
Evaluating​ ​pedagogical​ ​practices​ supporting​ ​collaborative​ ​learning​ ​for​
​model-based​ ​system​ ​development​ ​courses​

Ewa M. Kabza
Departments of Informatics,

University of Oslo &
Capgemini Norge

Oslo, Norway
ewaka@uio.no

Arne J. Berre
SINTEF Digital &

Department of Informatics,
University of Oslo

Oslo, Norway
arne.j.berre@sintef.no

Hani Murad
Department of Informatics,

University of Oslo
 Oslo, Norway

hanim@ifi.uio.no

Dervis Mansuroglu
Norwegian Labour and

Welfare Administration, IT
Development

dervis.mansuroglu@nav.no

Abstract
Model-based software development (MBSD) has been widely used in industry for its effectiveness of code
generation, code reuse and system evolution. At different stages of the software lifecycle, models -- as opposed
to actual code -- are used as abstractions to present software development artifacts. In a university software
engineering curriculum, compared to other concrete and tangible courses, e.g., game and app development,
these levels of abstraction are often difficult for students to understand, and further, to see models' usefulness in
practice. This paper presents an evaluation of pedagogical practices supporting collaborative learning for
MBSD courses from experiences of teaching them at University of Oslo. The focus is to answer two research
questions: 1) What are the challenges and possibilities when using a collaborative learning approach for
teaching modelling and architecture? 2) What are the challenges and benefits of having a holistic approach to
MBSD courses in light of the requirements of academia and the needs of industry?
The term “holistic” is understood 1) as an approach that involves human factors (users), technology and
processes, 2) as an approach to teaching MBSD courses where modelling for Enterprise Architecture is taught
together with System Architecture and Model-Driven Language Engineering. Empirical data was collected
through interviews, questionnaires, and document analysis. The paper’s research results show that three
different course perspectives (Modeling for Enterprise Architecture with Business Architecture, System
Architecture and Model Driven Language Engineering) are essential parts of teaching modeling courses, and an
industry field study shows that industry sees the potential of having junior architects to provide support to a
team and solving basic architectural problems.

1. Introduction
Model-driven architecture and software development is a methodology within system

engineering which concentrates on building and using domain models rather than computing
concepts. The goal is to create conceptual representations of all matters correlated with all
kinds of subjects which can be encountered during the development process, from
requirements gathering to the final phase of engineering. The challenge, however, is to create
those models in a way that can be understood and applied by different stakeholders; and so
that they do not become a hindrance during the project development process [1][2][3].The
understandability of models is an important aspect since research shows that applying
modelling techniques in various stages of software development processes improves their
efficiency and effectiveness [4]. However, if the given model is unclear or misunderstood, it
can lead to delays or major failures.

Brambilla et al. (2012) enumerate four reasons that illustrate why creating appropriate
models is an important part of the software development process. Firstly, the contemporary
world depends on software. Software has become an integral part of human's life, and it
requires not only constant maintenance and updates but also innovation and improvements,
so it can meet people's needs. Secondly, today's systems are complex. It would be challenging
and costly to replace them, so there is a necessity to efficiently maintain systems when they
are expanding. These extensive systems are composed of different abstraction layers which
are based on different factors, like the requirements and needs of stakeholders, the aims of
industry, and technical limitations. Thirdly, the complexity and constant and rapid evolution
of technology engenders a deficit of skilled professionals, because the curve of innovation
This paper was presented at the NIK-200x conference. For more information, see
http://www.nik.no/.

grows faster than a curve of experts. Fourthly, the world's dependency on software and its
complexity drives us to see software development as an element of a composite chain which
is interconnected with the non-technical world. Non-technical actors need to understand
features and usage of software.

2. Background
The background for this paper is the evolution of teaching a holistic course in

model-based system development based on the analysis and evolution of the MBSD course-
INF5120 given at the University of Oslo during spring semesters 2018 and 2019. It is also a
continuation of a paper presented at Models 2018 [5]. The INF5120 course evolved from the
earlier version of the course called Modelling with Objects given at UiO from 2016. Since
2003, an introduction to model-driven architecture (MDA) and engineering (MDE) has been
available on the curriculum. The course supports students to work collaboratively in small
teams consisting of 3 to 5 people. The pedagogical purpose is to interest students in
modelling activities by creating those activities around a comprehensive business case that
includes enterprise and software architecture and modelling. The aim is to teach modelling
techniques that are directly applicable in an industrial setting based on engaging students in
modelling by working on a complete case from business architecture to implementation.

To support students theoretical and practical knowledge and skills the course offers on
a weekly basis a theory-based 2h lecture and two 2h hand-on teacher-lead workshops that
focus on developing ​students’ skills and problem-solving competence​. Students work alone
and in groups to solve tasks that are similar to those given in the obligatory assignments and
the individual final exam. The obligatory assignments are thought to be a group project to
improve students collaborative skills and prepare them to work in teams at work. To support
collaborative work within the group, students were encouraged to use various communication
tools like Slack, Google Hangouts, UpWave, among others.

The INF5120 is designed to be a holistic course that approaches teaching modelling
by combining Enterprise Architecture, System Architecture and Model-Driven Language
Engineering together to familiarize students with all stages of the project lifecycle with an
aim to provide them a solid base for future employment.

3. Related work
Understanding learning and knowledge-building processes presents multiple

challenges for developing new strategies for both classroom and remote learning and for
articulating collaborative work practices through the use of different modelling tools for
students with different academic backgrounds. The current learning trend for IT courses
using technology-supported learning puts emphasis on active student participation [6] and
collective meaning-making [7][8][9][10]. Students’ commitment and performance
competence are promoted through developing a self-understanding of computer science
learning as a facet of collaborative work exercise [11]. Such activity is ruled by sets of
learning frameworks using various representations [12], theories [8][9], methods [13][14],
tools [15], structures [16], communities of interest [17], and an epistemic agency and
knowledge-building discourse for uniting systematic knowledge [18][19].

Constructive alignment [21] is a didactic approach where learning activities and
student practices are arranged with planned learning goals at the beginning of each
semester[22][23]. By exploiting different possibilities for scaffolding collaborative methods
[24][25] and interactive technologies in scholarly settings, the INF5120 course focuses on
building innovative classroom and remote activities that motivate individual and group
participatory exercises in collaborative learning settings. Various researchers, including

Kaasbøll, argue that functional understanding occurs before structural understanding [26][27]
and using functional and structural models helps mostly those students who have lower
verbal competences [28]. Kaasbøll’s competence building model, was adopted for the
INF5120 course, It states that functional understanding is accomplished when students can
explain the input and output of their actions, while structural understanding is achieved when
students are able to use a learned concept as a base for acquiring new notions.

The research also points out that the curriculum for MBSD courses should take into
consideration the abilities of different groups of learners [29] ​and should be adjusted to their
level of concept comprehension. Providing adequate tutorials [30] and curriculum supports
meaningful interactions between learners when they solve modelling-related tasks. Berre et
al. (2018) propose that “​students orient their interactions through fluid structures of activities
towards constructing a domain-specific modelling environment and then define model
transformations that provide appropriate syntax and semantics to such a user-defined
mode​l”. Learning MBSD is an intensive and construct-based process where students need to
understand, design, implement and modify software systems, with regard to predefined
requirements and objectives, by using multiple tools and modelling approaches to describe
their information systems architecture at the desired level of detail [31][32]. In [5] and [10]
we have discussed how the INF5120 course adopts the three-step model of competence
building developed by Jens Kaasbøll [28], focusing on developing practical skills, good
understanding of the subject matter , and problem solving capabilities in similar task
domains.

The three perspectives of the INF5120 course also relate to three different
developments of Body of Knowledge (BOK) for Enterprise/Business Architecture [33][34],
Software Engineering and Model-Based Software Engineering [35][36] and Language
Engineering [37]. A variety of different course approaches about teaching architecture,
modelling and meta-modelling are presented in Berre [5][10]. Based on previous research,
the current INF5120 course follows the strategies of MBSD and language engineering with
the aim of providing a suitable framework for also teaching MBSD courses in a virtual
classroom. It seems that very few other MBSD courses relate either to the use of models in
Enterprise architecture and Business architecture, or to engineering for domain-specific
languages for enterprise and business architecture, which is very useful as an agile basis for
further model-based system and software engineering.

4. ​Collaboration in practice
Anchored in the different computer supported cooperative work and collaborative work

principles and practices (CSCW, CSCL) [38][39][40], students develop their own
collaborative ways of work and knowledge sharing using different shared information spaces
and platforms. [41][42][43]. To support students’ journey in their modelling practices, the
INF5120 course also applies the constructivist group work and active learning approaches
presented by CSCL activists[21][23][25]. By following a construct-based approach, students
are able to design and implement different systems by using a variety of modelling
techniques and tools and different levels of complexity [10]. Students are also encouraged to
explore modelling concepts by being introduced to a holistic, active learning perspective [14]
by working on a project that touches upon techniques and tools related to enterprise and
software architecture and modelling that results in the development of executable models.

5. Industrial setting
Familiarising students with business settings when teaching MBSD is an important part

of their learning process, because the majority of them will start working in the industry after

graduation. To illustrate the importance of understanding business modelling for IT
practitioners this article briefly presents the case of Norwegian Labour and Welfare
Administration (NAV) when the lack of understanding of business requirements by architects
led to ​Moderniseringsprosjektet ​and how the organization recovered. NAV is a governmental
organization and is allocated ⅓ of the national budget and is the most critical governmental
agency because it provides more than 60 different welfare services that cover all the major
life stages of citizens and residents in Norway.

Before 2016, the IT governance frameworks implemented were Information
Technology Infrastructure Library (ITIL) and a variant of Control Objectives for Information
and Related Technologies (COBIT). ITIL was used to build organizational infrastructure
while COBIT provided ways to deliver software using this organizational infrastructure.
NAV implemented COBIT partially by adopting a 6-stage model related to business
demands. ITIL was successful in developing critical systems for the pension reform of 2015
that were delivered on time and budget with few errors. COBIT, moreover, introduced the
silos-based model called Plan-Build-Run (PBR). The Plan-Build-Run model was not iterative
and the previous phase had to be finished before the next one could start, which in
consequence left little space for potential changes. Therefore, PBR resulted in many
challenges such as: 1) Container-based architecture that was ineffective due to its complexity,
2) Complex bureaucratic design of bug tracking 3) Tracking systems, causing over-expensive
bug fixing that was paid for “by citizens from taxes” (Conway's Law) 4) Lack of
collaborative work due to misleading communication and many isolated teams that worked
on their own, 5) Poor governance, including IT governance, and staff allocation, 6) Poor
time-to-market delivery.

Jørgensen (2015) [44] gives four architecture-related reasons why IT projects in the
public sector fail: 1) Not enough understanding of the complexity of the built system, 2) Low
ability to describe and evaluate non-functional requirements, 3) Lack of focus on integration
and good system/portfolio-architecture, and 4) Lack of risk management and underestimation
of risk for projects. A combination of poor governance and cost estimation, weak
architectural approach and miscommunication between teams resulted in the biggest scandal
NAV was ever involved in - ​Moderniseringsprosjektet​, where the organisation invested in
poorly designed and architectured IT systems that failed to fulfill work requirements and
work flow across the whole of the organization.

In 2016 NAV introduced organizational changes that aimed to make NAV more
iteratively agile in order to improve time-to-market. IT practitioners were grouped into
self-organised teams where architects became part of the teams and worked collaboratively
with developers, testers and designers. Doing proper architectural work is an essential factor
when running successful projects. However, it is important to balance how comprehensive
this work is. Proper risk management should be ensured, but not so the work becomes a
delaying factor due to its complexity [45] Bohem (2011) [46] states that the scope of
architectural work depends on the size of the projects and developed systems. He seems to
promote a big up front design, saying that crucial systems require safer and more stable
architecture from the beginning, whilst smaller projects can adopt agile techniques and
improve architecture during various iterations [46]. However, Waterman et al. (2015) [47]
say that making big up front design makes it almost impossible to introduce new changes
during the project, and Brown [48] advocates that architects should do “just enough up front
design” so they know what their goal is and how they are going to achieve it. The big up front
strategy, reduces risk and the need for costly changes in later stages. It also indicates whether
architecture is implementable. On the other hand, this strategy limits the possibility to make
changes during development, and it makes it very hard to implement the system with an agile

methodology [45]. The need for big up front design and architecture emerges with large and
very costly projects. A project has defined start and end dates and a budget that the
contractors commit themselves to. A project is staffed and financed during its duration
period. When the development of the system is finished and handed over to the customer, the
project (together with its financing and staffing) ends. Systems built this way have, however,
considered to be very stable, with few errors. Nevertheless, this still leads to several problems
for NAV, such as lost knowledge and no ownership. More importantly, at the time of
hand-over, the technology stack for which the big up front architecture was targeted is often
outdated and imposes tough challenges. This usually entails in very costly upgrades. When a
new critical system needs to be built, the work in NAV is no longer organized as a project.
Instead, the system is broken down to smaller modules and products that allow ​Just Enough
Architecture [48]. This strategy is best described as a middle way between Emergent
Architecture (no up front design, [47]) and Big Up Front Architecture [45]. Each
module/product is split between ​cross-functional product teams that have long-term
financing. These teams are staffed with very diverse groups of members that are often a blend
of architects, devs, ops, testers, domain experts, security experts and UX/UI designers.
Cross-functional teams do just enough up front, but for specific areas, the organization is still
doing big up front design/architecture. Examples of such systems are welfare benefits for
pension and health.

The NAV case illustrates the importance of developing a good awareness about the
need to focus on designing and modelling robust architectural systems, with enough
flexibility for future modulations, to meet the ever changing work needs of any organization
in the public service sector.

 6​. Data collection & analysis
The data collection and analysis are based on the triangulation of various qualitative

research methods including interviews, document analysis and questionnaires. The main
objective is to analyze to what extent the teaching methods, the curriculum and structure of
the course are effective in relation to the learning model elements: skills, understanding and
problem solving with reference to syntax, semantics and business/context aspects for
modelling. By examining different synergies in students’ work- flow throughout the
semester, the composites of our analysis point to the need of better designs of cooperative
work articulation [49] for most student groups and for alternative forms of re-compositions
[50] of both assignment modules and teaching practices in our seminars. Modular
decomposition [51] facilitates better coupling between different project modules and supports
reduced dependencies between various module components. This is highly relevant in MBSD
especially that our course students have varied backgrounds in computer science and different
student groups use different programming languages and modeling tools in their business
software development process. An example of which are Java packages which represent
modular systems consisting of well-defined manageable units with clearly defined interfaces
among the units. Software modularity brings most benefit to the developing system when the
modules are autonomous or independent and the degree of modular dependency reflects the
extent to which each program module relies on each one of the other modules. Low coupling
between different modeling tools and programs infers higher efficiency and robustness in the
executable model. Furthermore, decomposing modeling practices allows for systematic work
coordination between different student group members, and the handling of any software
changes and updates that might take place throughout the model development process. The
aim of our recomposed course design is to offer our students better modeling experiences and
to help them design their modules with the goal of high cohesion and low coupling.

Interviews

Interviews with six course participants and four representatives of the industry were
held during the past two semesters. The semi structured interviews with students were held
during and at the end of courses in 2018 and 2019 after delivering the final exam and semi
structured interviews with the professionals were run over the course of a year. Students had
different IT backgrounds but most of them had some experience with programming from
other courses, but they did not have significant experience with either software engineering or
modelling. Interviews with students were transcribed and the interview guide contained
questions about students’ background, group work, tools, comprehension level and
understanding, functional and structural understanding and problem-solving approaches. The
interviews were analysed using Malterud’s systematic text condensation [52] that resulted in
identifying 4 main interview categories and 89 subcategories. Main categories as follows:

Category 1 - ​Collaboration processes were found in 42 quotes, or 18% of the total analyzed
quotes.
Category 2 - ​Course structure​ was found in 67 quotes, or 29% of the total analyzed quotes.
Category 3 - ​Tools​ was found in 62 quotes, or 27% of the total analyzed quotes.
Category 4 - ​Critiques & improvements were found in 59 quotes, or 26% of the total analyzed
quotes.

Category 1 - Collaboration processes
The interview included questions related to group work and collaboration in a team.

The goal was to learn more about students’ interactions with each other and how those
interactions influenced the competence building process. The most frequent subcategories
were: group work (29 mentions - 34% of total mentions), task distribution (17 mentions -
20% of total mentions), knowledge/skill/understanding (15 mentions - 17% of total
mentions).

Group work​: Respondents related positively to group collaboration. They worked out
how to cooperate while taking into consideration differences, academic background, or
personal fears related to working together. They discussed how they organized work when
meeting up and challenges they faced, such as lack of contribution or communication. Some
respondents solved potential disagreements by having open dialogue with team members.
One of the students found an additional value in working in a team as he learnt about conflict
management.

Task sharing​: When discussing task distribution, groups showed different approaches.
Some groups met up and worked on assignments together, other groups divided tasks among
group members and condensed their parts for the final assignment, others still presented a
mixed approach. Respondents identified different reasons for dividing assignments, such as
time constraints , efficiency, complexity of deliverables and other university obligations.

Knowledge/skill & understanding​: Respondents focused mostly on three aspects of
the subcategory: information sharing processes, their own deficiencies, and the role of the
more skilled colleague in the group. Sharing knowledge is a valuable practice for common
growth and scoring well in the exam. Students were aware of limitations in their own
competences, so when an issue arose, they tried to solve it on their own or looked to a teacher
for guidance.Using other students’ experience and having a good information flow had a
positive impact both on group work, since it proved more productive when working on
assignments, as well as on individual performance in the exam. The most skilled colleagues
were also seen as a source of help.

Category 2 - Course structure
The interview included questions related to the course and its structure. The goal was

to learn students’ opinions about the course and pedagogical practices. The most frequent
mentions were of the course curriculum (35 mentions - 34% of total mentions),
knowledge/skill/understanding (24 mentions - 16% of total mentions) and hands-on tasks (15
mentions - 10% of total mentions).

Curriculum: When discussing the complexity of curriculum subcategory, students
focused on the abundance of course material and meta-modelling. The course curriculum was
seen as too dense. Respondents found the curriculum to be valuable and relevant yet so
complex and overwhelming that sometimes they felt lost. Respondents commented that many
topics are touched upon too briefly , but the nature of those topics allows students to become
familiar with different domains, and in consequence, they have more fields to choose from.
Students also hinted about the kind of changes that could be implemented to make the course
easier to follow, such as color-coding slides or lengthening the course to one year.
Meta-modelling was seen as problematic and difficult to understand . Students took previous
years’ exams to become fluent. Despite being the most challenging part of the course,
respondents saw value in learning metamodeling. In 2018, it was hinted that introducing
meta-modelling earlier on the course would be beneficial, and in 2019 this change in the
course set-up was considered helpful.

Knowledge/skill & understanding: Respondents focused mostly on the importance of
individual learning in addition to collaborative learning. Students noticed that collaborative
learning was not enough to prepare them well for the exam; it was seen as a knowledge
sharing forum.

Hands-on task: The majority of respondents noted the importance of encouraging
students more actively regarding various modelling activities from the beginning of the
course, since it would have improved their understanding of concepts as well as skills. In
addition, it would have developed their problem-solving skills for later stages. Students found
it important to differentiate theoretical lectures from hands-on focused group sessions.
Practical group sessions would have increased the students’ efficiency, since they would have
provided students with live tutoring in case the supporting material provided was not enough.

Category 3 - Tools
The interview included questions related to tools and students’ interaction with

technology. The aim was to see how students used tools in order to solve tasks and support
collaborative learning. The most frequent mentions were of the issues with tools (14 mentions
- 11% of total mentions) and collaborative tools/cloud (11 mentions - 9% of total mentions).

Issues with tools: Students faced various problems related to tools. Respondents stated
that some tools were not intuitive, problematic to be installed and not compatible with their
operative systems that in consequence led to spending a significant amount of time on
trouble-shooting, making tools work or giving up on a tool and finding an alternative
solution. Modelio with ArchiMate was complained for not being a collaborative tool and
causing various problems both with installation and use. Node-RED scored positive
feedback.

Collaborative tools/cloud​: Most of the respondents gave positive feedback about
collaboration supporting tools. Slack was perceived as useful and easy to use. For writing
students used mostly Google Drive because it was free and respondents were familiar with it.
The lack of cloud functionality in case of Modelio/ArchiMate did not allow students to work
collaboratively.

Category 4 - Critiques & improvements

During interviews, students were asked to provide critical remarks and discuss
potential changes that could improve the course in the future. The aim was to learn what
students liked or disliked, and which aspects should be taken into consideration to improve
the course. The most frequent subcategories were: employment (15 mentions - 13% of total
mentions), industrial setting (10 mentions - 8% of total mentions), changing structure of the
course (10 mentions - 8% of total mentions).

Employment​: Respondents stressed the relevance of the course for their future
employment because students become familiar with various tools that the potential employer
might be interested in. Interviewees put emphasis that the course was useful for them because
they already use some of the tools in their daily work. Moreover, respondents remarked that
finishing a course with a certification would boost motivation since it would be beneficial for
them when looking for work.

Industrial setting​: Students spoke flatteringly about having a real customer during the
course since it gave them a glimpse of real-life situations that happen on a customer’s side. It
was also appreciated that INF5120 focuses on the industry as well because combining theory
and practice is profitable.

Changing course structure​: One of the improvements related to the course was an
idea to divide it into separate parts. Some students suggested splitting it into the business part
and software engineering/meta-modelling part, others saw it beneficial to have one focus on
the industry with business modelling and software engineering, and other focus on academic
research with meta-modelling. Additionally respondents mentioned that they would prefer
INF5120 to be a project-based course because it would be a more efficient way to use
techniques and tools in practice.

The interviews with students raised a couple of questions related to the usefulness of
the curriculum for future employment, and it has been decided to conduct semi-structured
interviews with the representatives of the industry. The interviewees were selected based on
their work experience within IT (seniors) and the company they work for (large-sized
companies). The reason for choosing professionals from large-sized companies is that most
of the graduates will start working in those companies, so the provided information will be
relevant for them. It has been learned that the business perspective is important for students to
understand because all the projects are approved or rejected based on the business decisions.
Moreover, it was suggested that the curriculum could focus less on meta-modelling and more
on learning the concepts and software that is already used by the industry.

Document analysis

Document analysis was done for course assignments and incremental project
deliveries as well as for the exams in 2018 and 2019. The 4 hours written exam contained
three questions corresponding to the three parts of the course, namely Enterprise Architecture
(EA), Software Architecture (SA) and MDE and meta-modelling. Analysis of exams showed
that students scored well on EA and SA. The questions about MDE and meta-modelling
scored lower points indicating less problem-solving competencies in creating a meta-model
for a described language. In addition, students often confuse meta-modelling and domain
modelling.

The analysis of project deliverables showed progress in understanding the different
parts of the course. For the final delivery, students were asked to improve their first and
second assignments and some groups showed an improved understanding of the basic
concepts covered in the syllabus. However, we noticed that some concepts including Unique
Value Proposition, Business Segment, UML and composite diagrams, User Stories were still

unclear, so we held a test exam in the lab three weeks before the final exam. Students were
asked to work in groups and Group 1 (2 students) worked on a question 1 related to
Enterprise Architecture, Group 2 and 3 (2 students per group) worked on a question 2 related
to System Architecture and Group 3 (3 students) worked on a question 3 about MDE and
meta-modelling. During the first two hours, students worked on the assigned task, for the
next two hours they were asked to present their solutions and discuss them in plenum. The
open discussion resulted in a better understanding of the concepts.

Questionnaires
Questionnaires were handed out to all students in both courses. The main question

categories were on the student's background, their level of understanding of modeling,
programming and system development at the start of the course compared to at the end of the
course. Which of the modeling techniques they found most useful as input for the
implementation phase and for their potential future use, their views on the course structure
and learning methods and comments on what they liked and what they suggest improving in
the course. Since these are graduate level courses, our earlier assumption has been that
students have had a basic modeling competence before entering the courses. Our closer
analysis of the student's background has, however, revealed that many students have
relatively little experience with modeling (several of the students are international exchange
students and students from local industry)– and a conclusion is thus that we need to elaborate
even more on basic principles for good modeling practices in future versions of these courses.

Questionnaire in 2018 focused on the evaluation of modelling tools and techniques
whilst in 2019 on a group work. The combined findings are summarized as follows:

● MDLE was the most difficult and time-consuming part of the course. Solving MDLE
related tasks caused a lot of frustration among students since they did not have enough
practical and theoretical knowledge to be able to make the assignments.

● Delivered assignments showed that some students were not clear on the difference
between domain modeling and meta- modeling.

● Business architecture methods show that using Lean Business Canvas, Business
Model Canvas – was rather easy, whereas using ArchiMate layers was rather difficult.

● Modelio was not ideally suitable for collaborative project work, since the multi user,
repository support was not used in the class. Only one group member could use it at
any time thus rendering asynchronous collaboration problematic without using added
platforms like Dropbox or Google Drive.

● Students appreciated the industrial setting of the course and inviting IBM as a real
customer since it allowed them to become familiar with industry. That experience was
helpful for some students during their job searching process.

7. ​Summary of findings
RQ1: ​What are the challenges and possibilities when using a collaborative learning
approach for teaching modelling and architecture?
Based on the data analysis, the following challenges have been defined when observing
students in 2018 and 2019:

● students had different motivations for taking the course: some were interested in
modelling and architecture, while others needed to take the course the course to get
credit points

● many students had different cultural backgrounds and neither English nor Norwegian
were their native language

● students attended different study programs and had different academic backgrounds
● students had different learning preferences. Some of them were team players, while

others favoured studying alone
● students had different work ethics that resulted in different levels of contribution
● students had different family situations that had impacts on group work
● students who were more experienced tended to take more tasks on

Similar challenges can be observed in any collaborative learning environment because they
are very human. However, three more, tailored to MBSD challenges, have been observed:

1) The majority of students did not have previous knowledge about the domain
2) Some tools (f.e. Modelio, Eclipse) did not perform as expected
3) Few students did not have the possibility to work remotely

ad1) Learning MBSD is a construct-based process where students are encouraged to

participate in modelling activities with a view to developing skills, understanding and
problem-solving abilities related to enterprise architecture, software engineering and
meta-modelling. Construct-based learning is a scaffolding process that pre-assumes that
learners are able to associate a new learning concept with one they already knew. In the
context of the MBSD course, it has been observed that even though some of the students had
prior knowledge related to architecture and modelling, it was not enough to understand
meta-modelling

ad2) Even though students understood what a model was supposed to do and knew
how to make it, they did not manage to do so because the tools did not perform as expected.
This was the case with VDMBee for Business Ecosystem Map (BEM). The majority of
students evaluated BEM as easy to apply, whereas VDMBee was rated as difficult to use to
create BEM. During interviews, students asked for more hands-on tasks so they could
become more fluent in applying techniques and using tools. In these two scenarios, it is
therefore important to support students with suitable pedagogical agents [57], so they can
acquire a new skill by for example imitation and following guidance [29].

ad3) Collaborative learning is connected with computer-supported collaborative
learning that allows learners to work together even when distributed globally. The majority of
students complained that not all tools provided for the course supported remote work.

Students criticized Modelio/ArchiMate because it did not have a cloud possibility, so
it was impossible to work collaboratively on a tool. Thus, a toolchain should be provided that
supports collaborative work both online and in person to improve students' experience. The
following benefits of applying collaborative learning principles for MBSD courses have been
observed:

a) students improve interpersonal skills
b) students learn how to talk about MBSD and architecture
c) students support each other’s learning journey

a) Encouraging people to work collaboratively on a project gives them the possibility

to interact and to improve their interpersonal and managerial skills. Both the survey and the
interviews in 2019 showed that students favoured working in a group and consequently
improved their cooperation skills.

b) As illustrated in the NAV case, the industry is leaning towards establishing
cross-functional teams, where different IT professionals work together. Facilitating group
work during the course allows students to become familiar with terminology and to explain
concepts in an understandable way.

c) Students support each others’ learning journey. Different people understand
different topics better or worse and group meetings were considered a knowledge sharing
forum

RQ2: What are the challenges and benefits of having a holistic approach to MBSD courses in
light of the requirements of academia and the needs of industry?
Challenge 1​: Having a focus on both business and technology in a dense curriculum of
methods, techniques and tools may be overwhelming for some students. Their motivation
may drop and they may just want to pass the course without focusing much on developing
knowledge or skills.
Solution 1​: This could be to adapt course length to the complexity of the curriculum. Many
students mentioned that the course was too short in comparison to the length of the
curriculum. A one-year course would give more time to students to develop skills,
understanding and problem solving competences.
Solution 2​: A couple of respondents mentioned that splitting the course into two or three
courses could also be a possible solution. By splitting into smaller parts, the course may lose
its holistic approach, so what could be done is to create a study path based on the three parts
of the course and its curriculum.

8. ​Recommendations and conclusions
Better focus on designing and implementing novel learning spaces that work across

both physical and virtual domains simultaneously. The conceptualisation of hybrid learning
spaces is very relevant to today’s COVID- 19 Implications and the need for revolutionary
teaching and learning practices across all spectres of educational settings. Underpinned by
our empirical findings, we advocate a holistic approach, embedding novel collaborative
learning designs and technology supporting synchronous and asynchronous students’
activities in their attempt to create meaningful architectural and functional business models.

More hands-on activities: ​Students pointed out that it would help them improve if
they were given small, practical tasks during the lectures and/or group sessions. To achieve
this, more ad-hoc exercises could be given to students during the lectures and labs when the
students could work individually or in groups, solve the tasks and get immediate feedback
from the teacher, who could also encourage the group discussion.

Better tutorials for software: ​Students said that it took them a lot of time to install,
learn and troubleshoot the software and they had to look up some tutorials online. They stated
that due to spending a lot of time doing things not related to the assignments, they
experienced a drop in motivation when working on assignments. To prevent this, the course
could provide easily accessible support materials (written or video tutorials) for students to
access when needed. The support materials could give sequential instructions on how to use
the software.

Better support materials for models: ​Students stated that sometimes they got stuck on
some tasks because they did not know how to solve them due to lack of skills and
understanding. They asked for more guidance, so the course could provide some example
video tutorials in which the instructor solves a similar task to the one students are supposed to
do.

More interactive group sessions: ​Students asked to have more hands-on exercises
during the group sessions. Currently, the group teacher changes every year and a new one is
picked from among those students who took the course before and scored a final grade of A.
The disadvantage of this is that there is a lack of consistent pedagogical practices. To solve
this problem, there could be a fixed group teacher (perhaps a PhD candidate) ​with solid

practical competence in modeling tools and good pedagogical practices.
Providing cloud-based tools: ​Students pointed out that they experienced issues with

software installation and its collaborative aspect. That is why to ensure a good learning
experience which would allow for collaborative and remote work, the University could
provide cloud-based tools. This may take up to two years due to the cost of licensing. This
cost has to be included in the budget, and getting approval may take up to a couple of months.

Providing certifications: Students suggested that having a certificate at the end of the
course would be beneficial for them when looking for work. Professionals pointed out that
having TOGAF, BMPN, ArchiMate and technology certification (either Azure or AW),
would land students a job right away.

Creating a study path: ​In the long run, the course could be converted into a
case-based study path that could prepare students to work as architects after graduation.

These concluding recommendations will be related to in the planning of future
versions of the considered courses.

Acknowledgements
We would like to express our appreciation to Prof. Shihong Huang from Florida Atlantic
University for her earlier collaborations on course offerings and valuable and constructive
suggestions during the writing of this article.
REFERENCES
[1] Frankel, D. S. (2003). Model Driven Architecture: Applying MDA to Enterprise Computing, John Wiley & Sons, ISBN 0-471-31920-1.
[2] Poole, J.D. (2001). Model-Driven Architecture: Vision, Standards And Emerging Technologies.
[3] da Silva, A.R. (2015). Model-driven engineering: A survey supported by the unified conceptual model. In Computer Languages, Systems & Structures,
Volume 43, October 2015, Pages 139-155.
[4] Brambilla, M. & Cabot, J. & Wimmer, M. (2012). Model-Driven Software Engineering in Practice. Morgan and Claypool Publishers, ISBN:
9781608458837.
[5] Berre, A.J., Huang, S., Murad, H. & Kabza, E. (2018). Evolution towards teaching a holistic course in model-driven system development: modeling for
enterprise architecture with business and system architecture and platform-based development. Pages 62-66. 10.1145/3270112.327013.
[6] Sfard, A. (1994). Reification as the Birth of Metaphor. For the Learning of Mathematics, 14(1), 44-55.
[7] Hakkarainen, K., Paavola, S., & Lipponen, L. (2004). From Communities of Practice to Innovative Knowledge Communities. Lifelong Learning in Europe,
2, 75- 83.
[8] Stahl, G. (2013). Theories of collaborative cognition: Foundations for CSCL and CSCW together. In S. Goggins & I. Jahnke (Eds.), CSCL@work. (Vol. #13
Springer CSCL Book Series). New York, NY: Springer.
[9] Engeström, Y. (2009). The future of activity theory: A rough draft. In A. Sannino, H. Daniels, & K. Gutierrez (Eds.), Learning and expanding with activity
theory. New York: Cambridge.
[10] Berre A.J, Huang S., Murad H., Alibakhsh H. (2018). Teaching modeling for requirements engineering and model-driven software development courses,
Computer Science Education, 28:1, 42-64.
[11] Cole, M., & Engestrom, Y. (1993). A cultural-historical approach to distributed cognition. In G. Salomon (Ed.), Distributed Cognitions: Psychological and
Educational Considerations (paperback 1997 ed., pp. 1 - 46). Cambridge, UK: Cambridge University Press.
[12] Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183-198.
[13] Prince, M., & Felder, R.M. (2006). Inductive teaching and learning methods: Definitions, comparisons, and research bases. Journal of Engineering
Education 95 (2): 123–38.
[14] Linn, M. C. & Eylon, B.-S. (2011). Science Learning and Instruction – Taking Advantage of Technology to Promote Knowledge Integration. New York:
Routledge. Ch. 8: 186-217.
[15] Rasmussen, I., & Ludvigsen, S. (2010). Learning with computer tools and environments: a sociocultural perspective. In K. Littleton, C. Wood & J. K.
Staarman (Eds.) International Handbook of Psychology in Education. (pp. 399- 435). UK, Emerald.
[16] Brambilla, M. & Fraternali, P. (2014) Interaction Flow Modeling Language: Model-Driven UI Engineering of Web and Mobile Apps with IFML, 1st
Edition. ISBN: 9780128001080, The MK/OMG Press.
[17] Mørch, A.I., Andersen, R., Fugelli, P., Ponti, M. & Lahn, L.C. (2013). Communities of interest: Newcomer participation in open online collaborative
software development and learning communities. Technical report, Department of Education, University of Oslo.
[18] Bereiter, C., & Scardamalia, M. (1989). Intentional learning as a goal of instruction. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in
honor of Robert Glaser (pp. 361-392). Hillsdale, NJ: Lawrence Erlbaum Associates.
[19] Bereiter, C., & Scardamalia, M. (2013). Self-organization in conceptual growth. Practical implications. In S. Vosniadou, (Ed.), International handbook of
research on conceptual change (2nd ed.,) (pp. 504-519). New York: Routledge.
[20] Säljö, R. (2010). Digital tools and challenges to institutional traditions of learning: technologies, social memory and the performative nature of learning. J.
Comput. Assist. Learn. 26(1), 53–64.
[21] Biggs, J. & Tang, C. (2007). Teaching for Quality Learning at University. McGraw Hill Education, England, third edn.
[22] Bloom, B. S.; Engelhart, M. D.; Furst, E. J.; Hill, W. H.; Krathwohl, D. R. (1956). Taxonomy of educational objectives: The classification of educational
goals. Handbook I: Cognitive domain. New York: David McKay Company.
[23] Armarego, J. (2009). Constructive Alignment in SE Education: Aligning to What? In: Ellis, Heidi J. C, Demurjian, Steven A & Naveda, J. Fernando, (eds.)
Software engineering: effective teaching and learning approaches and practices. Information Science Reference, Hershey, PA, pp. 15-37.
[24] Vygotsky, L., S. (1934) cited in Palmer, J., A, (ed.) (2001, pp.33-37) Fifty Modern Thinkers on Education: From Piaget to the Present. London: Routledge.
[25] Golding, C. (2009). The Many Faces of Constructivist Discussion. Educational Philosophy and Theory. 43. 467 - 483.
[26] Stamatova, E. & Kaasbøll, J. (2007). Users' Learning of Principles of Computer Operations. Issues in Informing Science and Information Technology. 4.
10.28945/951.
[27] Horne, R., Grant, T. & Verghese, K. (2009). Life Cycle Assessment: Principles, Practice and Prospects. 10.1071/9780643097964.
[28] Kaasbøl, J. (2013-2018). Developing digital competence - learning, teaching and supporting use of information technology. Report, University of Oslo.
[29] Nardi, B.A. & O'Day, V.L. (1998), "Application and implications of agent technology for libraries", The Electronic Library, Vol. 16 No. 5, pp. 325-337.
[30] Thomas, P. & Carswell, L. (2000). Learning through Collaboration in a Distributed Education Environment.
[31] Krogstie, J. (2012). Model-Based Development and Evolution of Information Systems. A quality approach, Springer, ISBN 978-1-4471-2936-3.

[32] Berger, P. L., & Luckmann, T. (1966). The social construction of reality. Garden City, NY: Anchor.
[33] BIZBOK Business Architecture Body of Knowledge.
[34] EABOK – Enterprise Architecture Body of Knowledge.
[35] SWEBOK – Software Engineering Body of Knowledge.
[36] MBEBOK - Model-based Software Engineering Body of Knowledge - Ciccozzi F., Famelis M., Kappel G., Lambers L., Mosser S-, Paige R.F., Pierantonio
A., Rensink A., Salay R., Taentzer G., Vallecillo A., and Wimmer M.. . 2018. "Towards a Body of Knowledge for Model-Based Software Engineering". In
ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems (MODELS ’18 Companion), October 14–19, 2018,
Copenhagen, Den-mark. ACM, New York, NY, USA, 8 pages.
[37] SLEBOK – Software Language Engineering Body of Knowledge.
[38] CSCL In: Seel N.M. (eds) Encyclopedia of the Sciences of Learning. Springer, 2012.
[39] Layzell, P., Brereton, O. P. & French, A. (2000). Supporting collaboration in distributed software engineering teams. Proceedings of the Seventh
Asia-Pacific Software Engineering Conference. Los Alamitos, CA: IEEE Computer Society.
[40] Grudin, J. (1994). CSCW: History and focus. IEEE Computer, 27(5): 19–26.
[41] Guzdial, M., Ludovice, P., Realff, M., Morley, T., Carroll, K., & Ladak, A. (2001). The challenge of collaborative learning in engineering and math. In
Proceedings of IEEE/ASEE Frontiers in Education (FIE) 2001 Conference. IEEE, Reno, NV.
[42] Sharp, J.J. (1991). Methodologies for problem solving: An engineering approach, The Vocational Aspect of Education, 42:114, 147-157.
[43] Salomon, G. (1992). What does the design of effective CSCL require and how do we study its effects?. SIGCUE Outlook, 21(3): 62–68.
[44] Jørgensen, M. (2015). Suksess og fiasko i offentlige IT-prosjekter: En oppsummering av forskningsbasert kunnskap og evidensbaserte tiltak. Oslo: Simula
Research Laboratory/Universitetet i Oslo/Scienta.
[45] Dørun, I.K. (2017). En smidigere arkitekturprosess - fra «hviskeleken» til felles arkitekturforståelse? Master thesis at UiO.
[46] Boehm, B. (2011). Architecting: How Much and When. In A. O. & G. Wilson (Ed.), Making Software - What Really Works, and Why We Believe IT (pp.
161–185). Sebastapol, California, USA: O’Reilly Media.
[47] Waterman, M. & Noble, J. & Allan, G. (2015). How Much Up-Front? A Grounded Theory of Agile Architecture. Victoria University of Wellington.
[48] Brown, S. (2018)., Software Architecture for Developers. Volume 1. Technical leadership and the balance with agility.
[49] Schmidt, K. & Bannon L. Taking CSCW Seriously. Supporting Articulation Work, 1992. Computer Supported Cooperative Work: The Journal of
Collaborative Computing, vol. 1 no. 1, pp. 7-40.
[50] Grinter, R.: Recomposition: Coordinating a Web of Software Dependencies, 2003. Computer Supported Cooperative Work: Journal of Collaborative
Computing, 12(3): 297-327.
[51] Parnas, D.L. (1972): On the Criteria to be Used in Decomposing Systems into Modules. Communications of the ACM, vol. 15, no. 12, pp. 1053–1058.
[52] Malterud, K. (2012). Systematic text condensation: A strategy for qualitative analysis. Scandinavian journal of public health. 40.

