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Abstract. Linear feedback shift registers (LFSRs) with dynamic feed-
back (DLFSRs) and LFSRs defined over extended fields i.e., over GF (2n),
constitute building blocks of many pseudorandom sequence generators
used in stream ciphers. In this work, the advantages and disadvantages
of using DLSFR instead of LFSR in GF (2n) are analyzed. The work is
based on the possibility of obtaining a DLFSR in GF (2) equivalent to an
LFSR in GF (2n), given that both structures present equivalent binary
models formed by interleaved sequences. Likewise, the possibility of us-
ing DLFSR on binary vectors is proposed in order to take advantage of
the word lengths of current processors.
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1 Introduction

The linear feedback shift register (LFSR) is a well known primitive used in
generators of pseudorandom sequences [7]. Its simplicity and the posibility to
determine a priori the length of the generated sequences, as well as its excellent
statistical properties, justify its use as a basic element in the construction of
generators. From a cryptographic point of view, the sequences generated by
the LFSRs are not directly usable due to their high predictability, which is a
consequence of the linear feedback. The solutions commonly adopted to fix this
inconvenience are based on non-linear combinations of several LFSRs or on non-
linear filtering of the generated sequences [1, 11].

Although an LFSR can be defined in any finite field, the most common uti-
lization has always been the binary case, where each of the L cells that compose
the LFSR stores the value of one bit. In this way, the maximum length of the
generated sequences is 2L − 1, obtained when the feedback polynomial is prim-
itive. On the other hand, when operating over the binary field, the sum and
product operations that determine the feedback can be implemented using the
logical operator XOR, which is the one that must be used in a stream cipher to
mix the plaintext message with the pseudorandom cipher sequence [9]. For this
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reason, LFSR-based stream ciphers have been especially efficient when imple-
mented in hardware. However, software implementations have always presented
an efficiency problem that has worsened as the word length of the processors
has increased. The problem is because the processors use instructions with n-bit
operands, with n = 16, 32 or 64, while the LFSR feedback only requires 1-bit
operands [3].

In order to improve the efficiency of these processors and, at the same time,
increase the number of bits generated in each iteration of the LFSR, stream
ciphers were designed using LFSRs defined over GF (2n). In this way, each clock
cycle of the LFSR generates n bits, so the generation speed increases. However,
the speed improvement does not reach the value n since the product operation
in GF (2n) is much more computationally expensive. In spite of that, the LFSRs
in extended fields are used in stream ciphers although the implementations are
usually restricted to certain feedback polynomials [4, 6].

Another way to improve the sequences generated by the LFSR is to use the
dynamic LFSR (DLFSR). Initially proposed in [10], it is based on the dynamic
modification of the feedback polynomial. The most relevant improvement is the
increase of the period length of the sequences and their linear complexity. In this
work, we show the equivalence between certain types of binary DLFSRs and the
LFSRs defined over GF (2n). The advantages and disadvantages of both devices
are presented. In Section 2, the details of the LFSR in extended fields and their
binary equivalent model are presented. Section 3 describes the features, types and
the equivalent model of the DLFSRs. The comparison and equivalence between
both devices are shown in Section 4. Conclusions are provided in Section 5.

2 Linear feedback shift registers in extended fields

2.1 Definitions and notation

An LFSR can be defined as a register of L cells b0, . . . , bL−1, with bi ∈ GF (q), q =
pn being a positive power of a prime p. The contents are synchronously updated
applying a shift from one cell to the one at its side, and a linear recurrence
to obtain each new element. Hence, the sequence generated by the LFSR is
composed by the elements bi computed as

bi = bi−1 · c1 + bi−2 · c2 + · · ·+ b1 · cL−1 + b0 · cL, (1)

for i ≥ L. The elements b0, . . . , bL−1 constitute the seed of the sequence and the
connection polynomial

f(x) = c0 + c1 · x+ c2 · x2 + · · ·+ cL−1 · xL−1 + cL · xL, (2)

determines the period of the sequence. As we only consider fields of characteristic
2, that is, p = 2, the maximal period is T = (2L·n− 1) n-bit elements when f(x)
is primitive over GF (2n). In the binary case, the maximal period is 2L − 1. In
practical implementations, the LFSRs in extension fields are defined using n as
the word length of the processor, with typical values of 16 and 32.
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The main advantage of such an LFSR with respect to the classical LFSR
defined in GF (2) is the improvement in the generation rate, since n bits in each
iteration are produced. However, the operations are complex. They consume a
lot of resources. This inconvenience, in practice, limits its use since a generic
implementation cannot be performed for any feedback polynomial. Instead, im-
plementations are deployed for very specific polynomials that make operations
easier, such as the SNOW3G algorithm used in 3G and 4G communications [6]
and the SNOW-V proposed for 5G [4].

2.2 Binary equivalent model of LFSR in GF (2n)

Recently, in [5], an equivalent binary model has been proposed that allows an
LFSR of L cells defined in GF (2n) to be represented by n binary LFSRs of
length L · n allowing faster implementations. The equivalent model is based on
n binary LFSRs, all with the same feedback polynomial working in parallel and
generating the same m-sequence as the LFSR in the extension field.

The implementation based on n binary LFSRs is faster because it is not
necessary to have n processors in parallel. With a single n-bit processor (n = 32,
for example) the iteration of the n binary LFSRs can be performed at once
because they all have the same feedback polynomial [2]. This is what we have
called n-grouped operations. A 32-bit data can store one stage of each of the 32
binary LFSRs, and the XOR operation can be applied directly to 32-bit data.
Furthermore, this equivalent model allows the implementation of any primitive
feedback polynomial. On the contrary, a greater memory size is needed, n ·L · n
bits, instead of L · n bits, and the initial seed must be extended to intialize each
of the n binary LFSRs.

3 Dynamic LFSR

3.1 Features and classification

The Dynamic LFSR (DLFSR) is an LFSR, whose feedback polynomial changes
dynamically controlled by some parameter. In [13], a classification of the DLFSR
is presented and in [12], the mathematical model that allows expressing a DLFSR
as a set of interleaved sequences, which can be generated by the same LFSR in
parallel is given. In practice, most DLFSRs are made up of a main LFSR, in
charge of generating the sequence, and a secondary LFSR (or other pseudoran-
dom generator), in charge of controlling the dynamic changes in the feedback.
For this reason, these devices are often identified as DLFSR(n,m), where n and
m are the number of cells in the main and control LFSR, respectively.

A binary DLFSR of n = L stages allows the length of the generated sequence
and its linear complexity to be extended by a factor of Ns, where Ns is the
number of interleaved sequences, whose value depends on various parameters
and whose calculation depends on the type of configuration, such as the one
described in [13]. The DLFSR behaviour is modeled by means of the following
matrix
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M =

t+Ns∏
t

At, (3)

At being the connection matrix of the feedback polynomial pt(x) applied at time
instant t. The characteristic polynomial c(x) of M determines the period, fol-
lowing the same rule of LFSR. That means, the maximal sequence is obtained
when c(x) is primitive, and the length is T = Ns · (2L − 1) [12]. The classifi-
cation presented in [13] distinguishes four types of DLFSR, identified as Class1
to Class 4, as a function of the order the polynomials are applied, sequentially
or randomly, and the amount ei of consecutive bits generated by each polyno-
mial pi(x), constant or random. Table 1 shows the general descripction of all the
types.

Table 1. Classification of DLFSR

DLFSR Type Polynomial utilization Order ei
Class 1 Sequential Constant
Class 2 Sequential Random
Class 3 Random Constant
Class 4 Random Random

The main advantage of DLFSR is that the sequences have a greater length
and linear complexity than those generated by a LFSR. Although the exact
length depends on the type of DLFSR, on average a DLFSR(n,m) can generate
sequences of period T = (2L−1)(2m−1). On the other hand, the most important
restriction is the bit generation rate, that remains at 1 bit per iteration.

3.2 Binary equivalent model of DLFSR

As indicated in [12], the sequence generated by the DLFSR is composed of Ns

interleaved sequences, which allows it to be implemented with Ns binary LFSRs
that run in parallel, all with the same feedback polynomial but with different
seeds. The generation rate can be increased up to a theoretical maximum of
Ns bits for each iteration. In some types of DLFSR, those that have been used
in practical ciphers [8], Ns is a very large value and in some types of DLFSR
the feedback polynomial cannot be calculated. But, instead of a single L-stage
register (LFSR), Ns · L-stage registers would be needed, that is, L ·Ns bits.

4 DLFSR versus LFSR in extended fields

4.1 DLSR-LFSR equivalence

As it can be deduced from the previous sections, both devices have similar equiv-
alent models. The sequences can be generated in both cases from a set of inter-
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leaved sequences, all generated from an LFSR with a unique feedback polyno-
mial: n sequences, in the case of the LFSRs in GF (2n); and, Ns sequences, in
the case of the DLFSR. Consequently, the possibility of implementing an LFSR
in GF (2n) in terms of a DLFSR in GF (2) arises, where the operations are much
simpler. In both cases, we start from a register with L ·n bits, which corresponds
to L · n stages of the binary DLFSR and L stages in the LFSR over GF (2n).
Device equivalence is reached when the DLFSR generates Ns = n interleaved
sequences and when such sequences have the same minimal polynomials.

The generated sequences, in both cases, will have a period T = n · (2L·n − 1)
bits since they will be composed of n sequences, each with a period of 2L·n − 1.
Taking into account the four fundamental types in which the DLFSRs can be
classified [13], those of Class 1 are the most suitable to achieve the equivalence
with the LFSRs in GF (2n), due to the patterns that govern the feedback changes.
In class 1 DLFSRs, the feedback polynomials are always applied in a sequential
order and each polynomial pi(x) always generates ei consecutive bits. Hence, the
number Ns of interleaved sequences is determined as follows:

Ns =

Np∑
i=1

ei, (4)

where Np is the total amount of different polynomials applied.
As an example, we consider the LFSR defined in GF (24) with the feedback

polynomial f(x) = (α3+1)·x3+x+1 ∈ GF (24)[x], which is primitive over GF (24)
and where α is a root of x4+x+1. The sequence generated by the concatenation
of all bits of each element has a period of (212−1)·4 = 16380, a linear complexity
LC = 48 and minimal polynomial f(x) = x48 + x24 + x20 + x12 + 1. The binary
equivalent model is composed of 4 binary LFSRs with the feedback polynomial
p(x) = x12 + x6 + x5 + x3 + 1, initialized at different seeds.

In order to obtain the DLFSR equivalent to that LFSR, we first consider
a Class 1 DLFSR with Ns = 4 interleaved sequences, in such a way that the
connection matrices Ai, corresponding to the Np feedback polynomials pi(x),
determine a matrix M , with characteristic polynomial c(x) = p(x). In order to
find those polynomials, we have to consider 2 ≤ Np ≤ 4. Since the behaviour of
the Class 1 DLFSR is controlled by the equations (3) and (4), different configu-
rations are considered as a function of Np. Note that Np = 1 is not considered
since it involves only one polynomial and consequently no dynamic modification
is applied. When Np = 2, three configurations are considered, since two polyno-
mials are used and different combinations of exponents ei satisfy the condition
in Eq. (4). The three configurations correspond to the following forms:

M = A3
i ·Aj (5)

M = A2
i ·A2

j

M = Ai ·A3
j
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This configurations are identified, in short, as < 3, 1 >, < 2, 2 > and < 1, 3 >
due to the exponents applied to the respective connection matrices. With the
same notation, Np = 3 and Np = 4 generate the configurations < 1, 1, 2 >,
< 1, 2, 1 >, < 2, 1, 1 > and < 1, 1, 1, 1 >. Table 2 shows all the Class 1 solutions
for Np = 2, containing 8 for < 3, 1 > configuration, 4 for < 2, 2 > and 8 for
< 1, 3 >. The polynomials are represented in hexadecimal format, where the
coefficient of the highest degree corresponds to the most significant bit. Each
polynomial in the table has its associated exponent on the right. All the solutions
are composed by two polynomials p1(x) and p2(x), with their correspondent
exponents e1 and e2. Table 3 shows only a fraction of the 966 solutions for the
Np = 3 configuration < 1, 1, 2 >. Only one solution for each valid polynomial
p1(x) has been included in the table.

Table 2. Class 1 DLFSR with equivalent binary polynomial p(x) = x12+x6+x5+x3+1
for Np = 2.

p1(x) e1 p2(x) e2 p1(x) e1 p2(x) e2 p1(x) e1 p2(x) e2 p1(x) e1 p2(x) e2
1E19 3 1C87 1 12CB 3 1D23 1 1CC9 2 1609 2 1897 1 1053 3
1E456 3 1339 1 1A2B 3 1D43 1 131D 2 1B91 2 14AD 1 198B 3
1EE3 3 1C9F 1 114F 3 17BF 1 1C87 1 1E19 3 1D23 1 12CB 3
1053 3 1897 1 1B91 2 131D 2 1339 1 1E45 3 1D43 1 1A2B 3
198B 3 14AD 1 1609 2 1CC9 2 1C9F 1 1EE3 3 17BF 1 114F 3

Using the same seed 0xF06, all the sets of Np polynomials identified as
solutions generate sequences with the same parameters as those generated by
the LFSR in GF (24), that is, a period 16380, a linear complexity 48 and a
minimal polynomial x48 + x24 + x20 + x12 + 1.

Thus, we can consider that the binary Class 1 DLFSR is equivalent to an
LFSR defined in GF (2n), provided that Ns = n and the decimated sequences of
both devices have all the same minimal polynomial.

As one can observe from the previous example, there are many combinations
of primitive polynomials that satisfy the equivalent condition. In this case, the
solutions have been obtained using exhaustive search by means of a Python
script. In the general case, for typical values i.e., n = 16 or n = 32, and LFSR
of approximately 512 bits, the exhaustive search is not an option. However, the
huge number of solutions made possible a random search among the primitive
polynomial to obtain a valid polynomial set. The main drawback of equivalent
DLFSR is that the sequences are generated one bit per clock cycle.

4.2 n-grouped DLSFR

Although the equivalent DLFSR has the drawback that the bits are generated
one by one, the sequences produced by the DLFSR can be much longer. Instead
of restricting by n interleaved sequences, the DLFSR can be implemented using
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Table 3. Feedback polynomials of binary Class 1 DLFSR with equivalent binary poly-
nomial p(x) = x12 + x6 + x5 + x3 + 1 for Np = 2 and configuration < 1, 1, 2 >.

p1(x) p2(x) p3(x) p1(x) p2(x) p3(x) p1(x) p2(x) p3(x) p1(x) p2(x) p3(x)

1053 1C11 1C05 13A3 1F71 1659 17C1 1F71 114F 1C17 17C1 1775
1069 1609 1099 13A9 1941 1069 1857 1D51 1C27 1C27 1A69 120D
107B 12C1 11DF 1407 1965 19CF 185D 15DD 1609 1C87 1D89 1AE1
107D 1941 1FBD 1431 1C4D 1D5B 1891 1161 1A1B 1C9F 1339 1AD1
1099 15DD 17B3 1437 1E51 1D43 1897 1941 1CC9 1CA5 12C1 17BF
10D1 1F71 15C5 144F 1BC1 185D 18B9 1069 1273 1CBB 1D89 1A2B
10EB 17AD 150F 145D 1CC9 15C5 18EF 1D51 1E19 1CC5 1A69 1D07
1107 1D51 1CC5 1467 1185 1F11 191B 1D89 197B 1CC9 1789 1099
111F 1609 1593 1475 16BD 1F99 1935 12C1 1D85 1CCF 1161 1F1B
1123 1321 116B 14A7 1339 1719 1941 1745 198B 1CF3 1161 16BD
113B 1371 116B 14AD 1609 1467 1965 1941 1743 1D23 1161 13A3
114F 1B91 1475 14D3 1941 1399 197B 1891 1A33 1D43 1069 16A5
1157 1E15 1467 150F 134D 11B3 198B 1069 1AD1 1D51 1C11 1B57
1161 1321 1107 151D 145D 1C27 19B1 1745 14AD 1D5B 1AD1 1475
116B 12B9 1B0B 154D 1099 19CF 19BD 11B3 15C5 1D75 12C1 113B
1185 1891 1FBD 1593 1F71 1CC5 19C9 1891 150F 1D85 1161 1AD1
11B3 1B91 1BC1 1593 18EF 1F1B 19CF 12C1 1273 1D89 1161 11D9
11D9 1F11 1F99 15C5 1941 10D1 19E7 1D85 10D1 1E15 17C1 16A5
11DF 1D43 1E51 15D7 12C1 1609 1A1B 15DD 1407 1E19 1941 1A8B
120D 1F1B 1BBF 15DD 12C1 1F1B 1A2B 19B1 150F 1E2F 1161 1B91
1237 1CC9 11D9 15EB 13A9 1BA7 1A33 1B91 1D5B 1E45 1CC5 10EB
123D 1BC1 1857 1609 1655 1743 1A69 12C1 1CC5 1E51 1F11 1BD3
1267 1941 12CB 1647 1321 1593 1A8B 1B91 1897 1E67 1AE1 1371
1273 1AD1 1D51 1655 1161 151D 1AD1 1BC1 1B0B 1E73 1321 19CF
127F 1FC9 1A2B 1659 1F11 1655 1AE1 19B1 133F 1E8F 17B3 1F11
12B9 1099 1475 16A5 1371 1745 1AF5 1F71 1E73 1EE3 1C11 111F
12C1 1D75 1EE3 16BD 1AD1 11DF 1B0B 1655 19CF 1F11 13A9 1B57
12CB 1CA5 107D 1715 1C05 1F27 1B13 12C1 1099 1F1B 1659 14A7
130F 1321 134D 1719 1B91 1D23 1B1F 12CB 114F 1F27 1941 1F71
131D 1E19 1C87 1743 1161 1123 1B57 19B1 1743 1F71 18B9 127F
1321 1AE1 18B9 1745 17C1 1123 1BA7 1161 1053 1F99 12B9 18EF
1339 18B9 17AD 1775 1941 1185 1BBF 1431 1B13 1FBB 1AE1 1069
133F 1F11 11B3 1789 1BC1 1655 1BC1 1891 144F 1FBD 1F99 1437
134D 1C05 1D51 17AD 17C1 18B9 1BD3 12C1 1B1F 1FC9 19B1 114F
1371 1719 1C4D 17B3 1609 1A1B 1C05 1D51 1E45
1399 151D 1D89 17BF 1B91 1E67 1C11 1AE1 130F
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higher values of Ns; typical values are Ns = 2m − 1, for an integer m smaller
than the DLFSR length. On the other hand, as an alternative to the 1 by 1
bit generation, the DLFSR can be be applied over n-bit vectors, by means of
the n-bit instructions of the processors. To do this, n DLFSRs can be used in
parallel, all controlled by the same dynamic feedback. The cost of performing
feedback in a DLFSR is the same as in n DLFSR. In this way, n bits would be
generated in each iteration.

5 Conclusions

The comparison between an LFSR defined in GF (2n) and a binary DLFSR has
shown that they can generate equivalent sequences i.e., with the same length,
linear complexity and minimal polynomial, provided that the internal DLFSR
parameter Ns coincides with n. It has also been shown, by exhaustive search, that
many combinations of primitive polynomials satisfy the equivalence conditions,
leading us to conclude that a given LSFR can be implemented by means of many
different DLSFRs. Additionally, the DLFSR can be applied on n-bit vectors,
instead of binary digits, in order to fix the 1 bit per iteration limitation.
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