shery, as well as
introducing potential bene�ts in food quality and safety inspection.
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