
Component trustworthiness in an enterprise
software platform ecosystem

Anastasia Bengtsson1[0000−0001−6635−2509], Petter Nielsen1[0000−0003−3723−6976],
and Magnus Li1[0000−0002−5308−9171]

Department of Informatics, University of Oslo, Oslo, Norway
{anastabe,pnielsen,magl}@ifi.uio.no

Abstract. Enterprise software packages are increasingly designed as ex-
tendable software platforms. These platforms are characterised by mod-
ular architecture that allows third parties to innovate and create value
through the development of complementary applications. The develop-
ment process of complementary applications from scratch is resource-
intensive. One way of optimising the development process is by using
the component-based software engineering (CBSE) approach that fo-
cuses on software reuse and suggests building applications with reusable
components. There is a considerable amount of literature on CBSE; how-
ever, there has been little discussion on how component-based software
engineering can strengthen third-party application development in the
context of an enterprise software platform ecosystem. Specifically, it is
unclear how the challenge of component trustworthiness can be addressed
in this context. To explore this, we conducted a design science research
(DSR) study to answer the following question: What are design principles
pertaining to component trustworthiness for implementing a component
repository that facilitates component reuse in an enterprise software plat-
form ecosystem? In our study, we have explored the potential for compo-
nent reuse in the ecosystem of the global health software platform DHIS2
by designing and developing a prototype component repository. During
the design and development process, two design principles were identi-
fied: Principle of component trustworthiness and Principle of balanced
certification. These principles are to guide researchers and practitioners
on how a component repository can be implemented in the context of an
enterprise software platform ecosystem.

Keywords: enterprise software platform ecosystem · component certi-
fication · component trustworthiness · software reuse · component-based
software engineering · DHIS2 · design science research

1 Introduction

In recent years, there has been an increase in the development of generic soft-
ware packages that, contrary to bespoke solutions, are developed for the open
market and a large group of customers with similar business needs [20]. Many
of those generic packages are “branded as software platforms rather than prod-
ucts” [19, p. 2]. Software platform architecture comprises two main elements: a



2 Bengtsson et al.

stable core developed and governed by a platform owner and third-party comple-
mentary applications developed by outside parties as an extension of the core’s
interface and functionality [28]. Part of the attraction of platform architecture
is that it reduces the resources required to deliver specific functionality to cus-
tomers and users because the platform is only developed once and instantiated
many times. However, developing complementary applications from scratch can
be time-consuming, as well as counterproductive and resource-inefficient if dif-
ferent parties work on applications that are similar with regard to functionality.
For example, a registration form or a navigation bar developed in the context
of some specific application can be extracted and further reused in another ap-
plication. This practice gave rise to a software development approach called
component-based software engineering that emerged in the late 1990s under the
umbrella of the maxim “buy, don’t build” [29, p. 21]. Previous studies established
that successful adoption of component-based software engineering can shorten
development life-cycle, optimise software time to market, increase developers’
productivity and the quality of the developed solution [5,17,18,26,29]. Although
extensive research has been carried out on component-based software engineer-
ing (CBSE), less is known about CBSE processes taking place in the context
of an enterprise software platform ecosystem and what implications it could
have for the parties involved. Accordingly, we set out to explore how one can
facilitate component reuse by designing and implementing a component repos-
itory. We aimed to optimise the application development process by providing
a repository for reusable components developed within an enterprise software
platform ecosystem, making them more easily discoverable. We sought to in-
crease the trustworthiness of reusable components in the ecosystem through the
implementation of component certification. We used the following research ques-
tion to guide our research: What are design principles pertaining to component
trustworthiness for implementing a component repository that facilitates compo-
nent reuse in an enterprise software platform ecosystem? To address this, the
first author has conducted a design science research project on DHIS2 under
the supervision of the co-authors. DHIS2, a generic web-based health manage-
ment system for routine management and generation of health information; it
is currently being used in more than 70 low- and middle-income countries [2,6].
DHIS2’s core is governed by the Health Information Systems Programme (HISP)
at the University of Oslo, and the core development work is done by the DHIS2
core team. DHIS2 is an enterprise system that entails in-country ownership of
its instances and data [6, para. 11]. DHIS2 provides RESTful Web API enabling
web application development using various web technologies such as JavaScript,
HTML5, and CSS [7, para. 3]. Web application development for DHIS2 is open
to different actors, such as HISP groups. In this project, we got the opportunity
to collaborate with the DHIS2 core team and HISP East Africa developers. We
have designed and developed a prototype component repository, DHIS2 Shared
Component Platform (SCP), and identified two design principles related to com-
ponent trustworthiness.



Component trustworthiness in an enterprise software platform ecosystem 3

This paper is divided into seven sections. Section 2 provides the literature
review on digital platforms and component-based software engineering, while
section 3 is concerned with the methodology employed for this study. Section
4 elaborates on SCP’s design considerations with regard to component trust-
worthiness and certification. In section 5, we present the design principles and
discuss them in light of the previous research.

2 Related research

2.1 Enterprise software platforms

Many successful companies around the world, such as Apple, Amazon, Facebook
and Microsoft, are moving away from a traditional business model in favour of
a platform business model, which creates value by providing means for trans-
action and interaction between distinct groups of users. Amazon brings buyers
and sellers together, while gaming platforms like Steam and PS4 facilitate in-
teractions between gamers, game developers, and video game publishers. The
examples provided above are typically referred to as consumer platforms and
represent the business-to-consumer market (B2C), and have been the focus of a
considerable amount of literature in past years [12]. Recent years have witnessed
a growing trend among vendors of enterprise software towards adoption of a
platform business model, allowing third parties to engage in value co-creation
efforts [9,12]. Contrary to B2C markets, far too little attention has been paid
to value creation practices in business-to-business (B2B) markets [9,12]. Hein et
al. [12] argue that the value creation process in B2B platforms is conducted in a
more complex setting: platform owners have to orchestrate interactions with cus-
tomers, which are not “private individuals but legal organisations” [12, p. 504].
Moreover, it is typically harder to meet their needs “due to their requirements as
legal entities” [12, p. 516]. Accordingly, we aim at facilitating component reuse in
the DHIS2 platform ecosystem and contribute to the research on value creation
in a B2B market of enterprise software that uses a platform business model.

2.2 Digital platforms

Software platform’s value creation model is characterised by the ability of an
extensible core to provide a basis for innovation in the form of complementary
applications developed by third-party developers (also referred to as comple-
mentors) [2,28]. Software platform ecosystem comprises the following elements:
an extensible platform core developed and governed by platform owners, and
third-party applications that extend the platform’s core through its interfaces,
known as boundary resources [2,11,19,28]. Platform owners use boundary re-
sources to help shift the design capabilities to third-party developers enabling
them to innovate, which is an important part of a successful platform ecosys-
tem [11]. At the same time, boundary resources can also be used by platform
owners to protect the platform from potentially malicious third parties [11].



4 Bengtsson et al.

Boundary resources can be classified into social boundary resources and tech-
nical boundary resources [3,10]. Technical boundary resources can be divided
into two categories: application boundary resources and development boundary
resources [2,3,11]. Application boundary resources, such as APIs, are the tech-
nologies necessary for establishing the interaction between the platform core and
third-party applications, while development boundary resources, such as SDKs,
are the technologies meant to support third-party development [2,3,10]. Social
boundary resources such as guides and documentation share the supportive role
with development boundary resources; however, they are typically knowledge-
based [2,3].

2.3 Component-based software engineering

It is not uncommon for vastly different applications to have similarities in imple-
mented functionality and features, for example, such as a feedback mechanism,
a search and filter function, and navigation [2]. To optimise third-party applica-
tion development process, one can develop specific functionality once and then
make it available for further reuse as a reusable component for many other ap-
plications. A software component is a key element of component-based software
engineering and is defined as “a unit of composition with contractually spec-
ified interfaces and context dependencies only. A software component can be
deployed separately and is subject to composition by third parties” [27, p. 41].
A component is usually initially built as part of a specific application, then ex-
tracted as a standalone module and prepared for further reuse, typically through
a process of generification that eliminates the component’s application-specific
aspects [18,29]. Afterwards, the component, along with its interface definition,
dependency specification, metadata, description and other necessary informa-
tion, is published to a component repository where it is stored and made available
for other developers [5,18,29]. In the CBSE literature, this process is referred to
as CBSE for reuse and the developers that create reusable component are known
as component providers [13,25,27]. A reusable component may go through a pro-
cess of component certification carried out by a third party known as component
certifier to ensure some level of quality and trustworthiness [5,13,25,29]. Lastly,
during a process referred to as CBSE with reuse, component users reuse compo-
nents that they discovered based on their established requirements and required
quality and trustworthiness [25].

2.4 Component trustworthiness and certification

Addressing component trustworthiness is currently one of the biggest challenges
in CBSE [5,17,25], and the issue of component trustworthiness in third-party
application development was brought to our attention by the DHIS2 core team,
with whom we collaborated [2]. Trustworthiness is defined as the degree of con-
fidence that the system behaves as expected [5,22,25]. The concept of trust-
worthiness is reflected by a computer system property dependability [25]; some
use these two concepts interchangeably [22]. Dependability typically comprises



Component trustworthiness in an enterprise software platform ecosystem 5

other properties such as availability, reliability, safety, and security; however,
different systems prioritise different properties [5,25], and in CBSE, one has
to relate system properties to component properties [5]. Component users face
the challenge of component trustworthiness each time they utilise a third-party
component with closed source code or when there are no available resources to
analyse the component’s source code, which makes it hard to identify unpre-
dictable non-functional behaviour, malicious code, and “undocumented failure
modes” [25, p. 454]. Component certification is a way to address component
trustworthiness [25] and was chosen by the DHIS2 core team as an approach
to establish component quality and increase component trustworthiness in the
DHIS2 ecosystem. Certification is defined as a “formal demonstration that a
system or component complies with its specified requirements and is accepted
for operational use” [16, p. 63] and the party responsible for certification is re-
ferred to as a certifier [25]. The process of component certification is typically
viewed as an assessment of reusable components according to a set of specific
attributes or qualities defined in certification requirements [2,29]. There is still
considerable uncertainty around different aspects of component certification due
to the absence of standard techniques and methods; thus, certification is con-
sidered to be a major challenge in CBSE that requires further investigation
and clarification [5,17,22,25,29]. Researchers agree on the fact that certification
should be done by an independent third party [13,25], but it raises the question
of who would be responsible if a certified component would not operate as ex-
pected [25]. Our empirical work in this study has shown that it is challenging to
develop certification architecture and define certification requirements suitable
for a large number of actors with divergent application development practices.
Mohammad [22] suggests further research on certifier’s credibility, certificate
validity, and assurance of certified components immutability.

To conclude, this section has attempted to provide a brief summary of the
literature on software platforms, specifically enterprise software platforms and
explained software platforms’ value creation model. Furthermore, we presented
conceptual background on CBSE and the challenge of component trustworthi-
ness.

3 Research approach

The first author took the lead on the research project conducted as part of
a master’s degree programme, while the co-authors acted as supervisors (for
more details see [2]). The design principles we present in this paper were also
documented in the first author’s master’s thesis. The design and development
work on SCP was carried out together with two other master’s students.

In order to address the research question of this paper, we employed DSR
methodology that guided the design and development of DHIS2 Shared Com-
ponent Platform. We have inductively identified two design principles from the
process of the artefact’s design. Data gathered through the interviews and fo-
cus groups alongside design and development work provided a foundation for



6 Bengtsson et al.

establishing the design principles, while CBSE, as a design theory, established
and provided theoretical grounding. The evaluation activity in DSR was used to
evaluate the application of the design principles in the developed artefact and
assess the artefact’s usefulness. In this section, we will explain the methodology
and methods used for data collection and analysis in our study.

3.1 Research methodology

Design science research within the pragmatic research paradigm was chosen as
a research methodology, as it is inherently a problem-solving paradigm that al-
lows researchers and practitioners to participate in engaged research efforts and
make a theoretical contribution to the research in the form of prescriptive knowl-
edge [1,8,15]. Our research process was guided by the DSR process model [24]
that consists of the following activities: “problem identification and motivation,
definitions of the objectives for a solution, design and development, demonstra-
tion, evaluation, and communication” [4, p. 5]. We worked together with the
DHIS2 practitioners engaged in third-party application development. The data
gathered throughout our collaboration was used to define the objectives for our
solution guiding the design and development activity, and to provide improve-
ments to the developed artefact.

3.2 Data collection

The data collection methods in this study can be separated into two categories.
The first category includes the methods we used to identify the problem, define
objectives for our solution, and continuously improve the artefact during the
design and development process. This category comprises two semi-structured
interviews with HISP East Africa developers (5) and four focus groups with
the DHIS2 core team (3). The goal of our interviews with HISP East Africa
developers was to learn about their third-party application development and
component reuse practices. For each interview, we developed an interview guide
with a set of questions to ensure we covered our interview goal. Exploratory focus
groups with the DHIS2 core team allowed us to engage in discussions related to
different aspects of SCP.

The second category includes the methods for data collection as part of the
formative intermediate evaluation conducted after the design and development
process activity. Evaluation is an essential activity in DSR, used to establish
the degree to which an artefact provides environmental utility for the end-user
and to gain feedback for further improvements [30]. The evaluation criteria were
chosen in accordance with a hierarchy of DSR goals for socio-technical systems
solutions (Figure 3 [14, p. 8]) proposed by Hevner et al. In DSR evaluation,
utilitarian goals with their corresponding evaluation criteria should be fulfilled
before one can move on to the upper-level goals [14]; therefore, the following
utilitarian criteria were chosen: accuracy, efficacy, performance, and usefulness.
Additionally, we have included the criterion of openness pertaining to cognitive
and aesthetic goals. The criterion of accuracy could be assessed quantitatively;



Component trustworthiness in an enterprise software platform ecosystem 7

therefore, unit testing was chosen as an evaluation method. The criteria of open-
ness and performance are concerned with the artefact’s non-functional properties
and were evaluated through an expert evaluation. The criteria of usefulness and
efficacy, essential for determining artefact’s utility, were assessed through a nat-
uralistic empirical evaluation by users. The evaluators completed several tasks
using the artefact and were asked to complete surveys containing both open-
ended and close-ended questions. The evaluation participants were chosen using
a combination of convenience sampling and purposive sampling [21].

3.3 Data analysis

We have employed thematic analysis [23] as a tool to analyse the data collected
through this study. The data were first transcribed, and then we developed an
initial set of codes to identify larger themes. For instance, a global theme software
reuse comprises an organising theme component that consists of the following
codes: component granularity, component discovery, component specification. A
comment from one of the HISP developers, “in fact, we haven’t really found
many components from other HISP groups”, is an example output of the com-
ponent discovery code. Thematic analysis was conducted using a qualitative data
analysis software package NVivo 12.

4 Design considerations

This section presents the design considerations that shaped the requirements and
design of our artefact with regard to component trustworthiness and certification.

During one of our focus groups, the DHIS2 core team raised the problem of
component trustworthiness, which was not addressed by any part of the DHIS2
platform ecosystem. They stated it would be good “to promote the ones [com-
ponents] that have a certain level of quality, or that they have a certain level of
maturity, and testing” (Core team developer, personal communication, October
2, 2020). Various ways of approaching this problem were discussed. In discus-
sions of solving this problem by implementing component certification as part
of SCP, the DHIS2 core team showed their interest in governing the certifica-
tion process and expressed a preference for using automation in the certification
process. Additional issues that came up during discussions with this DHIS2 core
team were that we would have to establish certification requirements and how
certification would be affected by different component versions.

When the possibility of using certification was brought up during the inter-
views with the HISP groups, they expressed an interest in having the certification
requirements outlined: “What is the [certification] process, have you mapped out,
let’s say a checklist of what you go through to decide that package is [certified] or
not?” (senior developer in HISP East Africa, personal communication, October
9, 2020). In the course of the design phase, it became clear to us that the DHIS2
core team, as a platform owner, has a preference towards React web develop-
ment framework, which is not aligned with the current practices of some HISP



8 Bengtsson et al.

groups. This, in combination with the inherent power imbalance that would exist
between the party that sets certification requirements and component providers
that have to meet these requirements, made it clear that the certification process
could have an impact on the governance balance in the DHIS2 platform ecosys-
tem. We decided to implement certification by having a comma-separated values
(CSV) file with a list of the identifiers of certified components, and the DHIS2
core team agreed that this approach was preferable among several options that
were brought up. In comparison to the other considered solutions, this approach
would place the lowest maintenance burden on certifiers because they would only
govern the identifiers of the components and not the source code. The identifiers
in this list would be represented by Node Package Manager (NPM) packages’
names and versions, as all components in SCP are contained within NPM pack-
ages and stored in NPM Registry. Using NPM package names and versions as
identifiers guarantees that the components are not modified after they were cer-
tified, as NPM packages in NPM Registry are immutable. We decided to host
the list in a GitHub repository and to have component providers submit the
component identifiers to this list using GitHub pull requests. This allowed us to
use GitHub Actions for automation, and the pull request process would also be
familiar to the practitioners we collaborated with, as they were already using
GitHub. For performing actual certification checks, we developed a command-
line interface (SCP CLI). SCP CLI is invoked by GitHub Actions workflow and
can also be used by practitioners for the purpose of pre-certification, which is
a verification that the components adhere to component quality standards es-
tablished by certifiers. The DHIS2 core team was not specific on certification
requirements. When determining the certification requirements, we concluded
that in terms of functionality, certification could be classified as manual or auto-
mated; and more subjective or more objective (Figure 1). It should be noted that
these are not binary values. We decided that for the SCP certification process,
we would perform some automated checks but that the final decision to certify a
component would require a manual qualitative assessment by the certifiers. The
automated checks we implemented were a security check using npm audit and
static code analysis using ESLint.

Manual Automated

Subjective Objective

Movable
sliders

Fig. 1. Certification process classification.

While the role of certifier had not yet been assigned at the conclusion of
our project, the plan was that this role would be assigned to the DHIS2 core



Component trustworthiness in an enterprise software platform ecosystem 9

team. This means the DHIS2 core team would establish component quality met-
rics and develop certification requirements. Considering the fact that they also
act as platform owners, they could pursue their own interests and attempt to
control third-party application development practices in the ecosystem through
component certification.

5 Discussion

In this section, we present two design principles established considering the em-
pirical data gathered during this study and discuss their relevance in light of the
existing research.

5.1 Principle of component trustworthiness

Empirical evidence obtained in this study showed the DHIS2 core team’s interest
in implementing component certification to promote the components with a cer-
tain level of quality. This supports findings in the literature we reviewed [5,25,17],
which shows that component trustworthiness is an important but challenging as-
pect of CBSE, and the component certification is a way to address it. Therefore,
we suggest that when one implements a component repository in an enterprise
software platform ecosystem, one should consider implementing component cer-
tification. We formulate Principle of component trustworthiness as follows:

Design Principle (DP) of component trustworthiness: To in-
crease component trustworthiness in an enterprise software platform
ecosystem, implement component certification because it is a means to
establish component trustworthiness and increase component quality.

Component reuse in the DHIS2 ecosystem occurs within individual HISP
groups, where different mechanisms for component quality assurance, such as
code reviews and testing, can be used within the same organisation in order
to increase component trustworthiness. However, when components are shared
between the HISP groups, “inherently independent organisations with differ-
ent policies” [2, p. 99], it can become more challenging or even not possible to
control the quality of the components, which can result in reduced trust and
consequently in limited component reuse [17]. Therefore, we emphasise the im-
portance of component certification as a means to increase component trustwor-
thiness in the context of an enterprise software platform ecosystem. In addition
to an increase in trustworthiness, certification incentivises third-party developers
to create components of sufficient quality to pass the certification process.

As mentioned in section 2.4, there is a need for further research on component
certification due to the lack of standardised methods and procedures; therefore,
we contribute with insights and recommendations pertaining to the implementa-
tion of component certification. In the literature, it has been proposed to utilise
component versioning to establish component compatibility [26]. Additionally, a



10 Bengtsson et al.

component repository is expected to support versions and version updates [29].
We implemented a version-specific certification on immutable NPM packages
because we considered it to be a safer solution than certification without taking
into account versioning. While the DHIS2 core team did not initially support
version-specific certification, the evaluation has shown that it is a preferable so-
lution because certifiers cannot guarantee the quality of the components they
have not evaluated: “Good approach. Lots of stuff break or gets worse over time.
We can only verify what we have here and now” (Core team developer, personal
communication, December 14, 2020).

Immutability of versions is similarly critical to prevent modifications to a
component version after it has been certified and contributes to the future re-
search proposed by Mohammad [22]. One major drawback of version-specific
certification and immutability of the component versions is that certifying each
new component version is more resource-intensive. One mitigation we considered
was to certify components based on the Major and Minor facets of semantic
version numbers. Still, such an approach would be vulnerable to malicious ac-
tors and incorrect usage of semantic versioning. The open nature of the SCP’s
certification process implemented using GitHub Actions workflow has received
positive feedback from one of the DHIS2 core team developers during the artefact
evaluation:

I think it’s quite nice. The PR [pull request] acts as a discussion platform
[emphasis added] when we maintainers want the component [provider] to
make changes also puts the whole thing [certification process] open and
public [emphasis added]. (Core team developer, personal communication,
December 14, 2020)

Transparency and openness of a certification process can be beneficial to compo-
nent providers and users, as it allows them to observe how reusable components
are being assessed and what certification metrics are in use, and even engage
in discussion with certifiers. Lastly, we suggest that certification requirements
should be communicated to component providers to give them an opportunity to
develop components compliant with these requirements and adhere to a certain
quality standard. Certification checks that require minimal human discretion
can be automated, which can result in a more objective and rapid certification
process. Pre-certification allows component providers to perform self-assessment
of the components before they are published to a component repository and
submitted for certification. To sum up, we suggest to consider implementing a
transparent and open, and preferably automated certification process that op-
erates on immutable component versions.

5.2 Principle of balanced certification

If the DHIS2 core team as a platform owner would take responsibility for com-
ponent certification, it would allow them to use it as a control mechanism over
component reuse practices and, consequently, control or influence third-party ap-
plication development for DHIS2. Our recommendation is that the researchers



Component trustworthiness in an enterprise software platform ecosystem 11

and practitioners who are to implement component certification and assign the
role of certifier consider what implications their decisions could have on the
balance of control and autonomy in an enterprise software platform ecosystem.
Given this, we formulate Principle of balanced certification as follows:

Design Principle (DP) of balanced certification: To increase the
likelihood of component repository adoption and cultivate its growth in
an enterprise software platform ecosystem, implement component certi-
fication with a balance between control and autonomy because the right
governance balance is important for the ecosystem’s growth and success.

With regard to the theory on governance and control in a software plat-
form ecosystem presented by Tiwana [28], we highlight the importance of this
principle by providing a critical perspective on the situation where platform
owners assume governance of component certification. In a relationship between
platform owners and third-party application developers, there are two types of
decision right: platform decision rights and app decision rights [28]. Platform
decision rights pertain to the decisions around the platform, while app deci-
sion rights pertain to third-party application development; it is worth noting
that app decision rights have various degrees of decentralisation [28]. In order
to centralise and extend their app decision rights, platform owners can utilise
three formal control mechanisms, namely gatekeeping, process control, and met-
rics [28]. We have identified the following limitations of these mechanisms in
our specific case, where control mechanisms are applied through a development
boundary resource [28]:

1. The three control mechanisms are predicated on a platform owner’s ability
to exercise direct control over the process of web application acceptance in a
software platform’s ecosystem.
If a component repository and associated certification system are imple-
mented as a boundary resource, it is not mandatory for third-party appli-
cation developers to utilise them. Platform owners can attempt to exercise
direct control over components, for example, by allowing only certified com-
ponents to be published in a repository; however, there is a risk that third-
party application developers will not want to certify their components and
not use the repository.

2. Process control and metrics control mechanisms are based on a reward and
penalisation system.
An attempt to enforce direct control through penalisation could impact a
component repository and certification negatively, as third-party developers
do not have to accept this control mechanism. On the other hand, we see
the possibility for influencing component reuse and consequently third-party
application development through the adoption of rewarding techniques, for
example, by promoting certified components and making them more visible
to component users.

3. Process control and metrics control mechanisms require fair and objective
judgement. Quality assessment metrics should be pre-defined and objective.



12 Bengtsson et al.

This is in line with our recommendations to pre-define and to communicate
certification requirements to component providers, as discussed in section
5.1.

It is worth noting that there is a difference between attempted control by plat-
form owners and the possibility to realise such control, and, generally, for an
attempt to be successful, two prerequisites must be met: the control mechanism
should be accepted by third-party developers, and it should be fair and reason-
able [28]. While it can be challenging for platform owners to extend their app
decision rights through certification in a development boundary resource, in our
opinion, there is an opportunity to carefully influence third-party application
development practices through a reward system, fair and objective certification
process with pre-defined and communicated certification requirements.

6 Conclusion

We have presented two design principles related to component trustworthiness
and certification. Component reuse in an enterprise software platform ecosys-
tem is similar to component markets and internet-wide component reuse, as
the components are being reused between independent organisations, making it
more challenging to assess component quality and trustworthiness. SCP’s archi-
tectural design contributes to CBSE, more specifically to certification methods
and procedures, which is not a widely understood area of CBSE. We suggested
how version-based certification can be built within an enterprise software plat-
form ecosystem handling a larger number of components without putting a high
maintenance burden on certifiers. Moreover, we provided a critical perspective
on situations where a platform owner takes responsibility for component certi-
fication and uses it as a mechanism to extend his app decision rights, building
upon the existing research on software platform governance by Tiwana [28]. An
attempt to curtail third-party developers’ autonomy might hamper the adop-
tion of a component repository, and if the component repository was attempting
to improve component trustworthiness with component certification, such an
attempt would also be impeded.

Lack of time and limited access to data due to the COVID-19 pandemic are
the limitations of this study. Due to time constraints, a final DSR evaluation
was not conducted, and the plans for the DHIS2 core team to take over the
component certification process were not fulfilled.

A natural progression of this work is to analyse the role of development
boundary resources with regard to governance and control in an enterprise soft-
ware platform ecosystem.

7 Acknowledgements

We gratefully acknowledge HISP East Africa developers and the DHIS2 core
team for their valuable contribution and willingness to participate in this project.



Component trustworthiness in an enterprise software platform ecosystem 13

References

1. Baskerville, R.L., Kaul, M., Storey, V.C.: Genres of inquiry in design-science re-
search: Justification and evaluation of knowledge production. MIS Quarterly 39(3),
541–564 (2015), https://www.jstor.org/stable/26629620

2. Bengtsson, A.: Facilitating Software Reuse. Using Design Science Research To De-
velop Design Principles For Implementing A Component Repository. Master’s the-
sis, University of Oslo (2021), http://urn.nb.no/URN:NBN:no-89800, publisher:
Unpublished

3. Bianco, V.D., Myllarniemi, V., Komssi, M., Raatikainen, M.: The Role of Plat-
form Boundary Resources in Software Ecosystems: A Case Study. In: 2014
IEEE/IFIP Conference on Software Architecture. pp. 11–20. IEEE, Sydney, Aus-
tralia (Apr 2014). https://doi.org/10.1109/WICSA.2014.41, http://ieeexplore.ieee.
org/document/6827094/

4. Brocke, J.v., Hevner, A., Maedche, A.: Introduction to Design Science Research,
pp. 1–13 (09 2020). https://doi.org/10.1007/978-3-030-46781-4 1

5. Crnkovic, I., Larsson, M. (eds.): Building reliable component-based software sys-
tems. Artech House computing library, Artech House, Boston (2002)

6. About dhis2. https://www.dhis2.org/about (2021), last accessed 4 Aug 2021

7. Technology platform. https://dhis2.org/technology/ (2021), last accessed 12 Oct
2021

8. Dresch, A., Lacerda, D.P., Antunes Jr, J.A.V.: Design Science Research: A
Method for Science and Technology Advancement. Springer International Pub-
lishing, Cham (2015). https://doi.org/10.1007/978-3-319-07374-3, http://link.
springer.com/10.1007/978-3-319-07374-3

9. Foerderer, J., Kude, T., Schuetz, S.W., Heinzl, A.: Knowledge boundaries
in enterprise software platform development: Antecedents and consequences
for platform governance. Information Systems Journal 29(1), 119–144 (Jan
2019). https://doi.org/10.1111/isj.12186, https://onlinelibrary.wiley.com/doi/10.
1111/isj.12186

10. Ghazawneh, A.: Towards a boundary resources theory of software platforms.
Jönköping International Business School, Jönköping (2012), diss. (sammanfat-
tning) Jönköping : Högskolan i Jönköping, 2012

11. Ghazawneh, A., Henfridsson, O.: Balancing platform control and external contribu-
tion in third-party development: the boundary resources model: Control and con-
tribution in third-party development. Information Systems Journal 23(2), 173–192
(Mar 2013). https://doi.org/10.1111/j.1365-2575.2012.00406.x, http://doi.wiley.
com/10.1111/j.1365-2575.2012.00406.x

12. Hein, A., Weking, J., Schreieck, M., Wiesche, M., Böhm, M., Krcmar, H.: Value co-
creation practices in business-to-business platform ecosystems. Electronic Markets
29(3), 503–518 (Sep 2019). https://doi.org/10.1007/s12525-019-00337-y, http://
link.springer.com/10.1007/s12525-019-00337-y

13. Heineman, G.T., Councill, W.T. (eds.): Component-based software engineering:
putting the pieces together. Addison-Wesley, Boston (2001)

14. Hevner, A., Prat, N., Comyn-Wattiau, I., Akoka, J.: A pragmatic approach for
identifying and managing design science research goals and evaluation criteria.
HAL p. 16 (2018)

15. Iivari, J., Venable, J.R.: Action research and design science research - Seemingly
similar but decisively dissimilar. AISeL p. 13 (2009)

https://www.jstor.org/stable/26629620
http://urn.nb.no/URN:NBN:no-89800
https://doi.org/10.1109/WICSA.2014.41
http://ieeexplore.ieee.org/document/6827094/
http://ieeexplore.ieee.org/document/6827094/
https://doi.org/10.1007/978-3-030-46781-4_1
https://www.dhis2.org/about
https://dhis2.org/technology/
https://doi.org/10.1007/978-3-319-07374-3
http://link.springer.com/10.1007/978-3-319-07374-3
http://link.springer.com/10.1007/978-3-319-07374-3
https://doi.org/10.1111/isj.12186
https://onlinelibrary.wiley.com/doi/10.1111/isj.12186
https://onlinelibrary.wiley.com/doi/10.1111/isj.12186
https://doi.org/10.1111/j.1365-2575.2012.00406.x
http://doi.wiley.com/10.1111/j.1365-2575.2012.00406.x
http://doi.wiley.com/10.1111/j.1365-2575.2012.00406.x
https://doi.org/10.1007/s12525-019-00337-y
http://link.springer.com/10.1007/s12525-019-00337-y
http://link.springer.com/10.1007/s12525-019-00337-y


14 Bengtsson et al.

16. ISO/IEC 25010: ISO/IEC 25010:2011, systems and software engineering — systems
and software quality requirements and evaluation (square) — system and software
quality models (2011)

17. Jalender, B., Govardhan, D., Premchand, P.: Breaking the boundaries for software
component reuse technology. International Journal of Computer Applications 13
(01 2010). https://doi.org/10.5120/1782-2458

18. Kotonya, Sommerville, Hall: Towards a classification model for component-based
software engineering research. In: Proceedings of the 20th IEEE Instrumentation
Technology Conference (Cat No 03CH37412) EURMIC-03. pp. 43–52. IEEE, Belek-
Antalya, Turkey (2003). https://doi.org/10.1109/EURMIC.2003.1231566, http://
ieeexplore.ieee.org/document/1231566/

19. Li, M.: Making Usable Generic Software - The Platform Appliances Approach
(2019). https://doi.org/10.13140/RG.2.2.11381.83687, http://rgdoi.net/10.13140/
RG.2.2.11381.83687, publisher: Unpublished

20. Li, M., Nielsen, P.: Making usable generic software. a matter of global or local
design? (12 2019)

21. Lopez, V., Whitehead, D.: Sampling data and data collection in qualitative re-
search, pp. 123–140 (01 2013)

22. Mohammad, M.S.: A formal component-based software engineering approach for
developing trustworthy systems. Ph.D. thesis, Library and Archives Canada =
Bibliothèque et Archives Canada, Ottawa (2011), iSBN: 9780494634172 OCLC:
769258225

23. Nowell, L.S., Norris, J.M., White, D.E., Moules, N.J.: Thematic Analysis: Striving
to Meet the Trustworthiness Criteria. International Journal of Qualitative Methods
16(1), 160940691773384 (Dec 2017). https://doi.org/10.1177/1609406917733847,
http://journals.sagepub.com/doi/10.1177/1609406917733847

24. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science
Research Methodology for Information Systems Research. Journal of Management
Information Systems 24(3), 45–77 (Dec 2008). https://doi.org/10.2753/MIS0742-
1222240302, https://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302

25. Sommerville, I.: Software engineering. Pearson, Boston, 9th ed edn. (2011), oCLC:
ocn462909026

26. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., USA, 2nd edn. (2002)

27. Szyperski, C., Gruntz, D., Murer, S.: Component software: beyond object-oriented
programming. Addison-Wesley Component software series, Addison-Wesley, Lon-
don, 2nd ed edn. (2011), oCLC: 838151413

28. Tiwana, A.: Platform ecosystems: aligning architecture, governance, and strategy.
MK, Amsterdam ; Waltham, MA (2014)

29. Tiwari, U., Kumar, S.: Component-Based Software Engineering: Methods and Met-
rics. Chapman and Hall/CRC (09 2020). https://doi.org/10.1201/9780429331749

30. Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a Framework for Evaluation in
Design Science Research. European Journal of Information Systems 25(1), 77–89
(Jan 2016). https://doi.org/10.1057/ejis.2014.36, https://www.tandfonline.com/
doi/full/10.1057/ejis.2014.36

https://doi.org/10.5120/1782-2458
https://doi.org/10.1109/EURMIC.2003.1231566
http://ieeexplore.ieee.org/document/1231566/
http://ieeexplore.ieee.org/document/1231566/
https://doi.org/10.13140/RG.2.2.11381.83687
http://rgdoi.net/10.13140/RG.2.2.11381.83687
http://rgdoi.net/10.13140/RG.2.2.11381.83687
https://doi.org/10.1177/1609406917733847
http://journals.sagepub.com/doi/10.1177/1609406917733847
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302
https://doi.org/10.1201/9780429331749
https://doi.org/10.1057/ejis.2014.36
https://www.tandfonline.com/doi/full/10.1057/ejis.2014.36
https://www.tandfonline.com/doi/full/10.1057/ejis.2014.36

	Component trustworthiness in an enterprise software platform ecosystem

