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Abstract  

The problem addressed in this paper is that we want to sort an integer array a[] of length 

n in parallel on a multi core machine with p cores using merge sort. Amdahl’s law tells 

us that the inherent sequential part of any algorithm will in the end dominate and limit the 

speedup we get from parallelization. This paper introduces ParaMerge, a new all parallel 

merge sort algorithm for use on an ordinary shared memory multi core machine that has 

just a few statements in its sequential part. This algorithm is all parallel in the sense that 

by recursive decent it is two-parallel in the top node, four-parallel on the next level in the 

recursion, then eight-parallel until we have started one thread at a level for all the p cores. 

After the parallelization phase, each thread then uses sequential recursion merge sort with 

a new variant of insertion sort for sorting short subsections. ParaMerge is an improvement 

over traditional parallelization of the merge sort algorithm that follows the sequential 

algorithm and substitute recursive calls with the creation of parallel threads in the top of 

the recursion tree. This traditional parallel merge sort finally does a merging of the two 

sorted halves of a[] sequentially. Only at the next level does a traditional approach go 

two-parallel, then four parallel on the next level, and so on. After parallelization my 

implementation of this traditional algorithm also use the same sequential merge sort and 

insertion sort algorithm as the ParaMerge algorithm in each of its threads.  

There are two main improvements in ParaMerge: First, the observation that merging can 

simultaneously be done from the start of the two sections to be merged left to right picking 

the smallest elements of, and at the same time from the end of the same sections from 

right to left picking the largest elements. The second improvement is that the contract 

between a node and its two sub-nodes is changed. In a traditional parallelization a node 

is given a section of a[], and sort this by merging two sorted halves it recursively receives 

from its own two sub nodes and returns this to its mother node. In ParaMerge the two sub 

nodes each receive a full sorting from its two own sub nodes of the section itself got from 

its mother node (so this problem is already solved). Every node has a twin node. In 

parallel these two twin nodes then merge their two sorted sections, one from left and the 

other from right as described above. The two twin sub nodes have then sorted the whole 

section given to their common mother node. This goes also for the top node. We have 

thus raised the level of parallelization by a factor of two at each level of the top of the 

recursion tree. The ParaMerge algorithm also contains other improvements, such as a 

controlled sorting back and forth between a[] and a scratch area b[] of the same size such 

that the sorted result always  ends up in a[] without any copy. A special insertion sort that 

is central for achieving this copy-free feature. ParaMerge is compared with other 

published algorithms, and in only one case is a feature similar one of the features in 

ParaMerge found. This other algorithm is described and compared in some detail. 

Finally, ParaMerge is empirically compared with three other algorithms sorting arrays 

of length n =10,20,…,50 m, and ..1000m when p=32. We then demonstrate that it is 

significantly faster than two other merge algorithms, the sequential and the traditional 

parallel algorithm. 
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1. Introduction 
The chip manufacturers have since 2004 not delivered what we really want, which simply 

is ever faster processors. The heat generated with an increase of the clock frequency will 

make the chips malfunction and eventually melt above 4 GHz with today’s technology.  

Instead, they now sell us multi core processors with 2-16 processor cores. More special 
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products with 50 to72 cores are also available [2, 21], and the race for many 

processing cores on a chip is also found in the Intel Xeon Phi processor with its 

fast, unconventional memory access and 62 to72 cores [2]. Each of these cores has 

the processing power of the single CPUs sold some years ago. Many of these 

processors, but not all, are hyperthreaded, where some of the circuitry is 

duplicated such that each core can switch between two threads within a few 

instruction cycles if the active thread is waiting for some event like access to main 

memory. To the operating system one such hyperthreaded core they act as two 

cores. Also, we see today servers with up to 4 such hyperthreaded multi cores 

processors, meaning that up to 64 threads can run in parallel. We use one of these 

servers in this paper. The conclusion to all this parallelism is that if we faster 

programs, we must make parallel algorithms for exploiting these new machines. 

2. The parallel algorithm ParaMerge  

The problem addressed is that we want to sort an integer array a[]of length n on a 

shared memory machine with p cores using a parallel implementation of  merge 

sort [1]. We assume that merge sort is a well known sequential algorithm [12, 14, 

17].  

There are four significant features in ParaMerge, three of which are new: 

1. New: Simultaneously sorting from both ends of the two segments to be 

merged. This always gives a balanced merge and faster, simpler code. 

2. Two-parallel in the top node, no sequential merging. 

3. A new insertion sort that ensures that ParaMerge is copy-free, meaning 

that every move of elements from a[] to b[] or vice versa, is sorting. 

4. A new contract between a mother node and its two sub nodes ensuring 

more parallelism. 

The ParaMerge algorithm addresses to some extent the limitations posed to us 

by Amdahl’s law [3] that basically says that any sequential part of an algorithm 

will sooner or later dominate the execution time of the parallel algorithm, thus 

limiting the speedup we can get with increased parallelism.  ParaMerge does this 

by having only a few sequential statement before going two-parallel in the top 

node in a recursion sorting a[]  - partitioning a[] in a top down recursion and doing 

the sorting on backtrack. It is all parallel in the sense that by recursive decent it is 

two parallel in the top node, four parallel on the next level in the recursion, then 

eight parallel until we have started at least two thread for all the p cores.  
 

 
 

Figure 1. Merging adjacent sorted sections L and R in parallel with two twin threads 

– each merging number of elements=  half the sum of the length of R+L. Thread0   
merges L and R  from left to right on smallest elements, while thread1 merges L and 

R from right to left on largest elements.  

 

 



After parallelization with threads, each thread then uses the sequential 

recursion merge to sort their section. A variant of insertion sort (fig. 4) is used for 

sorting short subsections. Waiting in ParaMerge occurs at two synchronization 

points at each node in the top of the recursive tree, first when the two sub nodes 

have made their recursion and backtrack up to this node (fig. 2, 3). The two twin 

nodes at this level in the tree then sort their two adjacent sorted sections in the 

array (a[] or b[]) together in parallel – one from the left and one from the right. 

Say the combined length of these two segments is m.  Then one merges from the 

left, and the other from the right – finding the m/2 smallest and the (m+1)/2 

largest elements respectively (fig. 1). This is balanced regardless of the value of 

the elements to be sorted, because each thread finds a pre calculated number of 

elements in the two segments in a[oldLeft..oldRight] - see fig. 1. Note the 

difference between the code in figures 5 and 6. In the merging in fig.5 we test for 

having performed a fixed number of merge operations, while we in the code in 

fig.6 we test for end-of two sections.  

The second synchronization occurs when they are finished with this and return 

to their mother node. 

 
 

Figure 2. The indirect recursive method used to split the problem for ParaMerge. If 

either the problem is too small or the predetermined max level of nodes from the top or 

reached, a sequential merge sort is called. Otherwise two new twin nodes are created 

(see Fig. 3) and this method waits with join() for them to complete.  

 

The call to start ParaMerge is: rekParallel2(a,b,0,n-1,0); We see that the top of 

the recursive sorting tree is level 0, and no new thread is created for the top node; 

it is just the method rekParallel2 that starts two threads, one for each of the two 

twin sub nodes to top node. 

To explain how the non-copy properties of ParaMerge is done, we note that if 

array a[] contains the most sorted version on backtrack when level is an even 

number then the whole array is sorted at level 0, the top – the last step from level 

1 must then be a sort b[] to a[]. This property is secured at the bottom level at the 

recursion where we do insertion sort. Since the input a[] has an arbitrary length, 

each time we partition it in two, we will in general half of the times get two parts 



where one section is one element longer than the other. We also use a formula for 

splitting a section in two that will always make the left part one longer if 

necessary. This will accumulate if we have many levels in the recursion tree, and 

we might end up with more levels on the left side than on the right side of the tree.   

   

 
Figure 3. The run() method in  the ParaMerge algorithm and its synchronizations. After 

the call to rekParallel2, this is the backtrack part of the nodes with new threads. We then 

wait on a common CyclicBarrier with its twin node to assure that the other part is sorted 

before we merge (index == 0 is the left twin node). The even/odd test for the parameter 

‘level’ is to determine whether to sort a[] -> b[] or b[] -> a[]. 

 

This is solved with a (new) formulation of Insertion sort (fig. 4) that takes two 

parameters – a[] and b[] and sort the section specified by its left and right 

parameters from a[] to b[]. The nice property of InsertSortAB is that, if given the 

same parameter a[] as both a[] and b[], it will just sort array a[], otherwise it will 

sort a[left..right] to b[left..right] without altering a[]. 
 

 
Figure 4. A reformulation of insertion sort that either sort a[] to b[], or a[] to a[]. 

 



This version of insertion sort has only one extra statement for each invocation 

 (b[left] = a[left];) if it is used for sorting a[] to a[] – a small price to pay when we 

need this flexibility, determined at the final level to sort a[] to b[], or a[] to a[]. 

The call to this method is always done in the sequential part of merge sort (not 

shown here, but can be seen by downloading the whole code [16]). 

 A final note, ParaMerge is a stable sort. This is because when we sort from 

left-to-right, we first pick small, possibly equal elements, from the left segment. 

And, when sorting from the right-to-left, we first pick large, possibly equal 

elements, from the right segment (fig.5). Also, InsertABSort (fig. 4) is stable, 

hence the whole algorithm is stable. 

Figure 5. The two methods from ParaMerge that sort half the elements from the left and 

half the elements from the right from two adjacent sections in a larger array fra[] to the 

same area in til[]. Note, only one loop with only one test. 

 
 void mergeFromLeft(int[] fra, int [] til, int left, int mid, int right) { 

   // merge fra[left..mid] & fra[mid+1..right] from left to: til[fra..right]; fra->til 
  int fra1 = left, 
      fra2 = mid+1, 
       to   = left; 
     while (fra1 <= mid && fra2 <= right) { 

   if (fra[fra1] < fra[fra2]) { 

    til[to++] = fra[fra1++]; 

   } else { til[to++] = fra[fra2++];} 

    } 

           while (fra1 <= mid ) {til[to++] = fra[fra1++];} 

           while (fra2 <= right){til[to++] = fra[fra2++];} 

  } // end mergeFromLeft 

  

       

 



Figure 6. Merging two segments left-to-right. Note the two tests in the central while-loop 

and the two extra while-loops at the end compared with the methods in Figure 5. 

3. Related work  

Parallel sorting algorithms are abundant [4,5,6,9,10,11,14,16], As with 

sequential sorting, we can distinguish between comparison based methods, where 

the values of two (or more) keys are compared to do the sorting; and content 

based methods, where the value of some bits in a single key determines where it 

will be sorted. Most work on parallelization has been done on comparison based 

algorithms. The home page for merge sort at Wikipedia is recommended [1]. 

However, the parallel merge sort algorithm presented by Arch D. Robinson in [8] 

is not mentioned there. This algorithm has one of the features of the ParaMerge 

algorithm presented in this paper.  

His algorithm also does a parallel merge at all levels also at the top level. The 

way this algorithm does this, always from left to right, is to split the two parts to be 

merged. First the longest part is split in two equal parts, and the value in that middle 

is denoted K. In the other, smaller part to be merged, a binary search is performed 

to find where K would fit in there, and the value at that point is denoted K’. The 

second sequence is then split at that point – and we now have two sequences with 

small elements, one up to K and the other up to K’, and the other parts are two 

segments with larger elements. The algorithm starts one extra thread, a copy of one 

of these sections is performed, and both the two sections with elements < K, and 

the two with larger elements can now be merged in parallel. 

There are problems with the efficiency of this approach. First the binary search 

for K’ and the creation of an extra thread and a copy. Especially the extra thread 

that is created and later terminated every time a merge is done, will be time 

consuming, also since the recursion tree is already parallelized down to any length  

> 2000.  

Another time consuming effect is that the tests in the main loop are more 

complex with two extra loops at the end, compared with the very simple code in 

ParaMerge – compare code in fig. 6 – sorting whole sections left to right with the 

two methods in fig. 5 sorting half the sections from left-to-right and right-to-left. In 

addition, the split of the second section is will seldom be balanced. A worst case 

would be if all elements in the second section are greater than all elements in the 

first, longest section. Then this approach will be no faster than an ordinary, non 

parallel merge of the two original sections without a split. On the average, this 

approach seems not optimal. 

In the following we will first analyze the differences between the ParaMerge 

and a traditional crafted merge sort, the TradParaMege algorithm. TradParaMege 

follows the sequential algorithm and substitute recursive calls with the creation of 

parallel threads for these calls in the top of the recursion tree for any section to sort 

longer than say 20 000 elements or that the level is greater than some predetermined 

value (calculated by the number of available cores). Data is first then sequentially 

split in two separate parts, each part gets a thread and we can then continue in 2-

parallel. Then again each part of data is split in two, and we get a 4 parallel program, 

then 8-parallel. After this parallelization each thread then, both in ParaMerge and 

TradParaMerge, use the same straight forward sequential merge sort, SeqMerge on 

its part of the array. 



Then we will empirically investigate how the ParaMerge compares with: a) 

SeqMerge and b) TradParaMerge. We will test these four algorithms on three 

different machines with 2(4 hyperthreaded) cores, 4(8) cores and 32(64) cores. 

      Finally, we conclude on the efficiency of the new ParaMerge algorithm.  
 

4. The TradParaMerge and the ParaMerge algorithms analyzed. 

Assume that we have p cores. In TradParaMerge we first do sequentially n reads 

and n writes; at the next level it is 2-parallel. Time wise it then does n/2 reads and 

n/2 writes, then n/4 reads and n/4 writes until there is no more parallelism. It then 

goes on doing 2p sequential merge sort, time wise they take 
𝑛

𝑝
∗ (𝑛 ∗

𝑙𝑜𝑔𝑛

𝑝
)  time.  In 

table 1 this is summarized for p =2, 4,..32.  

The new ParaMerge does time wise n/2 read and writes at level 1, then n/4 read 

and n/4 writes on the next level,… But on the level where there is not parallelism 

left, each last node only issues one single call to SeqMerge to sort the section it has 

been given. The reason for this is to keep the contract that the next node in the tree 

shall return the whole section sorted that was given to its mother node.  

The formulas in table1 summarizes the expected running times for the 

TradParaMerge and ParaMerge algorithms for p=2, 4,..32. 
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Table 1. The expected execution times for the two parallel merge sort algorithms with p= 

2, 4,.., 32 as a function of n = the length of a[]. 



 

In the calculations in table1, the extra time used by an extra synchronization in 

ParaMerge and the use of insert sort for the shortest subsections are not 

considered. Both algorithms use the same SeqMerge algorithm as a sub algorithm 

which is assumed to have a running time of 𝒏 ∗ 𝒍𝒐𝒈𝒏 when sorting an array of 

length n. 

 

From the results in table 1 we can calculate expected speedup as:  

 

𝑆 =
𝑛 𝑙𝑜𝑔𝑛

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
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] 
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Table 2. The expected speedup of the TradParaMerge and ParaMerge algorithms 

with p=2,4,..,32 as a function of the length of the sorted array. 

 

We note that ParaMerge seems to be a faster algorithm than TradParaMerge. 

However, the difference is not large when p =2, but increases as p ≥ 4. We also note 

that ParaMerge does not completely escapes Amdahl’s law. It is under-parallelized 

by being first 2, then 4 parallel and it’s not up to a full parallel algorithm before, for 

p =32, the 5th level in the tree. The penalty it pays for this, for p=32 :    

𝑙𝑜𝑔𝑛/(𝑙𝑜𝑔𝑛 + 26), we might call the scale down factor. TradParaMerge has a 

larger scale down factor for the same n and p. 

A note on hyperthreaded cores. When a processor says that it has p cores in 

Java, it counts both real cores and the hyperthreaded ones. It is debatable how much 

additional speed one gets from hyper-threading, numbers from 0% to 30% increase 

[27] has been reported. In the above tables for simplicity, p is assumed to be all real, 

not hyperthreaded, cores. 



5. The test results 
  As with Arrays.sort, all three algorithms also use Insertion sort if n < 45 

and the two parallel ones do not start parallel sorting, but use the same sequential 

merge sort, MergeSeq, if n < 20 000 or the level in the tree has exceeded some 

predefined limit, which is a function of the numbers of cores reported by the Java  

 
LEVEL_LIM = (int) Math.log(Runtime.getRuntime().availableProcessors()*2)+ 1; 

 

The reason for the *2 factor is that roughly half the threads we have started are 

waiting higher up in the tree, and we only want to start enough threads to fill the 

last level of nodes with active threads.   

We tested these 4 algorithms using Java8 on three different machines, on laptop 

with 2(4 hyperthreaded) cores, one workstation with 4(8) cores, and one server with 

32(64) cores, and the numbers to be sorted was the U(n), a uniform distribution 0:n.   

Time is measured with the Java system call: System.nanoTime(). We here 

present the speedup for the three tested algorithms on the three machines. 

 

 

 
 

Figure 8. Speedup of the two sequential, and the two parallel and merge algorithms 

on a 2(4) core laptop with  Intel i7-4600 CPU, 2.1 GHz. 

 

 



 
 

Figure 9. Speedup of the three algorithms the sequential Arrays.sort, and the two 

parallel TradParaMerge and ParaMerge on a 4(8)  Inteli7-7600 CPU, 2.1 GHz desktop. 

 

 
 

Figure 10. Speedup of the three algorithms the sequential Arrays.sort, and the two 

parallel TradParaMerge  and ParaMerge on a 32(64) core, 

4* Intel Xeon L7555 1.87GHz server. 

6. Analysis of the test results 
From the theoretical analysis, we see four interesting predictions: 

a) The speedup differences between TradParaMerge and ParaMerge 

increase with p, the number of cores. 

b) The ParaMerge is faster than TradParaMerge, at least when p >2. 

c) The relative S𝑝𝑒𝑒𝑑𝑢𝑝/𝑝  will decrease with a larger p.  

(when n = 2 26 i.e. 64mill. the scale down factor with p =32, is 0.5 for 

ParaMerge and 0.31 for TradMergePara. I.e., we will at best get a 

speedup of 16 for ParaMerge and 10 for TradParaMerge ) 

d) The value of n where speedup > 1 first occurs will increase with p. 

 



The empirical tests confirm all these four patterns, but they need a further 

comment. For p = 2 and p=4 we get a better speedup than 2 and 4 for ParaMerge. 

The main reason for this is that the additional hyperthreaded cores have a positive 

effect on speedup. The below than expected speedup for p=32 can, apart from the 

scale down factor discussed above, be explained by congestion on the data channels 

of this 32(64) core server trying to feed data from main memory to 32 parallel 

threads. 

The actual Java code for ParaMerge will be posted on my sorting homepage 

[23] for free download together with this paper. 
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8. Conclusion 
I have presented a new parallel algorithm ParaMerge that sorts significantly 

faster than the standard sequential Mergesort and a traditionally parallelized merge 

sort on a shared memory computer with more than two cores and f n ≥ 20 000,  

where sorting times matters most.  
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